Investigation into Cervical Spine Biomechanics Following Single, Multilevel and Hybrid Disc Replacement Surgery with Dynamic Cervical Implant and Fusion: A Finite Element Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. FE Model of the Instrumented Cervical Spine
2.2. Loads and Boundary Conditions
2.3. Data Analysis
3. Results
3.1. ROM
3.2. Stress Distribution in the Implant
4. Discussion
4.1. Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dmitriev, A.E.; Cunningham, B.W.; Hu, N.; Sell, G.; Vigna, F.; McAfee, P.C. Adjacent Level Intradiscal Pressure and Segmental Kinematics Following A Cervical Total Disc Arthroplasty: An In Vitro Human Cadaveric Model. Spine 2005, 30, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Hacker, R.J.; Cauthen, J.C.; Gilbert, T.J.; Griffith, S.L. A prospective randomized multicenter clinical evaluation of an anterior cervical fusion cage. Spine 2000, 25, 2646–2655. [Google Scholar] [CrossRef]
- Kandziora, F.; Pflugmacher, R.; Schaefer, J.; Scholz, M.; Ludwig, K.; Schleicher, P.; Haas, N.P. Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J. Neurosurg. Spine 2003, 99, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Brenke, C.; Fischer, S.; Carolus, A.; Schmieder, K.; Ening, G. Complications associated with cervical vertebral body replacement with expandable titanium cages. J. Clin. Neurosci. 2016, 32, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Thomé, C.; Tschugg, A.; Paesold, J.; Kavakebi, P.; Schmölz, W. Cement-augmented screws in a cervical two-level corpectomy with anterior titanium mesh cage reconstruction: A biomechanical study. Eur. Spine J. 2017, 26, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, Y.; Tang, J.; Ren, D.; Guo, J.; Wang, H.; Li, L.; Hou, S. A comparison of a new zero-profile, stand-alone Fidji cervical cage and anterior cervical plate for single and multilevel ACDF: A minimum 2-year follow-up study. Eur. Spine J. 2017, 26, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Bydon, M.; Xu, R.; Macki, M.; De la Garza-Ramos, R.; Sciubba, D.M.; Wolinsky, J.-P.; Witham, T.F.; Gokaslan, Z.L.; Bydon, A. Adjacent segment disease after anterior cervical discectomy and fusion in a large series. Neurosurgery 2014, 74, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, A.A.; Kode, S.; DeVries, N.A.; Grosland, N.M.; Smucker, J.D.; Fredericks, D.C. Biomechanical analysis of cervical disc replacement and fusion using single level, two level, and hybrid constructs. Spine 2015, 40, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.W.; Hu, N.; Zorn, C.M.; McAfee, P.C. Biomechanical comparison of single-and two-level cervical arthroplasty versus arthrodesis: Effect on adjacent-level spinal kinematics. Spine J. 2010, 10, 341–349. [Google Scholar] [CrossRef]
- Lee, S.-H.; Im, Y.-J.; Kim, K.-T.; Kim, Y.-H.; Park, W.-M.; Kim, K. Comparison of cervical spine biomechanics after fixed-and mobile-core artificial disc replacement: A finite element analysis. Spine 2011, 36, 700–708. [Google Scholar] [CrossRef]
- Chang, U.-K.; Kim, D.H.; Lee, M.C.; Willenberg, R.; Kim, S.-H.; Lim, J. Range of motion change after cervical arthroplasty with ProDisc-C and prestige artificial discs compared with anterior cervical discectomy and fusion. J. Neurosurg. Spine 2007, 7, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.A.; Sasso, R.C.; Rouleau, J.P.; Carlson, C.S.; Goffin, J. The Bryan Cervical Disc: Wear properties and early clinical results. Spine J. 2004, 4, S303–S309. [Google Scholar] [CrossRef]
- Puttlitz, C.M.; DiAngelo, D.J. Cervical spine arthroplasty biomechanics. Neurosurg. Clin. 2005, 16, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.; Zafarparandeh, I.; Taherzadeh, P.; Akıncı, S.Z.; Erbulut, D.U. Effect of U-shaped implant on the biomechanics of the cervical spine. In Proceedings of the 2016 20th National Biomedical Engineering Meeting (BIYOMUT), Izmir, Turkey, 3–5 November 2016; pp. 1–3. [Google Scholar]
- Erbulut, D.U.; Zafarparandeh, I.; Lazoglu, I.; Ozer, A.F. Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability. Med. Eng. Phys. 2014, 36, 915–921. [Google Scholar] [CrossRef]
- Mumtaz, M. Finite Element Analysis of Cervical Spine & Finite Element Modeling of Knee Joint. Master’s Thesis, İstanbul Medipol Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Turkey, 2017. Unpublished. [Google Scholar]
- Nishida, N.; Mumtaz, M.; Tripathi, S.; Kelkar, A.; Sakai, T.; Goel, V.K. Biomechanical Analysis of Posterior Ligaments of Cervical Spine and Laminoplasty. Appl. Sci. 2021, 11, 7645. [Google Scholar] [CrossRef]
- Mumtaz, M.; Mendoza, J.; Vosoughi, A.S.; Unger, A.S.; Goel, V.K. A Comparative Biomechanical Analysis of Various Rod Configurations Following Anterior Column Realignment and Pedicle Subtraction Osteotomy. Neurospine 2021, 18, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Kotani, Y.; Cunningham, B.W.; Abumi, K.; Dmitriev, A.E.; Hu, N.; Ito, M.; Shikinami, Y.; McAfee, P.C.; Minami, A. Multidirectional flexibility analysis of anterior and posterior lumbar artificial disc reconstruction: In vitro human cadaveric spine model. Eur. Spine J. 2006, 15, 1511–1520. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Park, P.; La Marca, F.; Hollister, S.J.; Lin, C.-Y. Analysis of load sharing on uncovertebral and facet joints at the C5–6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: An in vivo image-based finite element study. Neurosurg. Focus 2010, 28, E9. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Anasetti, F.; Bellini, C.M.; Costa, F.; Fornari, M. The influence of the axial, antero-posterior and lateral positions of the center of rotation of a ball-and-socket disc prosthesis on the cervical spine biomechanics. Clin. Biomech. 2010, 25, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Prasarn, M.L.; Baria, D.; Milne, E.; Latta, L.; Sukovich, W. Adjacent-level biomechanics after single versus multilevel cervical spine fusion. J. Neurosurg. Spine 2012, 16, 172–177. [Google Scholar] [CrossRef]
- Veeravagu, A.; Cole, T.; Jiang, B.; Ratliff, J.K. Revision rates and complication incidence in single- and multilevel anterior cervical discectomy and fusion procedures: An administrative database study. Spine J. 2014, 14, 1125–1131. [Google Scholar] [CrossRef]
- Li, Y.; Fogel, G.R.; Liao, Z.; Tyagi, R.; Zhang, G.; Liu, W. Biomechanical analysis of two-level cervical disc replacement with a stand-alone U-shaped disc implant. Spine 2017, 42, E1173–E1181. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-E.; Hu, H.-T.; Hsieh, M.-P.; Huang, K.-Y. Optimization of three-level cervical hybrid surgery to prevent adjacent segment disease: A finite element study. Front. Bioeng. Biotechnol. 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, Z.J.; Zhao, Y.B.; Wang, L.Z.; Sun, Y.; Zhang, M.; Fan, Y.B. Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue. Eur. Spine J. 2014, 23, 613–621. [Google Scholar] [CrossRef] [Green Version]
Component | ||||
---|---|---|---|---|
Bony Structure | Element Type | Young’s Modulus (MPa) | Poisson’s Ratio | Cross-Sectional Area (mm2) |
Vertebral cortical bone | Isotropic, elastic hex element | 10,000 | 0.30 | - |
Vertebral cancellous bone | Isotropic, elastic hex element | 450 | 0.25 | - |
Ligaments | ||||
Transverse, tectorial membrane | Isotropic, elastic hex element | 80 | 0.3 | - |
Apical–alar | Tension-only, truss elements | 20 | 0.3 | - |
Anterior longitudinal | Tension-only, truss elements | 15 (<12%) 30 (>12%) | 0.3 | 11.1 |
Posterior longitudinal | Tension-only, truss elements | 10 (<12%) 20 (>12%) | 0.3 | 11.3 |
Ligamentum flavum | Tension-only, truss elements | 5 (<25%) 10 (>25%) | 0.3 | 46.0 |
Capsular | Tension-only, truss elements | 7 (<30%) 30 (>12%) | 0.3 | 42.2 |
Joint | ||||
Facet (apophyseal joint) | Nonlinear soft contact, GAPUNI | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, M.; Zafarparandeh, I.; Erbulut, D.U. Investigation into Cervical Spine Biomechanics Following Single, Multilevel and Hybrid Disc Replacement Surgery with Dynamic Cervical Implant and Fusion: A Finite Element Study. Bioengineering 2022, 9, 16. https://doi.org/10.3390/bioengineering9010016
Mumtaz M, Zafarparandeh I, Erbulut DU. Investigation into Cervical Spine Biomechanics Following Single, Multilevel and Hybrid Disc Replacement Surgery with Dynamic Cervical Implant and Fusion: A Finite Element Study. Bioengineering. 2022; 9(1):16. https://doi.org/10.3390/bioengineering9010016
Chicago/Turabian StyleMumtaz, Muzammil, Iman Zafarparandeh, and Deniz Ufuk Erbulut. 2022. "Investigation into Cervical Spine Biomechanics Following Single, Multilevel and Hybrid Disc Replacement Surgery with Dynamic Cervical Implant and Fusion: A Finite Element Study" Bioengineering 9, no. 1: 16. https://doi.org/10.3390/bioengineering9010016
APA StyleMumtaz, M., Zafarparandeh, I., & Erbulut, D. U. (2022). Investigation into Cervical Spine Biomechanics Following Single, Multilevel and Hybrid Disc Replacement Surgery with Dynamic Cervical Implant and Fusion: A Finite Element Study. Bioengineering, 9(1), 16. https://doi.org/10.3390/bioengineering9010016