Modeling Left Ventricle Perfusion in Healthy and Stenotic Conditions
Abstract
:1. Introduction
2. Methods
- -
- The solid phase is represented by myocardial fibers and walls of vessels;
- -
- The interstitial fluid is represented by the blood filling the myocardial vessels;
- -
- The arterial network is responsible for the diastolic circumferential swelling process;
- -
- The external overloading consists in a rhythmic vertical contraction of the heart muscle;
- -
- indicates the vertical stress absorbed by the muscular fibers;
- -
- p is the so-called transmural pressure (i.e., the isotropic blood pressure within the vessels that exceeds the compression transmitted by the muscular fibers);
- -
- is the total vertical stress within the ventricle wall;
- -
- The systolic circumferential drainage takes place through the venous network.
3. Results
3.1. Solution for Homogeneous Perfusion
3.2. Solution for Non-Homogeneous Perfusion
3.3. Application to In Vivo Tomographic Measurements
4. Conclusions
5. Limitations of the Model and Clinical Applicability Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
total vertical stress within the ventricle wall | |
vertical stress adsorbed by the muscular fibers within the ventricle wall | |
blood transmural pressure | |
Darcy flow rate vector | |
hydraulic conductivity | |
blood specific weight | |
radial coordinate | |
angular coordinate | |
vertical coordinate | |
specific storage | |
time | |
volume of blood leaving the arterial network per unit time and unit ventricle volume | |
ventricle/porous medium porosity | |
coefficient of elasticity of the muscular component | |
bulk coefficient of elasticity | |
blood coefficient of compressibility | |
pore/vessel average diameter | |
healthy transmural pressure that exceeds capillary pressure | |
capillary pressure | |
ventricle wall thickness | |
healthy amplitude of pulsatile flow rate | |
healthy mid diastole/mid systole flow rate | |
healthy cardiac cycle period | |
stenotic amplitude of pulsatile flow rate | |
stenotic mid diastole/mid systole flow rate | |
angle subtended by the stenotic ventricle sector | |
coefficient of reduction of flow rate in stenotic conditions | |
stenotic cardiac cycle period | |
transmural perfusion ratio | |
percentage of stenosis | |
relative error in the assessment of TPR | |
radial component of Darcy velocity | |
angular component of Darcy velocity | |
magnitude of Darcy velocity | |
healthy magnitude of Darcy velocity | |
maximum healthy magnitude of Darcy velocity |
References
- Thiene, G.; Basso, C. Myocardial infarction: A paradigm of success in modern medicine. Cardiovasc. Pathol. 2010, 19, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bache, R.J.; Schwartz, J.S. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 1982, 65, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Phibbs, B. Transmural versus Subendocardial myocardial infarction: An electrocardiographic myth. J. Am. Coll. Cardiol. 1983, 2, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Ideker, R.E. Subendocardial versus transmural infarction. In Acute Coronary Care: Principles and Practice; Califf, R.M., Wagner, G.S., Eds.; Marrinus Nijhoff Publishing: Leiden, The Netherlands, 1985; pp. 81–89. [Google Scholar]
- Gould, K.L. Assessing coronary stenosis severity—A recurrent clinical need. J. Am. Coll. Cardiol. 1986, 8, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Hackel, D.B.; Wagner, G.S. Acute circumferential subendocardial infarction. Clin. Cardiol. Clin. Pathol. Correl. 1982, 15, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Uren, N.G.; Merlin, J.A.; De Bruyne, B.; Wijns, W.; Baudhin, T.; Camici, P.G. Relation between myocardial blood flow and the severity of coronary artery stenosis. N. Engl. J. Med. 1994, 330, 1782–1788. [Google Scholar] [CrossRef]
- Al-Saadi, N.; Nagel, E.; Gross, M.; Bornstedt, A.; Schnackenburg, B.; Klein, C.; Klimek, W.; Oswald, H.; Fleck, E. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000, 101, 1379–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkus, D.; Vergroesen, I.; Hiramatsu, O.; Tachibana, H.; Nakamoto, H.; Toyota, E.; Goto, M.; Ogasawara, Y.; Spaan, J.A.E.; Kaija, F. Stenosis differentially affects subendocardial and subpicardial arterioles in vivo. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H1674–H1682. [Google Scholar] [CrossRef]
- Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.; Clarke, S.; Schofield, P.M.; McKilligin, E.; Mosedale, D.E.; et al. Rapid and non-invasive diagnosis of the presence and severity of coronary heart disease using H-NMR-based metabonomics. Nat. Med. 2002, 8, 1439–1445. [Google Scholar] [CrossRef]
- Lund, G.K.; Watzinger, N.; Saeed, M.; Reddy, G.P.; Yang, M.; Aaroz, P.A.; Curatola, D.; Bedigian, M.; Higgins, C.B. Chronic heart failure: Global left ventricular perfusion and coronary flow reserve with velocity-encoded cine MR imaging: Initial results. Radiology 2003, 227, 209–215. [Google Scholar] [CrossRef]
- Chan, J.; Hanekom, L.; Wong, C.; Leano, R.; Cho, G.; Marwick, T.H. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J. Am. Coll. Cardiol. 2006, 48, 2026–2033. [Google Scholar] [CrossRef] [Green Version]
- Kaul, S.; Jayaweera, A.R. Myocardial capillaries and coronary flow reserve. J. Am. Coll. Cardiol. 2008, 52, 1399–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groppo Marchisio, F.; Chauvie, S.; Grosso, M.; Biggi, A.; Marco, B.; Feola, M. Semiquantitative analysis of ischemic disfunctional myocardial tissue: Comparison of contrast MRI and Myocardial PET. Open Cardiovasc. Imaging 2009, 1, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Mather, A.N.; Greenwood, J.P.; Pleain, S. Characterization of acute myocardial infarction by magnetic resonance imaging. JACC Cardiovasc. Imaging 2009, 9, 1141–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, G.A.; Crea, F. Primary coronary microvascular dysfunction: Clinical presentation, pathophysiology and management. Circulation 2010, 121, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Flachskampf, F.A.; Schmid, M.; Rost, C.; Achenbach, S.; DeMaria, A.N.; Danie, W.G.L. Cardiac imaging after myocardial infarction. Eur. Heart J. 2011, 2, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Oyama-Manabe, N.; Ishimori, N.; Sugimori, H.; Van Cauteren, M.; Kudo, K.; Manabe, O.; Okuaki, T.; Kamishima, T.; Ito, Y.M.; Tsutsui, H.; et al. Identification and further differentiation of subendocardial and transmural myocardial infarction by fast strain-encoded (SENC) magnetic resonance imaging at 3.0 Tesla. Eur. Radiol. 2011, 21, 2362–2368. [Google Scholar] [CrossRef] [Green Version]
- Gould, K.L.; Johnson, N.P.; Bateman, T.M.; Beanlands, R.S.; Bengel, F.M.; Bober, R.; Camici, P.G.; Cerqueira, M.D.; Chow, B.J.; Di Carli, M.F.; et al. Anatomic versus physiologic assessment of coronary artery disease. J. Am. Coll. Cardiol. 2013, 62, 1639–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitanidis, P.K. Introduction to Geostatistics: Application in Hydrogeology; Cambridge University Press: Cambridge, UK, 1997; 249p. [Google Scholar]
- Liu, X.; Kitanidis, P.K. Large-scale inverse modelling with an application in hydraulic tomography. Water Resour. Res. 2011, 47, W02501. [Google Scholar] [CrossRef]
- MacLeod, R.S.; Yilmaz, B.; Taccardi, B.; Punse, B.B.; Serinagaoglu, Y.; Brooks, D.H. Direct and inverse methods for cardiac mapping using multielectrode catheter measurements. Biomed. Eng. 2001, 46, 207–209. [Google Scholar] [CrossRef]
- Rimoldi, O.; Schafers, K.P.; Boellaard, R.; Turkheimer, F.; Stegger, L.; Law, M.P.; Lammerstma, A.A.; Camici, P.G. Quantification of subendocardial and suberpicardial blood flow using 15O-Labeled water and PET: Experimental validation. J. Nucl. Med. 2006, 47, 163–172. [Google Scholar] [PubMed]
- Yu, C.; Sanderson, J.E.; Marwick, T.H.; Oh, J.K. Tissue Doppler imaging: A new prognosticator for cardiovascular diseases. J. Am. Coll. Cardiol. 2007, 49, 1903–1914. [Google Scholar] [CrossRef] [Green Version]
- George, R.T.; Arbab-Zadeh, A.; Miller, J.M.; Kitagawa, K.; Chang, H.J.; Bluemke, D.A.; Becker, L.; Yousuf, O.; Texter, J.; Lardo, A.C.; et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging, A pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ. Cardiovasc. Imaging 2009, 2, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salerno, M.; Beller, G.A. Noninvasive assessment of myocardial perfusion. Circ. Cardiovasc. Imaging 2009, 2, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linde, J.J.; Kühl, J.T.; Hove, J.D.; Sørgaard, M.; Kelbæk, H.; Nielse, W.B.; Kofoed, K.F. Transmural myocardial perfusion gradients in relation to coronary artery stenosis severity assessed by cardiac multidetector computed tomography. Int. J. Cardiovasc. Imaging 2015, 31, 171–180. [Google Scholar] [CrossRef]
- Van Den Broek, J.H.J.M.; Van Den Broek, M.H.L.M. Application of an ellipsoidal heart model in studying left ventricular contractions. J. Biomech. 1980, 13, 493–503. [Google Scholar] [CrossRef]
- Thies, R.; Claudet, R.R. Physiology, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1995; 280p. [Google Scholar]
- De Marsily, G. Quantitative Hydrogeology, Groundwater for Engineers; Academic Press: Cambridge, MA, USA, 1986; 440p. [Google Scholar]
- Kozlikova, K.; Martinka, J.; Bulas, J.; Murin, J. QRS Complex isointergal maps and left ventricular dimensions. Meas. Sci. Rev. 2003, 3, 107–110. [Google Scholar]
- Zwillinger, D. Handbook of Differential Equations; Academic Press Inc.: Cambridge, MA, USA, 1989; 694p. [Google Scholar]
- Brown, J.; Churchill, R. Fourier Series and Boundary Value Problems; Mc Graw-Hill: New York, NY, USA, 2001; p. 344. [Google Scholar]
- Pannone, M. Longitudinal dispersion in river flows characterized by random large-scale bed irregularities: First-order analytical solution. J. Hydraul. Eng. 2012, 138, 400–411. [Google Scholar] [CrossRef]
- Pannone, M. On the exact analytical solution for the spatial moments of the cross-sectional average concentration in open channel flows. Water Resour. Res. 2012, 48, W08511. [Google Scholar] [CrossRef]
- Pannone, M. Predictability of tracer dilution in large open channel flows: Analytical solution for the coefficient of variation of the depth-averaged concentration. Water Resour. Res. 2014, 50, 2617–2635. [Google Scholar] [CrossRef]
- Duffield, G.Y. Representative Values of Hydraulic Properties. Available online: http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm (accessed on 30 January 2021).
- Cullen, J.H.S.; Horsfield, M.A.; Reek, C.R.; Cherryman, G.R.; Barnett, D.B.; Samani, N.J. A myocardial perfusion reserve index in humans using first pass contrast-enhanced magnetic resonance imaging. J. Am. Coll. Cardiol. 1999, 33, 1386–1394. [Google Scholar] [CrossRef] [Green Version]
- Momen, A.; Mascarenhas, V.; Gahremanpur, A.; Gao, Z.; Moradkhan, R.; Kunselman, A.; Boehmer, J.P.; Sinoway, L.I.; Leuenberger, U.A. Coronary blood flow response to physiological stress in humans. Am. J.Physiol. Heart Circ. Physiol. 2009, 296, H854–H861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncker, D.J. Regulation of Coronary Blood Flow. Available online: https://www.escardio.org/static-file/Escardio/education/live-events/courses/education-resource/101-Duncker.pdf (accessed on 30 January 2021).
- Crea, F.; Lanza, G.A.; Camici, P.G. Coronary Microvascular Dysfunction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; p. 269. [Google Scholar]
- Algranati, D.; Kassab, G.S.; Lanir, Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am. J. Physiol. Heart Circ. 2011, 300, H1090–H1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TPR | Linde et al. [27] | Present Study |
---|---|---|
Average at rest sten < 50% | 0.955 SD = 0.081 (0.874–1.036) | 1.04 |
Average during stress sten < 50% | 0.942 SD = 0.047 (0.895–0.989) | 0.963 |
Average at rest sten > 50% LAD(23), RCA(17), CX(9) | 0.943 SD = 0.087 (0.856–1.03) | 0.913 |
Average during stress sten > 50% LAD(23), RCA(17), CX(9) | 0.88 SD = 0.088 (0.792–0.968) | 0.844 |
TPR | George et al. [25] | Present Study |
---|---|---|
Average during stress sten = 0% | 1.12 SD = 0.13 (0.99–1.25) | 1.09 |
Average during stress sten 30–49% | 1.09 SD = 0.11 (0.9–1.12) | 1.076 |
Average during stress sten 50–69% | 1.06 SD = 0.14(0.92–1.2) | 1.046 |
Average during stress sten 70–100% | 0.91 SD = 0.1 (0.81–1.01) | 0.916 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannone, M. Modeling Left Ventricle Perfusion in Healthy and Stenotic Conditions. Bioengineering 2021, 8, 64. https://doi.org/10.3390/bioengineering8050064
Pannone M. Modeling Left Ventricle Perfusion in Healthy and Stenotic Conditions. Bioengineering. 2021; 8(5):64. https://doi.org/10.3390/bioengineering8050064
Chicago/Turabian StylePannone, Marilena. 2021. "Modeling Left Ventricle Perfusion in Healthy and Stenotic Conditions" Bioengineering 8, no. 5: 64. https://doi.org/10.3390/bioengineering8050064
APA StylePannone, M. (2021). Modeling Left Ventricle Perfusion in Healthy and Stenotic Conditions. Bioengineering, 8(5), 64. https://doi.org/10.3390/bioengineering8050064