Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches
Abstract
:1. Introduction
2. Surface
2.1. Anatomy and Key Cells
2.1.1. The Cornea
2.1.2. The Conjunctiva
2.1.3. The Tear Film
2.2. Interface
2.2.1. Topical Liquids and Solutions
2.2.2. Emulsions and Microemulsions
2.2.3. Suspensions and Nanosuspensions
2.2.4. Ointments
2.2.5. Contact Lenses and Hydrogels
3. The Intravitreal Space
3.1. Anatomy and Key Cells
3.2. Interface
3.2.1. Injections
3.2.2. Implants
4. The Subretinal Space
4.1. Anatomy and Key Cells
4.2. Interface
4.2.1. Subretinal Injections
4.2.2. Subretinal Transplants
4.2.3. Retina Prostheses
4.3. Current Research
4.3.1. Gene Therapy
4.3.2. Cell Therapy
4.3.3. Novel Delivery Methods
5. The Subconjunctival Space
5.1. Anatomy and Key Cells
5.2. Interface
5.2.1. Drug Delivery
Drug Delivery Systems
Liposomes
Hydrogels
Polymeric Controlled-Release Systems
6. Material Interactions
6.1. Chitosan
6.2. Alginates
6.3. PEG
6.4. PLGA
6.5. NiPAAM
7. Anti-VEGF Drugs
7.1. Eylea
7.2. Avastin
7.3. Lucentis
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, W.B.; Mannis, M.J. Historical Concepts of Ocular Surface Disease. In Ocular Surface Disease: Cornea, Conjunctiva and Tear Film; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Hamrah, P.; Sahin, A. Limbus and Corneal Epithelium. In Ocular Surface Disease: Cornea, Conjunctiva and Tear Film; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Polse, K.A.; Brand, R.J.; Cohen, S.R.; Guillon, M. Hypoxic effects on corneal morphology and function. Investig. Ophthalmol. Vis. Sci. 1990, 31, 1542–1554. [Google Scholar]
- Lin, L.K. Eyelid Anatomy and Function. In Ocular Surface Disease: Cornea, Conjunctiva and Tear Film; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Harvey, T.M.; Fernandez, A.G.A.; Patel, R.; Goldman, D.; Ciralsky, J. Conjunctival Anatomy and Physiology. In Ocular Surface Disease: Cornea, Conjunctiva and Tear Film; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Knop, N.; Knop, E. Conjunctiva-associated lymphoid tissue in the human eye. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1270–1279. [Google Scholar]
- Knoop, K.A.; Newberry, R.D. Goblet cells: Multifaceted players in immunity at mucosal surfaces. Mucosal Immunol. 2018, 11, 1551–1557. [Google Scholar] [CrossRef]
- García-Posadas, L.; Contreras-Ruiz, L.; Soriano-Romaní, L.; Dartt, D.A.; Diebold, Y. Conjunctival Goblet Cell Function: Effect of Contact Lens Wear and Cytokines. Eye Contact Lens 2016, 42, 83. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, F.L.; Xiao, Y.; Bian, F.; Coursey, T.G.; Yi Ko, B.; Clevers, H.; de Paiva, C.S.; Pflugfelder, S.C. Goblet cells contribute to ocular surface immune tolerance—implications for dry eye disease. Int. J. Mol. Sci. 2017, 18, 978. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.B.; Lee, W.B. The Tear Film: Anatomy, Structure and Function. In Ocular Surface Disease: Cornea, Conjunctiva and Tear Film; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- St. Luke’s Cataract and Laser Institute. Tear Production. 2010. Available online: http://www.stlukeseye.com/anatomy/TearProduction.html (accessed on 24 September 2021).
- Medrounds.org. Ocular Pathology Study Guide: Tear Proteins. 2010. Available online: http://www.medrounds.org/ocular-pathologystudy-guide/2005/10/tear-proteins.html (accessed on 24 September 2021).
- Tiffany, J.M. Tears in health and disease. Eye 2003, 17, 923–926. [Google Scholar] [CrossRef]
- Mayo Clinic. Dry Eyes. Available online: https://www.mayoclinic.org/diseases-conditions/dry-eyes/symptoms-causes/syc-20371863 (accessed on 24 September 2021).
- Mishima, S.; Gasset, A.; Klyce, S.D.; Baum, J.L. Determination of tear volume and tear flow. Investig. Ophthalmol. 1966, 5, 264–276. [Google Scholar]
- King-Smith, P.E.; Fink, B.A.; Nichols, J.J.; Nichols, K.K.; Braun, R.J.; McFadden, G.B. The contribution of lipid layer movement to tear film thinning and breakup. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2747–2756. [Google Scholar] [CrossRef]
- Patel, A. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47–64. [Google Scholar] [CrossRef]
- du Toit, L.C.; Pillay, V.; Choonara, Y.E.; Govender, T.; Carmichael, T. Ocular drug delivery—A look towards nanobioadhesives. Expert Opin. Drug Deliv. 2011, 8, 71–94. [Google Scholar] [CrossRef]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef]
- Djebli, N.; Khier, S.; Griguer, F.; Coutant, A.L.; Tavernier, A.; Fabre, G.; Leriche, C.; Fabre, D. Ocular Drug Distribution after Topical Administration: Population Pharmacokinetic Model in Rabbits. Eur. J. Drug Metab. Pharmacokinet. 2016, 42, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular Drug Delivery. AAPS J. 2010, 12, 348–360. [Google Scholar] [CrossRef]
- Barar, J.; Javadzadeh, A.R.; Omidi, Y. Ocular novel drug delivery: Impacts of membranes and barriers. Expert Opin. Drug Deliv. 2008, 5, 567–581. [Google Scholar] [CrossRef]
- Fischbarg, J. Mechanism of fluid transport across corneal endothelium and other epithelial layers: A possible explanation based on cyclic cell volume regulatory changes. Br. J. Ophthalmol. 1997, 81, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Ciolino, J.B.; Hoare, T.R.; Iwata, N.G.; Behlau, I.; Dohlman, C.H.; Langer, R.; Kohane, D.S. A drug-eluting contact lens. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3346–3352. [Google Scholar] [CrossRef]
- Davies, N.M. Biopharmaceutical considerations in topical ocular drug delivery. Clin. Exp. Pharmacol. Physiol. 2000, 27, 558–562. [Google Scholar] [CrossRef]
- Barza, M.; Kane, A.; Baum, J. The difficulty of determining the route of intraocular penetration of gentamicin after subconjunctival injection in the rabbit. Investig. Ophthalmol. Vis. Sci. 1981, 20, 509–514. [Google Scholar] [CrossRef]
- Hosoya, K.I.; Lee, V.H.L.; Kim, K.J. Roles of the conjunctiva in ocular drug delivery: A review of conjunctival transport mechanisms and their regulation. Eur. J. Pharm. Biopharm. 2005, 60, 227–240. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, X.; Qi, P. Therapeutic contact lenses for ophthalmic drug delivery: Major challenges. J. Biomater. Sci. Polym. Ed. 2020, 31, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Nair, A.B.; Kumar, A.; Kumria, R. Novel Approaches in Formulation and Drug Delivery using Contact Lenses. J. Basic Clin. Pharm. 2011, 2, 87–101. [Google Scholar] [PubMed]
- Novack, G.D.; Barnett, M. Ocular drug delivery systems using contact lenses. J. Ocul. Pharmacol. Ther. 2020, 36, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.H.; Gao, J.Q.; Zhang, Y.P.; Liang, W.Q. A protein delivery system: Biodegradable alginate-chitosan-poly(lactic-co- glycolic acid) composite microspheres. Biochem. Biophys. Res. Commun. 2004, 323, 1321–1327. [Google Scholar] [CrossRef]
- Rafiei, F.; Tabesh, H.; Farzad, F. Sustained subconjunctival drug delivery systems: Current trends and future perspectives. Int. Ophthalmol. 2020, 40, 2385–2401. [Google Scholar] [CrossRef]
- Subrizi, A.; del Amo, E.M.; Korzhikov-Vlakh, V.; Tennikova, T.; Ruponen, M.; Urtti, A. Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties. Drug Discov. Today 2019, 24, 1446–1457. [Google Scholar] [CrossRef]
- Doane, M.G.; Jensen, A.D.; Dohlman, C.H. Penetration routes of topically applied eye medications. Am. J. Ophthalmol. 1978, 85, 383–386. [Google Scholar] [CrossRef]
- Huang, H.S.; Schoenwald, R.D.; Lach, J.L. Corneal penetration behavior of β-blocking agents II: Assessment of barrier contributions. J. Pharm. Sci. 1983, 72, 1272–1279. [Google Scholar] [CrossRef]
- Maurice, D.M.; Polgar, J. Diffusion across the sclera. Exp. Eye Res. 1977, 25, 577–582. [Google Scholar] [CrossRef]
- Conrad, J.M.; Robinson, J.R. Aqueous chamber drug distribution volume measurement in rabbits. J. Pharm. Sci. 1977, 66, 219–224. [Google Scholar] [CrossRef]
- Miller, S.C.; Gokhale, R.D.; Patton, T.F.; Himmelstein, K.J. Pilocarpine ocular distribution volume. J. Pharm. Sci. 1980, 69, 615–616. [Google Scholar] [CrossRef]
- Ahmed, I.; Patton, T.F. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Investig. Ophthalmol. Vis. Sci. 1985, 26, 584–587. [Google Scholar]
- Huang, A.J.W.; Tseng, S.C.G.; Kenyon, K.R. Paracellular permeability of corneal and conjunctival epithelia. Investig. Ophthalmol. Vis. Sci. 1989, 30, 684–689. [Google Scholar]
- Hegde, R.R.; Verma, A.; Ghosh, A. Microemulsion: New Insights into the Ocular Drug Delivery. ISRN Pharm. 2013, 2013, 826798. [Google Scholar] [CrossRef]
- Vandamme, T.F. Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog. Retin. Eye Res. 2002, 21, 15–34. [Google Scholar] [CrossRef]
- Üstündaǧ Okur, N.; Çaǧlar E, Ş.; Siafaka, P.I. Novel Ocular Drug Delivery Systems: An Update on Microemulsions. J. Ocul. Pharmacol. Ther. 2020, 36, 342–354. [Google Scholar] [CrossRef]
- Üstündag-Okur, N.; Gökçe, E.H.; Eǧrilmez, S.; Özer, Ö.; Ertan, G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul. Pharmacol. Ther. 2014, 30, 319–332. [Google Scholar] [CrossRef]
- Kumar, R.; Sinha, V.R. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf. B: Biointerfaces 2014, 117, 82–88. [Google Scholar] [CrossRef]
- Üstündaǧ Okur, N.; Ege, M.A.; Karasulu, H.Y. Preparation and Characterization of Naproxen Loaded Microemulsion Formulations for Dermal Application. Int. J. Pharm. 2014, 4, 33–42. [Google Scholar]
- Üstündaǧ Okur, N.; Apaydin, Ş.; Karabay Yavaşoǧlu N, Ü.; Yavaşoǧlu, A.; Karasulu, H.Y. Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations. Int. J. Pharm. 2011, 416, 136–144. [Google Scholar] [CrossRef]
- Karasulu, H.Y.; Oruç, N.; Üstündağ-Okur, N.; İlem Özdemir, D.; Ay Şenyiğit, Z.; Barbet Yılmaz, F.; Aşıkoğlu, M.; Özkılıç, H.; Akçiçek, E.; Güneri, T.; et al. Aprotinin revisited: Formulation, characterization, biodistribution and therapeutic potential of new aprotinin microemulsion in acute pancreatitis. J. Drug Target. 2015, 23, 525–537. [Google Scholar] [CrossRef]
- Üstündağ Okur, N.; Er, S.; Çağlar E, Ş.; Ekmen, T.Z.; Sala, F. Formulation of microemulsions for dermal delivery of Cephalexin. Acta Pharm. Sci. 2017, 55, 27. [Google Scholar]
- Okur, N.Ü.; Yavasoglu, A.; Karasulu, H.Y. Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery. Chem. Pharm. Bull. 2014, 62, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.C.; Bengani, L.C.; Jung, H.J.; Leclerc, J.; Gupta, C.; Chauhan, A. Emulsions and microemulsions for ocular drug delivery. J. Drug Deliv. Sci. Technol. 2011, 21, 111–121. [Google Scholar] [CrossRef]
- Habib, F.; El-Mahdy, M.; Maher, S. Microemulsions for ocular delivery: Evaluation and characterization. J. Drug Deliv. Sci. Technol. 2011, 21, 485–489. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshamsan, A.; Aljuffali, I.A.; Mishra, A.K.; Sultana, Y. Delivery of gatifloxacin using microemulsion as vehicle: Formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016, 23, 886–897. [Google Scholar] [CrossRef] [PubMed]
- El Agamy, H.I.; el Maghraby, G.M. Natural and synthetic oil phase transition microemulsions for ocular delivery of tropicamide: Efficacy and safety. J. Appl. Pharm. Sci. 2015, 5 (Suppl. 2), 67–75. [Google Scholar]
- Torres-Luna, C.; Hu, N.; Koolivand, A.; Fan, X.; Zhu, Y.; Domszy, R.; Yang, J.; Yang, A.; Wang, N.S. Effect of a cationic surfactant on microemulsion globules and drug release from hydrogel contact lenses. Pharmaceutics 2019, 11, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vooturi, S.; Bourne, D.; Jyoti Oanda, J.; Choi, S.; Kim, H.; Yandrapu, S.K.; Kompella, U.B. Effect of Particle Size and Viscosity of Suspensions on Topical Ocular Bioavailability of Budesonide, a Corticosteroid. J. Ocul. Pharmacol. Ther. 2020, 36, 404–409. [Google Scholar] [CrossRef]
- Hui, H.W.; Robinson, J.R. Effect of particle dissolution rate on ocular drug bioavailability. J. Pharm. Sci. 1986, 75, 280–287. [Google Scholar] [CrossRef]
- Gorantla, S.; Krishna Rapalli, V.; Waghule, T.; Prakash Singh, P.; Kumar, D.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020, 10, 27835–27855. [Google Scholar] [CrossRef]
- Ali, H.S.M.; York, P.; Ali, A.M.A.; Blagden, N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J. Control. Release 2011, 149, 175–181. [Google Scholar] [CrossRef]
- Kurobe, L.L.C. Safety and Efficacy of Vancomycin Ophthalmic Ointment in Patients with Moderate to Severe Bacterial Conjunctivitis. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT02432807 (accessed on 6 May 2019).
- Available online: Clinicaltrials.gov (accessed on 13 May 2021).
- Sotozono, C.; Fukuda, M.; Ohishi, M.; Yano, K.; Origasa, H.; Saiki, Y.; Shimomura, Y.; Kinoshita, S. Vancomycin Ophthalmic Ointment 1% for methicillin-resistant Staphylococcus aureus or methicillinresistant Staphylococcus epidermidis infections: A case series. BMJ Open 2013, 3, e001206. [Google Scholar] [CrossRef]
- Musgrave, C.S.A.; Fang, F. Contact lens materials: A materials science perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Aranguez, A.; Colligris, B.; Pintor, J. Contact lenses: Promising devices for ocular drug delivery. J. Ocul. Pharmacol. Ther. 2013, 29, 189–199. [Google Scholar] [CrossRef]
- Peng, C.C.; Burke, M.T.; Carbia, B.E.; Plummer, C.; Chauhan, A. Extended drug delivery by contact lenses for glaucoma therapy. J. Control. Release 2012, 162, 152–158. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Lakdawala, D.H.; Shaikh, A.A.; Desai, A.R.; Choksi, H.H.; Vaidya, R.J.; Ranch, K.M.; Koli, A.R.; Vyas, B.A.; Shah, D.O. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J. Control. Release 2016, 226, 47–56. [Google Scholar] [CrossRef]
- Papas, E.B. Contact lens technology to 2020 and beyond: A review of recent patent literature. Clin. Exp. Optom. 2017, 100, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xue, Y.; Hu, G.; Lin, T.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release 2018, 281, 97–118. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: A review. Materials 2018, 11, 1125. [Google Scholar] [CrossRef] [Green Version]
- Ciolino, J.B.; Hudson, S.P.; Mobbs, A.N.; Hoare, T.R.; Iwata, N.G.; Fink, G.R.; Kohane, D.S. A prototype antifungal contact lens. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6286–6291. [Google Scholar] [CrossRef] [PubMed]
- Ciolino, J.B.; Ross, A.E.; Tulsan, R.; Watts, A.C.; Wang, R.F.; Zurakowski, D.; Serle, J.B.; Kohane, D.S. Latanoprost-Eluting Contact Lenses in Glaucomatous Monkeys. Ophthalmology 2016, 123, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.E.; Bengani, L.C.; Tulsan, R.; Maidana, D.E.; Salvador-Culla, B.; Kobashi, H.; Kolovou, P.E.; Zhai, H.; Taghizadeh, K.; Kuang, L.; et al. Topical sustained drug delivery to the retina with a drug-eluting contact lens. Biomaterials 2019, 217, 119285. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, P.; Ghate, V.M.; Lewis, S.A. Next-generation contact lenses: Towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur. J. Pharm. Biopharm. 2021, 161, 80–99. [Google Scholar] [CrossRef]
- Remington, L.A. Aqueous and Vitreous Humors. In Clinical Anatomy and Physiology of the Visual System; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Sebag, J. The Vitreous: Structure, Function, and Pathobiology; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Grabner, G.; Boltz, G.; Foerster, O. Macrophage-like properties of human hyalocytes. Investig. Ophthalmol. Vis. Sci. 1980, 19, 333–340. [Google Scholar]
- Balazs, E.A.; Toth, L.Z.J.; Eckl, E.A.; Mitchell, A.P. Studies on the structure of the vitreous body. XII. Cytological and histochemical studies on the cortical tissue layer. Exp. Eye Res. 1964, 3, 57–71. [Google Scholar] [CrossRef]
- Freeman, M.I.; Jacobson, B.; Balazs, E.A. The chemical composition of vitreous hyalocyte granules. Exp. Eye Res. 1979, 29, 479–484. [Google Scholar] [CrossRef]
- Szirmai, J.A.; Balazs, E.A. Studies on the structure of the vitreous body: III. Cells in the cortical layer. A.M.A. Arch. Ophthalmol. 1958, 59, 34–48. [Google Scholar] [CrossRef]
- Choonara, Y.E.; Pillay, V.; Danckwerts, M.P.; Carmichael, T.R.; du Toit, L.C. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J. Pharm. Sci. 2010, 99, 2219–2239. [Google Scholar] [CrossRef]
- Peyman, G.A.; Lad, E.M.; Moshfeghi, D.M. Intravitreal injection of therapeutic agents. Retina 2009, 29, 875–912. [Google Scholar] [CrossRef]
- Smith, T.J.; Pearson, P.A.; Blandford, D.L.; Brown, J.D.; Goins, K.A.; Hollins, J.L.; Schmeisser, E.T.; Glavinos, P.; Baldwin, L.B.; Ashton, P. Intravitreal Sustained-Release Ganciclovir. Arch. Ophthalmol. 1992, 110, 255–258. [Google Scholar] [CrossRef]
- Akula, S.K.; Ma, P.E.; Peyman, G.A.; Raimy, M.H.; Hyslop, N.E., Jr.; Janney, A.; Ashton, P. Treatment of cytomegalovirus retinitis with intravitreal injection of liposome encapsulated ganciclovir in a patient with AIDS. Br. J. Ophthalmol. 1994, 78, 677–680. [Google Scholar] [CrossRef] [Green Version]
- Suen, W.-L.L.; Chau, Y. Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J. Control. Release 2013, 167, 21–28. [Google Scholar] [CrossRef]
- Benz, M.S.; Albini, T.A.; Holz, E.R.; Lakhanpal, R.R.; Westfall, A.C.; Iyer, M.N.; Carvounis, P.E. Short-term Course of Intraocular Pressure after Intravitreal Injection of Triamcinolone Acetonide. Ophthalmology 2006, 113, 1174–1178. [Google Scholar] [CrossRef]
- Yang, C.S.; Khawly, J.A.; Hainsworth, D.P.; Chen, S.N.; Ashton, P.; Guo, H.; Jaffe, G.J. An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch. Ophthalmol. 1998, 116, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Bhavsar, A.R.; Ip, M.S.; Glassman, A.R. The Risk of Endophthalmitis Following Intravitreal Triamcinolone Injection in the DRCRnet and SCORE Clinical Trials. Am. J. Ophthalmol. 2007, 144, 454–456. [Google Scholar] [CrossRef] [Green Version]
- Fintak, D.R.; Shah, G.; Blinder, K.; Regillo, C.; Pollack, J.; Heier, J. Incidence of endophthalmitis related to intravitreal injection of bevacizumab and ranibizumab. Retina 2008, 28, 1395–1399. [Google Scholar] [CrossRef]
- Jager, R.D.; Aiello, L.P.; Patel, S.C.; Cunningham, E.T. Risks of intravitreous injection: A comprehensive review. Retina 2004, 24, 676–698. [Google Scholar] [CrossRef]
- Özkiriş, A.; Erkiliç, K. Complications of intravitreal injection of triamcinolone acetonide. Can. J. Ophthalmol. 2005, 40, 63–68. [Google Scholar] [CrossRef]
- Storey, P.P.; Pancholy, M.; Wibbelsman, T.D.; Obeid, A.; Su, D.; Borkar, D.; Garg, S.; Gupta, O. Rhegmatogenous Retinal Detachment after Intravitreal Injection of Anti–Vascular Endothelial Growth Factor. Ophthalmology 2019, 126, 1424–1431. [Google Scholar] [CrossRef]
- Osswald, C.R.; Kang-Mieler, J.J. Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System. Ann. Biomed. Eng. 2015, 43, 2609–2617. [Google Scholar] [CrossRef] [PubMed]
- Kang-Mieler, J.J.; Osswald, C.R.; Mieler, W.F. Advances in ocular drug delivery: Emphasis on the posterior segment. Expert Opin. Drug Deliv. 2014, 11, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Kang-Mieler, J.J.; Dosmar, E.; Liu, W.; Mieler, W.F. Extended ocular drug delivery systems for the anterior and posterior segments: Biomaterial options and applications. Expert Opin. Drug Deliv. 2017, 14, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Thorne, J.E.; Sugar, E.A.; Holbrook, J.T.; Burke, A.E.; Altaweel, M.M.; Vitale, A.T.; Acharya, N.R.; Kempen, J.H.; Jabs, D.A. Periocular Triamcinolone vs. Intravitreal Triamcinolone vs. Intravitreal Dexamethasone Implant for the Treatment of Uveitic Macular Edema: The PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) Trial. Ophthalmology 2019, 126, 283–295. [Google Scholar] [CrossRef]
- Rajesh, B.; Zarranz-Ventura, J.; Fung, A.T.; Busch, C.; Sahoo, N.K.; Rodriguez-Valdes, P.J.; Sarao, V.; Mishra, S.K.; Saatci, A.O.; Mirete, P.U.; et al. Safety of 6000 intravitreal dexamethasone implants. Br. J. Ophthalmol. 2020, 104, 39–46. [Google Scholar] [CrossRef]
- Haghjou, N.; Soheilian, M.; Abdekhodaie, M.J. Sustained release intraocular drug delivery devices for treatment of uveitis. J. Ophthalmic Vis. Res. 2011, 6, 317–329. [Google Scholar]
- Stewart, M.W. Optimal management of cytomegalovirus retinitis in patients with AIDS. Clin. Ophthalmol. 2010, 4, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Jiang, A.; Joshi, M.; Christoforidis, J. Drug delivery implants in the treatment of vitreous inflammation. Mediat. Inflamm. 2013, 2013, 780634. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lee, B.-S.; Mieler, W.F.; Kang-Mieler, J.J. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept in Vitro. Curr. Eye Res. 2018, 44, 264–274. [Google Scholar] [CrossRef]
- Varela-Fernández, R.; Lema-Gesto, M.I.; González-Barcia, M.; Otero-Espinar, F.J. Design, development, and characterization of an idebenone-loaded poly-ε-caprolactone intravitreal implant as a new therapeutic approach for LHON treatment. Eur. J. Pharm. Biopharm. 2021, 168, 195–207. [Google Scholar] [CrossRef]
- Peng, Y.; Tang, L.; Zhou, Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Res. 2017, 58, 217–226. [Google Scholar] [CrossRef]
- Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef] [Green Version]
- Forrester, J.v.; Xu, H. Good news-bad news: The Yin and Yang of immune privilege in the eye. Front. Immunol. 2012, 3, 338. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.; Nelson, R.; Fernandez, E.; Jones, B.W. Webvision-The Organization of the Retina and Visual System. Webvision. 2011. Available online: https://webvision.med.utah.edu/ (accessed on 23 December 2021).
- Himawan, E.; Ekström, P.; Buzgo, M.; Gaillard, P.; Stefánsson, E.; Marigo, V.; Loftsson, T.; Paquet-Durand, F. Drug delivery to retinal photoreceptors. Drug Discov. Today 2019, 24, 1637–1643. [Google Scholar] [CrossRef]
- Hildebrand, G.D.; Fielder, A.R. Anatomy and physiology of the retina. In Pediatric Retina; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Crane, I.J.; Xu, H.; Wallace, C.; Manivannan, A.; Mack, M.; Liversidge, J.; Marquez, G.; Sharp, P.F.; Forrester, J.V. Involvement of CCR5 in the passage of Th1-type cells across the blood-retina barrier in experimental autoimmune uveitis. J. Leukoc. Biol. 2006, 79, 435–443. [Google Scholar] [CrossRef]
- Timmers, A.M.; Zhang, H.; Squitieri, A.; Gonzalez-Pola, C. Subretinal injections in rodent eyes: Effects on electrophysiology and histology of rat retina. Mol. Vis. 2001, 7, 131–137. [Google Scholar]
- Qi, Y.; Dai, X.; Zhang, H.; He, Y.; Zhang, Y.; Han, J.; Zhu, P.; Zhang, Y.; Zheng, Q.; Li, X.; et al. Trans-corneal subretinal injection in mice and its effect on the function and morphology of the retina. PLoS ONE 2015, 10, e0136523. [Google Scholar] [CrossRef]
- Schlichtenbrede, F.C.; da Cruz, L.; Stephens, C.; Smith, A.J.; Georgiadis, A.; Thrasher, A.J.; Bainbridge, J.W.; Seeliger, M.W.; Ali, R.R. Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J. Gene Med. 2003, 5, 757–764. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Petkovsek, D.S.; Yuan, A.; Singh, R.P.; Srivastava, S.K. Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Mühlfriedel, R.; Michalakis, S.; Garrido, M.G.; Biel, M.; Seeliger, M.W. Optimized technique for subretinal injections in mice. In Retinal Degeneration; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; Volume 935, pp. 343–349. [Google Scholar]
- Parikh, S.; Le, A.; Davenport, J.; Gorin, M.B.; Nusinowitz, S.; Matynia, A. An alternative and validated injection method for accessing the subretinal space via a transcleral posterior approach. J. Vis. Exp. 2016, 2016, e54808. [Google Scholar] [CrossRef]
- Gerding, H. A new approach towards a minimal invasive retina implant. J. Neural Eng. 2007, 4, S30–S37. [Google Scholar] [CrossRef]
- Pfeffer, B.; Wiggert, B.; Lee, L.; Zonnenberg, B.; Newsome, D.; Chader, G. The presence of a soluble interphotoreceptor retinol-binding protein (IRBP) in the retinal interphotoreceptor space. J. Cell. Physiol. 1983, 117, 333–341. [Google Scholar] [CrossRef]
- Johnson, C.J.; Berglin, L.; Chrenek, M.A.; Redmond, T.M.; Boatright, J.H.; Nickerson, J.M. Technical brief: Subretinal injection and electroporation into adult mouse eyes. Mol. Vis. 2008, 14, 2211–2226. [Google Scholar]
- Bartuma, H.; Berglin, L.; Chrenek, M.A.; Redmond, T.M.; Boatright, J.H.; Nickerson, J.M. In vivo imaging of subretinal bleb-induced outer retinal degeneration in the rabbit. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2423. [Google Scholar] [CrossRef] [Green Version]
- Szurman, P.; Roters, S.; Grisanti, S.; Aisenbrey, S.; Schraermeyer, U.; Lüke, M.; Bartz-Schmidt, K.U.; Thumann, G. Ultrastructural changes after artificial retinal detachment with modified retinal adhesion. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4983–4989. [Google Scholar] [CrossRef] [Green Version]
- Kennelly, K.P.; Holmes, T.M.; Wallace, D.M.; O’Farrelly, C.; Keegan, D.J. Early subretinal allograft rejection is characterized by innate immune activity. Cell Transplant. 2017, 26, 983–1000. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.D.; Tan, G.; Hosseini, H.; Nagiel, A. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: An assessment at 4 years. Investig. Ophthalmol. Vis. Sci. 2016, 57, ORSFc1–ORSFc9. [Google Scholar] [CrossRef]
- West, E.L.; Pearson, R.A.; Barker, S.E.; Luhmann, U.F.; Maclaren, R.E.; Barber, A.C.; Duran, Y.; Smith, A.J.; Sowden, J.C.; Ali, R.R. Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 2010, 28, 1997–2007. [Google Scholar] [CrossRef] [Green Version]
- Bloch, E.; Luo, Y.; da Cruz, L. Advances in retinal prosthesis systems. Ther. Adv. Ophthalmol. 2019, 11, 2515841418817501. [Google Scholar] [CrossRef] [PubMed]
- Day, T.P.; Byrne, L.C.; Schaffer, D.V.; Flannery, J.G. Advances in AAV vector development for gene therapy in the retina. In Retinal Degenerative Diseases; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2014; Volume 801. [Google Scholar]
- Kang-Mieler, J.J.; Rudeen, K.M.; Liu, W.; Mieler, W.F. Advances in ocular drug delivery systems. Eye 2020, 34, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, J.K.; Mano, F.; Lezzi, R.; LoBue, S.; Holman, B.; Fautsch, M.; Olsen, T.; Pulido, J.; Mormorstein, A. Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation. PLoS ONE 2020, 15, e0227641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Wong, L.L.; Karakoti, A.S.; Seal, S.; McGinnis, J.F. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS ONE 2011, 6, e16733. [Google Scholar] [CrossRef] [PubMed]
- Farjo, R.; Skaggs, J.; Quiambao, A.B.; Cooper, M.J.; Naash, M.I. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE 2006, 1, e38. [Google Scholar] [CrossRef] [PubMed]
- Birngruber, T.; Raml, R.; Gladdines, W.; Gatschelhofer, C.; Gander, E.; Ghosh, A.; Kroath, T.; Gaillard, P.J.; Pieber, T.R.; Sinner, F. Enhanced doxorubicin delivery to the brain administered through glutathione PEGylated liposomal doxorubicin (2B3-101) as compared with generic Caelyx,®/Doxil®—A Cerebral open flow microperfusion pilot study. J. Pharm. Sci. 2014, 103, 1945–1948. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Zarembinski, T.I.; Doty, N.; Jiang, C.; Regatieri, C.; Zhang, X.; Young, M.J. The application of hyaluronic acid hydrogels to retinal progenitor cell transplantation. Tissue Eng.—Part A 2013, 19, 135–142. [Google Scholar] [CrossRef]
- Chang, D.; Park, K.; Famili, A. Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov. Today 2019, 24, 1470–1482. [Google Scholar] [CrossRef]
- Campbell, M.; Cassidy, P.S.; O’Callaghan, J.; Crosbie, D.E.; Humphries, P. Manipulating ocular endothelial tight junctions: Applications in treatment of retinal disease pathology and ocular hypertension. Prog. Retin. Eye Res. 2018, 62, 120–133. [Google Scholar] [CrossRef]
- Keaney, J.; Walsh, D.M.; O’Malley, T.; Hudson, N.; Crosbie, D.E.; Loftus, T.; Sheehan, F.; McDaid, J.; Humphries, M.M.; Callanan, J.J.; et al. Autoregulated paracellular clearance of amyloid-β across the blood-brain barrier. Sci. Adv. 2015, 1, e1500472. [Google Scholar] [CrossRef] [Green Version]
- Sapitro, J.; Dunmire, J.J.; Scott, S.E.; Sutariya, V.; Geldenhuys, W.J.; Hewit, M.; Yue, B.Y.; Nakamura, H. Suppression of transforming growth factor-β effects in rabbit subconjunctival fibrobla2sts by activin receptor-like kinase 5 inhibitor. Mol. Vis. 2010, 16, 1880–1892. [Google Scholar]
- Candia, O.A.; Alvarez, L.J. Fluid transport phenomena in ocular epithelia. Prog. Retin. Eye Res. 2008, 27, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Lappas, N.T.; Lappas, C.M. Chapter 8—Analytical Samples. In Forensic Toxicology: Principles and Concepts; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Kalina, R.E. Increased Intraocular Pressure Following Subconjunctival Corticosteroid Administration. Arch. Ophthalmol. 1969, 81, 788–790. [Google Scholar] [CrossRef]
- Weijtens, O.; Feron, E.J.; Schoemaker, R.C.; Cohen, A.F.; Lentjes, E.G.; Romijn, F.P.; van Meurs, J.C. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am. J. Ophthalmol. 1999, 128, 192–197. [Google Scholar] [CrossRef]
- Hosseini, K.; Matsushima, D.; Johnson, J.; Widera, G.; Nyam, K.; Kim, L.; Xu, Y.; Yao, Y.; Cormier, M. Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J. Ocul. Pharmacol. Ther. 2008, 24, 301–308. [Google Scholar] [CrossRef]
- Kim, S.H.; Csaky, K.G.; Wang, N.S.; Lutz, R.J. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm. Res. 2008, 25, 512–520. [Google Scholar] [CrossRef]
- Liu, Y.C.; Peng, Y.; Lwin, N.C.; Wong, T.T.; Venkatraman, S.S.; Mehta, J.S. Optimization of subconjunctival biodegradable microfilms for sustained drug delivery to the anterior segment in a small animal model. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2607–2615. [Google Scholar] [CrossRef] [Green Version]
- Assil, K.K.; Frucht-Perry, J.; Ziegler, E.; Schanzlin, D.J.; Schneiderman, T.; Weinreb, R.N. Tobramycin liposomes: Single subconjunctival therapy of pseudomonal keratitis. Investig. Ophthalmol. Vis. Sci. 1991, 32, 3216–3220. [Google Scholar]
- Barza, M.; Baum, J.; Szoka, F. Pharmacokinetics of subconjunctival liposome-encapsulated gentamicin in normal rabbit eyes. Investig. Ophthalmol. Vis. Sci. 1984, 25, 486–490. [Google Scholar]
- Dosmar, E.; Liu, W.; Patel, G.; Rogozinski, A.; Mieler, W.F.; Kang-Mieler, J.J. Controlled Release of Vancomycin From a Thermoresponsive Hydrogel System for the Prophylactic Treatment of Postoperative Acute Endophthalmitis. Transl. Vis. Sci. Technol. 2019, 8, 53. [Google Scholar] [CrossRef]
- Kang Derwent, J.J.; Mieler, W.F. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans. Am. Ophthalmol. Soc. 2008, 106, 206–214. [Google Scholar]
- Hutton-Smith, L.A.; Gaffney, E.A.; Byrne, H.M.; Maini, P.K.; Schwab, D.; Mazer, N.A. A mechanistic model of the intravitreal pharmacokinetics of large molecules and the pharmacodynamic suppression of ocular vascular endothelial growth factor levels by ranibizumab in patients with neovascular age-related macular degeneration. Mol. Pharm. 2016, 13, 2941–2950. [Google Scholar] [CrossRef]
- Brey, E.; Kang-Mieler, J.J.; Perez-Luna, V.; Jiang, B.; Drapala, P.; Rolf Schäfer, H.H. Thermo-Responsive Hydrogel Compositions. 2012. Available online: https://patents.google.com/patent/US20140065226A1/en (accessed on 23 December 2021).
- Drapala, P.W.; Jiang, B.; Chiu, Y.C.; Mieler, W.F.; Brey, E.M.; Kang-Mieler, J.J.; Pérez-Luna, V.H. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins. Pharm. Res. 2014, 31, 742–753. [Google Scholar] [CrossRef]
- Cui, L.J.; Sun, N.X.; Li, X.H.; Huang, J.; Yang, J.G. Subconjunctival sustained release 5-fluorouracil for glaucoma filtration surgery. Acta Pharmacol. Sin. 2008, 29, 1021–1028. [Google Scholar] [CrossRef]
- Zignani, M.; Einmahl, S.; Baeyens, V.; Varesio, E.; Veuthey, J.L.; Anderson, J.; Heller, J.; Tabatabay, C.; Gurny, R. A poly(ortho ester) designed for combined ocular delivery of dexamethasone sodium phosphate and 5-fluorouracil: Subconjunctival tolerance and in vitro release. Eur. J. Pharm. Biopharm. 2000, 50, 251–255. [Google Scholar] [CrossRef]
- Shahidi, F.; Synowiecki, J. Isolation and Characterization of Nutrients and Value-Added Products from Snow Crab (Chinoecetes Opilio) and Shrimp (Pandalus Borealis) Processing Discards. J. Agric. Food Chem. 1991, 39, 1527–1532. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
- Gyles, D.A.; Castro, L.D.; Silva JO, C.; Ribeiro-Costa, R.M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 2017, 88, 373–392. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Coles, W.H.; Jaros, P.A. Dynamics of ocular surface pH. Br. J. Ophthalmol. 1984, 68, 549–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammoun, M.; Haddar, M.; Kallel, T.K.; Dammak, M.; Sayari, A. Biological properties and biodegradation studies of chitosan biofilms plasticized with PEG and glycerol. Int. J. Biol. Macromol. 2013, 62, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Chenite, A.; Buschmann, M.; Wang, D.; Chaput, C.; Kandani, N. Rheological haracterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr. Polym. 2001, 46, 39–47. [Google Scholar] [CrossRef]
- Jao, W.; Ho, L.; Zhenwei, C. Evaluation of the Drug Release Mechanism of pH-Sensitive Calcium Alginate Hydrogels in Simulated Physiological Fluids. Mater. Sci. 2010, 42, 37–61. [Google Scholar] [CrossRef]
- Kadajji, V.G.; Betageri, G.V. Water soluble polymers for pharmaceutical applications. Polymers 2011, 3, 1972–2009. [Google Scholar] [CrossRef] [Green Version]
- Środa, K.; Rydlewski, J.; Langner, M.; Kozubek, A.; Grzybek, M.; Sikorski, A.F. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell. Mol. Biol. Lett. 2005, 10, 37–47. [Google Scholar]
- Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007, 110, 103–111. [Google Scholar] [CrossRef]
- Yang, R.; Chen, T.; Chen, H.; Wang, W. Microfabrication of biodegradable (PLGA) honeycomb-structures and potential applications in implantable drug delivery. Sens. Actuators B Chem. 2005, 106, 506–511. [Google Scholar] [CrossRef]
- Cleland, J.L.; Barrón, L.; Berman, P.W.; Daugherty, A.; Gregory, T.; Lim, A.; Vennari, J.; Wrin, T.; Powell, M.F. Development of a single-shot subunit vaccine for HIV-1. 2. Defining optimal autoboost characteristics to maximize the humoral immune response. J. Pharm. Sci. 1996, 85, 1346–1349. [Google Scholar] [CrossRef]
- Stubbe, B.G.; de Smedt, S.C.; Demeester, J. “Programmed polymeric devices” for pulsed drug delivery. Pharm. Res. 2004, 21, 1732–1740. [Google Scholar] [CrossRef]
- Lanzalaco, S.; Armelin, E. Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017, 3, 36. [Google Scholar] [CrossRef]
- Raju, R.; Bandyopadhyay, S.; Sharma, A.; Gonzalez, S.V.; Carlsen, P.H.; Gautun, O.R.; Glomm, W.R. Synthesis, characterization and drug loading of multiresponsive p[NIPAm-co-PEGMA] (core)/p[NIPAm-co-AAc] (Shell) nanogels with monodisperse size distributions. Polymers 2018, 10, 309. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, S.; Park, H.K.; Park, H.; Lee, S.H. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering. Macromol. Res. 2016, 24, 297–304. [Google Scholar] [CrossRef]
- Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Singh, R.J. Pharmacokinetics of Intravitreal Bevacizumab (Avastin). Ophthalmology 2007, 114, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Manzano RP, A.; Peyman, G.A.; Khan, P.; Kivilcim, M. Testing intravitreal toxicity of bevacizumab (Avastin). Retina 2006, 26, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Bakri, S.J.; Snyder, M.R.; Reid, J.M.; Pulido, J.S.; Ezzat, M.K.; Singh, R.J. Pharmacokinetics of Intravitreal Ranibizumab (Lucentis). Ophthalmology 2007, 114, 2179–2182. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, N.; Martin, J.; Ruan, Q.; Rafique, A.; Rosconi, M.P.; Shi, E.; Pyles, E.A.; Yancopoulos, G.D.; Stahl, N.; Wiegand, S.J. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 2012, 15, 171–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudge, J.S.; Holash, J.; Hylton, D.; Russell, M.; Jiang, S.; Leidich, R.; Papadopoulos, N.; Pyles, E.A.; Torri, A.; Wiegand, S.J.; et al. VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc. Natl. Acad. Sci. USA 2007, 104, 18363–18370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economides, A.N.; Carpenter, L.R.; Rudge, J.S.; Wong, V.; Koehler-Stec, E.M.; Hartnett, C.; Pyles, E.A.; Xu, X.; Daly, T.J.; Young, M.R.; et al. Cytokine traps: Multi-component, high-affinity blockers of cytokine action. Nat. Med. 2003, 9, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Choi, Y.; Na, Y.M.; Hong, H.K.; Park, J.Y.; Park, K.H.; Chung, J.y.; Woo, S.J. Intraocular pharmacokinetics of intravitreal aflibercept (Eylea) in a rabbit model. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2612–2617. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Maia, M.; et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 2017, 37, 1847–1858. [Google Scholar] [CrossRef] [Green Version]
- Grothey, A.; Galanis, E. Targeting angiogenesis: Progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol. 2009, 6, 507–518. [Google Scholar] [CrossRef]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef]
- Campochiaro, P.A. Targeted pharmacotherapy of retinal diseases with ranibizumab. Drugs Today 2007, 43, 529–537. [Google Scholar] [CrossRef]
- Bressler, N.M.; Altaweel, M. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 2006, 113, 23–28. [Google Scholar]
- Gragoudas, E.S.; Adamis, A.P.; Cunningham, E.T.; Feinsod, M.; Guyer, D.R. Pegaptanib for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2004, 351, 2805–2816. [Google Scholar] [CrossRef] [Green Version]
- Bressler, N.M.; Bressler, S.B. Photodynamic therapy with verteporfin (Visudyne): Impact on ophthalmology and visual sciences. Investig. Ophthalmol. Vis. Sci. 2000, 41, 624–628. [Google Scholar]
- U.S. Food and Drug Administration. Drug Trials Snapshots: BEOVU. Drug Approvals and Databases. 2019. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-beovu (accessed on 23 December 2021).
Location | Type of Delivery | Purpose | Advantages | Limitations | Noteworthy Materials |
---|---|---|---|---|---|
Topical | Topical liquids and solutions | Antibiotics, anti-inflammatory and, antifungal drugs | Noninvasive | Significant drug loss before internal penetration, treatment must be isotonic with tears | Viscosity enhancers, permeation enhancers, and cyclodextrins |
Emulsions and microemulsions | Glaucoma, uveitis, keratitis, and ocular bacterial and fungal infections | Improved drug stability, permeation, residence time, and bioavailability compared topical liquids; effective at delivering poorly water-soluble drugs, transparent | Large quantity of surfactant required to form stable microemulsions, which can cause ocular toxicity | Tween 60 and Tween 80 | |
Suspensions and nanosuspensions | Antibiotics, anti-inflammatory and, antifungal drugs, increasing bioavailabilty of hydrophobic drugs | Appropriate for delivery of insoluble pharmaceuticals; have been shown to improve bioavailability of hydrophobic drugs | Physical stability and the potential for drug sedimentation | Viscosity enhancers | |
Ointments | Vancomycin to treat bacterial conjunctivitis; blepharitis, conjunctivitis, and keratitis caused by MRSA and MRSE | Improved bioavailability and sustained release | Limited applications | Semisolid and solid hydrocarbon | |
Contact lenses and hydrogels | Increased drug residence times in the tear film and continuous drug delivery | Increased drug penetration; >50% bioavailability in comparison to traditional eye drop | Surface roughness can increase bacterial adhesion; drug loss during storage; limited shelf life; transparency | Silicone and/or polyhydroxyethyl methacrylate (HEMA), poly(lactic-co-glycolic acid) (PLGA) | |
Intravitreal | Injections | Retinal detachment, retinal hemorrhage, antibiotics, steroids, gasses, triamcinolone acetonide, anti-VEGF drugs | Maximize dosing in the vitreous and retina | Endophthalmitis, ocular pain, subconjunctival hemorrhage, and elevated intraocular pressure (IOP); low risk of subretinal hemorrhage, retinal toxicity, and retinal | |
Implants | Conditions of the posterior segment, triamcinolone acetonide, dexamethasone, corticosteroids to treat uveitic macular edema, bacterial and viral infections, CNV, idebenone for the treatment of Leber’s hereditary optic neuropathy | Minimize treatment, minimize complications, circumvent high clearance rates and low bioavailability | Elevated intraocular pressure (IOP), cataract progression | Degradable or semidegradable polymer, PVA, PLGA, NiPAAM, PCL, chitosan, alginates | |
Subretinal | Injections | Appropriate for the delivery of viruses, viral particles, liposomes, plasmids, drugs, and formulations to treat age-related macular degeneration, retinitis pigmentosa, Leber’s congenital amaurosis, and Stargardt disease | Bypass major barriers including the blood–retina barrier | Potential for retinal injury and permanent detachment after several uses, damage to the outer retina due to bleb formation | |
Transplants | Used to treat damaged or degrading retina | Restoration and support of photoreceptor cells | Trigger innate immune response | RPE, photoreceptive cells, some stem cells | |
Retinal prosthetics | Vision restoration | Similarity to physiological systems | Challenging to place | ||
Gene therapy | Inherited retinal disease | Close access to photoreceptor or RPE cells while limiting the immune response and dosage | Early stages, limited applications | Vectors | |
Cell therapy | Retinal degenerative diseases, macular degeneration | Close access to photoreceptor or RPE cells | Early stages, concerns over potential risk and complications | ||
Nanoparticles | Conditions of the photoreceptor and RPE cells, drug delivery to the vitreous | Protect the drug, bypass blood–retina barrier, allow sustained release, encapsulate DNA or RNA without the use of a viral vector, deliver hydrophobic compounds | Early stages, shelf life | Cerium oxide nanoparticles | |
Liposomes | Conditions of the photoreceptor and RPE cells, drug delivery to the vitreous | Bypass blood–retina barrier, sustained release | Early stages, shelf life | PEG | |
Hydrogels | Conditions of the photoreceptor and RPE cells, drug delivery to the vitreous | Bypass blood–retina barrier, sustained release | Need for injectability, bleb formation | Hyaluronic acid | |
Subconjunctival | Liposomes | Antibiotic delivery | Drug retention, sustained release | Potential need for multiple treatments | |
Hydrogels | Antibiotic delivery | Environmentally responsive, injectable, drug retention, sustained release, no migration | Need for degradability | NiPAAM, PEG, PLLA | |
Polymeric controlled-release systems | Antibiotic and anti-inflammatory drug delivery | drug retention, sustained release | Need for degradability, hemorrhage, toxic effects that cause conjunctival hyperemia and corneal edema | PLA, poly(ortho ester) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dosmar, E.; Walsh, J.; Doyel, M.; Bussett, K.; Oladipupo, A.; Amer, S.; Goebel, K. Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering 2022, 9, 41. https://doi.org/10.3390/bioengineering9010041
Dosmar E, Walsh J, Doyel M, Bussett K, Oladipupo A, Amer S, Goebel K. Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering. 2022; 9(1):41. https://doi.org/10.3390/bioengineering9010041
Chicago/Turabian StyleDosmar, Emily, Julia Walsh, Michael Doyel, Katlynn Bussett, Adekite Oladipupo, Sabri Amer, and Katherine Goebel. 2022. "Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches" Bioengineering 9, no. 1: 41. https://doi.org/10.3390/bioengineering9010041
APA StyleDosmar, E., Walsh, J., Doyel, M., Bussett, K., Oladipupo, A., Amer, S., & Goebel, K. (2022). Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering, 9(1), 41. https://doi.org/10.3390/bioengineering9010041