Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic–Ischemic Encephalopathy in Neonates
Abstract
:1. Introduction and Pathophysiology of HIE
2. Genomics
3. Transcriptomics
4. Proteomics
5. Metabolomics
6. Multi-Omics Approach for HIE
7. Omics in HIE: Conclusion and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ferriero, D.M. Neonatal brain injury. N. Engl. J. Med. 2004, 351, 1985–1995. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhu, P.; Fujino, M.; Zhuang, J.; Guo, H.; Sheikh, I.; Zhao, L.; Li, X.-K. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2016, 17, 2078. [Google Scholar] [CrossRef] [PubMed]
- Kruse, M.; Michelsen, S.I.; Flachs, E.M.; Brønnum-Hansen, H.; Madsen, M.; Uldall, P. Lifetime costs of cerebral palsy. Dev. Med. Child Neurol. 2009, 51, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Montaldo, P.; Kaforou, M.; Pollara, G.; Hervás-Marín, D.; Calabria, I.; Panadero, J.; Pedrola, L.; Lally, P.J.; Oliveira, V.; Kage, A.; et al. Whole blood gene expression reveals specific transcriptome changes in neonatal encephalopathy. Neonatology 2019, 115, 68–76. [Google Scholar] [CrossRef]
- Edwards, A.B.; Anderton, R.S.; Knuckey, N.W.; Meloni, B.P. Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: A case for cationic arginine-rich peptides (CARPs). Brain Sci. 2018, 8, 147. [Google Scholar] [CrossRef]
- Gunn, A.J.; Laptook, A.R.; Robertson, N.J.; Barks, J.D.; Thoresen, M.; Wassink, G.; Bennet, L. Therapeutic hypothermia translates from ancient history into practice. Pediatr. Res. 2017, 81, 202–209. [Google Scholar] [CrossRef]
- Albrecht, M.; Zitta, K.; Groenendaal, F.; van Bel, F.; Peeters-Scholte, C. Neuroprotective strategies following perinatal hypoxia-ischemia: Taking aim at NOS. Free Radic. Biol. Med. 2019, 142, 123–131. [Google Scholar] [CrossRef]
- Lu, Y.; Tucker, D.; Dong, Y.; Zhao, N.; Zhuo, X.; Zhang, Q. Role of mitochondria in neonatal hypoxic-ischemic brain injury. J. Neurosci. Rehabil. 2015, 2, 1. [Google Scholar]
- Rodríguez, M.; Valez, V.; Cimarra, C.; Blasina, F.; Radi, R. Hypoxic-ischemic encephalopathy and mitochondrial dysfunction: Facts, unknowns, and challenges. Antioxid. Redox Signal. 2020, 33, 247–262. [Google Scholar] [CrossRef]
- Douglas-Escobar, M.; Weiss, M.D. Biomarkers of Hypoxic-Ischemic Encephalopathy in Newborns. Front. Neurol. 2012, 3, 144. [Google Scholar] [CrossRef]
- Davies, A.; Wassink, G.; Bennet, L.; Gunn, A.J.; Davidson, J.O. Can we further optimize therapeutic hypothermia for hypoxic-ischemic encephalopathy? Neural Regen. Res. 2019, 14, 1678. [Google Scholar] [PubMed]
- Diaz-Arrastia, R.; Wang, K.K.; Papa, L.; Sorani, M.D.; Yue, J.K.; Puccio, A.M.; McMahon, P.J.; Inoue, T.; Yuh, E.L.; Lingsma, H.F. Acute biomarkers of traumatic brain injury: Relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 2014, 31, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.W.; Bhandari, M.; Guyatt, G.; Heels-Ansdell, D.; Schemitsch, E.H.; Swiontkowski, M.; Tornetta, P., III; Walter, S.; on behalf of the SPRINT Investigators. Critical-Sized Defect in the Tibia: Is it Critical? Results From the SPRINT Trial. J. Orthop. Trauma 2014, 28, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Quezada, H.; Guzmán-Ortiz, A.L.; Díaz-Sánchez, H.; Valle-Rios, R.; Aguirre-Hernández, J. Omics-based biomarkers: Current status and potential use in the clinic. Bol. Med. Hosp. Infant. Mex. 2017, 74, 219–226. [Google Scholar] [CrossRef]
- Zhao, Z.; Faden, A.I.; Loane, D.J.; Lipinski, M.M.; Sabirzhanov, B.; Stoica, B.A. Neuroprotective effects of geranylgeranylacetone in experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 2013, 33, 1897–1908. [Google Scholar] [CrossRef]
- Gazzolo, D.; Frigiola, A.; Bashir, M.; Iskander, I.; Mufeed, H.; Aboulgar, H.; Venturini, P.; Marras, M.; Serra, G.; Frulio, R.; et al. Diagnostic Accuracy of S100B Urinary Testing at Birth in Full-Term Asphyxiated Newborns to Predict Neonatal Death. PLoS ONE 2009, 4, e4298. [Google Scholar] [CrossRef]
- Howard, T.D.; Giles, W.H.; Xu, J.; Wozniak, M.A.; Malarcher, A.M.; Lange, L.A.; Macko, R.F.; Basehore, M.J.; Meyers, D.A.; Cole, J.W.; et al. Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women. Stroke 2005, 36, 1848–1851. [Google Scholar] [CrossRef]
- Kuzmanić Šamija, R.; Primorac, D.; Rešić, B.; Pavlov, V.; Čapkun, V.; Punda, H.; Lozić, B.; Zemunik, T. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy. Braz. J. Med. Biol. Res. 2014, 47, 869–875. [Google Scholar] [CrossRef]
- Cukierman, E.; Pankov, R.; Stevens, D.R.; Yamada, K.M. Taking Cell-Matrix Adhesions to the Third Dimension. Science 2001, 294, 1708–1712. [Google Scholar] [CrossRef]
- Chen, H.; Gao, L.; Wang, J.; Gao, C. The correlation between AGT gene polymorphism and neonatal hypoxic-ischemic encephalopathy (HIE). Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2194–2199. [Google Scholar]
- Ogawa, Y.; Tsuji, M.; Tanaka, E.; Miyazato, M.; Hino, J. Bone Morphogenetic Protein (BMP)-3b Gene Depletion Causes High Mortality in a Mouse Model of Neonatal Hypoxic-Ischemic Encephalopathy. Front. Neurol. 2018, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, D.; Yang, S.; Zhang, L. Promoter methylation represses AT2R gene and increases brain hypoxic–ischemic injury in neonatal rats. Neurobiol. Dis. 2013, 60, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnusamy, V.; Yip, P.K. The role of microRNAs in newborn brain development and hypoxic ischaemic encephalopathy. Neuropharmacology 2019, 149, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Looney, A.-M.; Walsh, B.H.; Moloney, G.; Grenham, S.; Fagan, A.; O’Keeffe, G.W.; Clarke, G.; Cryan, J.F.; Dinan, T.G.; Boylan, G.B.; et al. Downregulation of Umbilical Cord Blood Levels of miR-374a in Neonatal Hypoxic Ischemic Encephalopathy. J. Pediatr. 2015, 167, 269–273.e262. [Google Scholar] [CrossRef]
- Bavelloni, A.; Ramazzotti, G.; Poli, A.; Piazzi, M.; Focaccia, E.; Blalock, W.; Faenza, I. MiRNA-210: A Current Overview. Anticancer Res. 2017, 37, 6511–6521. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Shao, M.; Wang, D.; Zhang, Y. Combined prediction of miR-210 and miR-374a for severity and prognosis of hypoxic-ischemic encephalopathy. Brain Behav. 2018, 8, e00835. [Google Scholar] [CrossRef]
- Whitehead, C.L.; Walker, S.P.; Lappas, M.; Tong, S. Circulating RNA coding genes regulating apoptosis in maternal blood in severe early onset fetal growth restriction and pre-eclampsia. J. Perinatol. 2013, 33, 600–604. [Google Scholar] [CrossRef]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef]
- Lanz, J.R.; Pereira, A.C.; Lemos, P.A.; Martinez, E.; Krieger, J.E. Angiotensinogen M235T polymorphism is associated with coronary artery disease severity. Clin. Chim. Acta 2005, 362, 176–181. [Google Scholar] [CrossRef]
- Si, W.; Li, B.; Lenahan, C.; Li, S.; Gu, R.; Qu, H.; Wang, L.; Liu, J.; Tian, T.; Wang, Q.; et al. AT1R/GSK-3β/mTOR Signaling Pathway Involved in Angiotensin II-Induced Neuronal Apoptosis after HIE Both In Vitro and In Vivo. Oxid. Med. Cell. Longev. 2020, 2020, 8864323. [Google Scholar] [CrossRef]
- Pedrotty, D.M.; Morley, M.P.; Cappola, T.P. Transcriptomic Biomarkers of Cardiovascular Disease. Prog. Cardiovasc. Dis. 2012, 55, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.-L.; Xue, L.-L.; Al-Hawwas, M.; Huang, J.; Niu, R.-Z.; Tan, Y.-X.; Xu, Y.; Su, Y.-Y.; Liu, J.; Wang, T.-H. Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen. Res. 2020, 15, 86. [Google Scholar]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, D.; Tyryshkin, K.; Renwick, N. microRNA-guided diagnostics in clinical samples. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Rodosthenous, R.S.; Burris, H.H.; Sanders, A.P.; Just, A.C.; Dereix, A.E.; Svensson, K.; Solano, M.; Téllez-Rojo, M.M.; Wright, R.O.; Baccarelli, A.A. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. Epigenetics 2017, 12, 804–810. [Google Scholar] [CrossRef]
- Dong, X.; Zhuang, S.; Huang, Y.; Yang, X.; Fu, Y.; Yu, L.; Zhao, Y. Expression profile of circular RNAs in the peripheral blood of neonates with hypoxic-ischemic encephalopathy. Mol. Med. Rep. 2020, 22, 87–96. [Google Scholar] [CrossRef]
- Wei, L.; Li, X.; Wang, L.; Song, Y.; Dong, H. Comprehensive Analysis of RNA Expression Profile Identifies Hub miRNA-circRNA Interaction Networks in the Hypoxic Ischemic Encephalopathy. Comput. Math. Methods Med. 2021, 2021, 6015473. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, Y.; Huang, Y.; Yu, L.; Yang, X.; Gao, F. Analysis of long noncoding RNA expression profiles in the whole blood of neonates with hypoxic-ischemic encephalopathy. J. Cell. Biochem. 2019, 120, 8499–8509. [Google Scholar] [CrossRef]
- Scherp, P.; Ku, G.; Coleman, L.; Kheterpal, I. Gel-based and gel-free proteomic technologies. In Adipose-Derived Stem Cells; Springer: Berlin/Heidelberg, Germany, 2011; pp. 163–190. [Google Scholar]
- Lippolis, R.; De Angelis, M. Proteomics and Human Diseases. J. Proteom. Bioinform. 2016, 9, 063–074. [Google Scholar] [CrossRef]
- Ahmad, Y.; Sharma, N.K.; Ahmad, M.F.; Sharma, M.; Garg, I.; Bhargava, K. Proteomic Identification of Novel Differentiation Plasma Protein Markers in Hypobaric Hypoxia-Induced Rat Model. PLoS ONE 2014, 9, e98027. [Google Scholar] [CrossRef] [PubMed]
- Guingab-Cagmat, J.; Cagmat, E.; Hayes, R.L.; Anagli, J. Integration of proteomics, bioinformatics, and systems biology in traumatic brain injury biomarker discovery. Front. Neurol. 2013, 4, 61. [Google Scholar] [CrossRef] [PubMed]
- Schiff, L.; Hadker, N.; Weiser, S.; Rausch, C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol. Diagn. Ther. 2012, 16, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhou, D.; Wang, Y.-W. Umbilical artery blood S100β protein: A tool for the early identification of neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 2009, 168, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.M.; Burd, I.; Everett, A.D.; Northington, F.J. Blood Biomarkers for Evaluation of Perinatal Encephalopathy. Front. Pharmacol. 2016, 7, 196. [Google Scholar] [CrossRef]
- Lv, H.; Wang, Q.; Wu, S.; Yang, L.; Ren, P.; Yang, Y.; Gao, J.; Li, L. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin. Chim. Acta 2015, 450, 282–297. [Google Scholar] [CrossRef]
- Massaro, A.N.; Wu, Y.W.; Bammler, T.K.; Comstock, B.; Mathur, A.; McKinstry, R.C.; Chang, T.; Mayock, D.E.; Mulkey, S.B.; Van Meurs, K.; et al. Plasma biomarkers of brain injury in neonatal hypoxic-ischemic encephalopathy. J. Pediatr. 2018, 194, 67–75.e61. [Google Scholar] [CrossRef]
- De Caestecker, M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev. 2004, 15, 1–11. [Google Scholar] [CrossRef]
- Mukerji, S.S.; Katsman, E.A.; Wilber, C.; Haner, N.A.; Selman, W.R.; Hall, A.K. Activin is a neuronal survival factor that is rapidly increased after transient cerebral ischemia and hypoxia in mice. J. Cereb. Blood Flow Metab. 2007, 27, 1161–1172. [Google Scholar] [CrossRef]
- Florio, P.; Frigiola, A.; Battista, R.; Abdalla Ael, H.; Gazzolo, D.; Galleri, L.; Pinzauti, S.; Abella, R.; Li Volti, G.; Strambi, M. Activin A in asphyxiated full-term newborns with hypoxic ischemic encephalopathy. Front. Biosci. 2010, 2, 36–42. [Google Scholar] [CrossRef]
- Kambe, T.; Motoi, Y.; Inoue, R.; Kojima, N.; Tada, N.; Kimura, T.; Sahara, N.; Yamashita, S.; Mizoroki, T.; Takashima, A.; et al. Differential regional distribution of phosphorylated tau and synapse loss in the nucleus accumbens in tauopathy model mice. Neurobiol. Dis. 2011, 42, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.M. Biomarkers in neonatal hypoxic-ischemic encephalopathy-Review of the literature to date and future directions for research. Handb. Clin. Neurol. 2019, 162, 281–293. [Google Scholar] [CrossRef]
- Takahashi, K.; Hasegawa, S.; Maeba, S.; Fukunaga, S.; Motoyama, M.; Hamano, H.; Ichiyama, T. Serum tau protein level serves as a predictive factor for neurological prognosis in neonatal asphyxia. Brain Dev. 2014, 36, 670–675. [Google Scholar] [PubMed]
- Dong, X.; Zhao, J.; Shen, Y.; Sun, Q.; Wu, X.; Zhu, Y.; Yu, L.; Zhao, Y. Peptidomic Analysis of Neonate Umbilical Cord Blood for the Identification of Endogenous Peptides Involved in Hypoxic–Ischemic Encephalopathy. Front. Pediatr. 2021, 9, 718704. [Google Scholar] [CrossRef] [PubMed]
- Yenari, M.A.; Kauppinen, T.M.; Swanson, R.A. Microglial activation in stroke: Therapeutic targets. Neurotherapeutics 2010, 7, 378–391. [Google Scholar] [PubMed]
- Walsh, B.H.; Broadhurst, D.I.; Mandal, R.; Wishart, D.S.; Boylan, G.B.; Kenny, L.C.; Murray, D.M. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS ONE 2012, 7, e50520. [Google Scholar] [CrossRef] [PubMed]
- Shalak, L.F.; Laptook, A.R.; Jafri, H.S.; Ramilo, O.; Perlman, J.M. Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics 2002, 110, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Pellegrini, G.; Panero, A.; De Luca, T.; Assumma, M.; Signore, F.; Pacifico, L. Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur. J. Clin. Investig. 2003, 33, 352–358. [Google Scholar] [CrossRef]
- Orrock, J.E.; Panchapakesan, K.; Vezina, G.; Chang, T.; Harris, K.; Wang, Y.; Knoblach, S.; Massaro, A.N. Association of brain injury and neonatal cytokine response during therapeutic hypothermia in newborns with hypoxic-ischemic encephalopathy. Pediatr. Res. 2016, 79, 742–747. [Google Scholar] [CrossRef]
- Banks, W.A.; Dohi, K.; Hansen, K.; Thompson, H.J. Assessing blood granulocyte colony-stimulating factor as a potential biomarker of acute traumatic brain injury in mice and humans. Brain Behav. Immun. 2016, 52, 81–87. [Google Scholar] [CrossRef]
- Nelson, K.B.; Grether, J.K.; Dambrosia, J.M.; Walsh, E.; Kohler, S.; Satyanarayana, G.; Nelson, P.G.; Dickens, B.F.; Phillips, T.M. Neonatal cytokines and cerebral palsy in very preterm infants. Pediatr. Res. 2003, 53, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Skogseid, I.; Nordby, H.; Urdal, P.; Paus, E.; Lilleaas, F. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir. 1992, 115, 106–111. [Google Scholar] [CrossRef]
- Selakovic, V.; Raicevic, R.; Radenovic, L. The increase of neuron-specific enolase in cerebrospinal fluid and plasma as a marker of neuronal damage in patients with acute brain infarction. J. Clin. Neurosci. 2005, 12, 542–547. [Google Scholar] [CrossRef]
- Gradisek, P.; Osredkar, J.; Korsic, M.; Kremzar, B. Multiple indicators model of long-term mortality in traumatic brain injury. Brain Inj. 2012, 26, 1472–1481. [Google Scholar] [CrossRef]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. Adv. Cancer Biomark. 2015, 867, 125–143. [Google Scholar]
- Çeltik, C.; Acunaş, B.; Öner, N.; Pala, Ö. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev. 2004, 26, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Al-Ward, H.; Ngaffo Mekontso, F.; Liu, N.; Zeng, H.-Q.; Liu, M.; Yu, Z.-R.; Zhang, L.; Han, Y.-C.; Xu, H. Experimental Study on the Correlation between miRNA-373 and HIF-1α, MMP-9, and VEGF in the Development of HIE. BioMed Research International 2021, 5553486. [Google Scholar] [CrossRef]
- Robertson, C.S.; Hannay, H.J.; Yamal, J.-M.; Gopinath, S.; Goodman, J.C.; Tilley, B.C.; Baldwin, A.; Lara, L.R.; Saucedo-Crespo, H.; Ahmed, O. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: A randomized clinical trial. JAMA 2014, 312, 36–47. [Google Scholar] [CrossRef]
- Lee, S.T.; Chu, K.; Sinn, D.I.; Jung, K.H.; Kim, E.H.; Kim, S.J.; Kim, J.M.; Ko, S.Y.; Kim, M.; Roh, J.K. Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J. Neurochem. 2006, 96, 1728–1739. [Google Scholar] [CrossRef]
- Traudt, C.M.; McPherson, R.J.; Bauer, L.A.; Richards, T.L.; Burbacher, T.M.; McAdams, R.M.; Juul, S.E. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev. Neurosci. 2013, 35, 491–503. [Google Scholar] [CrossRef]
- Fang, A.Y.; Gonzalez, F.F.; Sheldon, R.A.; Ferriero, D.M. Effects of combination therapy using hypothermia and erythropoietin in a rat model of neonatal hypoxia–ischemia. Pediatr. Res. 2013, 73, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Ivain, P.; Montaldo, P.; Khan, A.; Elagovan, R.; Burgod, C.; Morales, M.M.; Pant, S.; Thayyil, S. Erythropoietin monotherapy for neuroprotection after neonatal encephalopathy in low-to-middle income countries: A systematic review and meta-analysis. J. Perinatol. 2021, 41, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Ennen, C.S.; Huisman, T.A.G.M.; Savage, W.J.; Northington, F.J.; Jennings, J.M.; Everett, A.D.; Graham, E.M. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am. J. Obstet. Gynecol. 2011, 205, 251.e1–251.e7. [Google Scholar] [CrossRef] [PubMed]
- Douglas-Escobar, M.; Yang, C.; Bennett, J.; Shuster, J.; Theriaque, D.; Leibovici, A.; Kays, D.; Zheng, T.; Rossignol, C.; Shaw, G.; et al. A Pilot Study of Novel Biomarkers in Neonates With Hypoxic-Ischemic Encephalopathy. Pediatr. Res. 2010, 68, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florio, P.; Luisi, S.; Bruschettini, M.; Grutzfeld, D.; Dobrzanska, A.; Bruschettini, P.; Petraglia, F.; Gazzolo, D. Cerebrospinal fluid activin a measurement in asphyxiated full-term newborns predicts hypoxic ischemic encephalopathy. Clin. Chem. 2004, 50, 2386–2389. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Z.-C. Increased umbilical cord plasma interleukin-1β levels was correlated with adverse outcomes of neonatal hypoxic-ischemic encephalopathy. J. Trop. Pediatr. 2010, 56, 178–182. [Google Scholar] [CrossRef]
- Zhu, Y.; Yun, Y.; Jin, M.; Li, G.; Li, H.; Miao, P.; Ding, X.; Feng, X.; Xu, L.; Sun, B. Identification of novel biomarkers for neonatal hypoxic-ischemic encephalopathy using iTRAQ. Ital. J. Pediatr. 2020, 46, 1–9. [Google Scholar] [CrossRef]
- Talat, M.A.; Saleh, R.M.; Shehab, M.M.; Khalifa, N.A.; Sakr, M.M.H.; Elmesalamy, W.M. Evaluation of the role of ischemia modified albumin in neonatal hypoxic-ischemic encephalopathy. Clin. Exp. Pediatr. 2020, 63, 329. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Liu, X.; Wang, H. Lactylation may be a novel posttranslational modification in inflammation in neonatal hypoxic-ischemic encephalopathy. Front. Pharmacol. 2022, 13, 926802. [Google Scholar] [CrossRef]
- Tabb, D.L.; Vega-Montoto, L.; Rudnick, P.A.; Variyath, A.M.; Ham, A.-J.L.; Bunk, D.M.; Kilpatrick, L.E.; Billheimer, D.D.; Blackman, R.K.; Cardasis, H.L.; et al. Repeatability and reproducibility in proteomic identifications by liquid chromatography−tandem mass spectrometry. J. Proteome Res. 2010, 9, 761–776. [Google Scholar] [CrossRef]
- White, N.M.; Masui, O.; DeSouza, L.V.; Krakovska-Yutz, O.; Metias, S.; Romaschin, A.D.; Honey, R.J.; Stewart, R.; Pace, K.; Lee, J.; et al. Quantitative proteomic analysis reveals potential diagnostic markers and pathways involved in pathogenesis of renal cell carcinoma. Oncotarget 2014, 5, 506. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Feng, B.; Dong, T.; Yan, G.; Tan, B.; Shen, H.; Huang, A.; Zhang, X.; Zhang, M.; Yang, P.; et al. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J. Proteomics 2013, 94, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Locci, E.; Bazzano, G.; Demontis, R.; Chighine, A.; Fanos, V.; d’Aloja, E. Exploring perinatal asphyxia by metabolomics. Metabolites 2020, 10, 141. [Google Scholar] [CrossRef]
- Efstathiou, N.; Theodoridis, G.; Sarafidis, K. Understanding neonatal hypoxic-ischemic encephalopathy with metabolomics. Hippokratia 2017, 21, 115. [Google Scholar] [PubMed]
- López-Suárez, O.; Concheiro-Guisán, A.; Sánchez-Pintos, P.; Cocho, J.A.; Fernández Lorenzo, J.R.; Couce, M.L. Acylcarnitine profile in neonatal hypoxic-ischemic encephalopathy. Medicine 2019, 98, e15221. [Google Scholar] [CrossRef]
- Sánchez-Illana, Á.; Thayyil, S.; Montaldo, P.; Jenkins, D.; Quintas, G.; Oger, C.; Galano, J.-M.; Vigor, C.; Durand, T.; Vento, M. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma. Anal. Chim. Acta 2017, 996, 88–97. [Google Scholar] [CrossRef]
- Sarafidis, K.; Efstathiou, N.; Begou, O.; Soubasi, V.; Agakidou, E.; Gika, E.; Theodoridis, G.; Drossou, V. Urine metabolomic profile in neonates with hypoxic-ischemic encephalopa-thy. Hippokratia 2017, 21, 80. [Google Scholar]
- Denihan, N.M.; Kirwan, J.A.; Walsh, B.H.; Dunn, W.B.; Broadhurst, D.I.; Boylan, G.B.; Murray, D.M. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. J. Cereb. Blood Flow Metab. 2019, 39, 147–162. [Google Scholar] [CrossRef]
- Chu, C.Y.; Xiao, X.; Zhou, X.G.; Lau, T.K.; Rogers, M.S.; Fok, T.F.; Law, L.K.; Pang, C.P.; Wang, C.C. Metabolomic and bioinformatic analyses in asphyxiated neonates. Clin. Biochem. 2006, 39, 203–209. [Google Scholar] [CrossRef]
- Reinke, S.N.; Walsh, B.H.; Boylan, G.B.; Sykes, B.D.; Kenny, L.C.; Murray, D.M.; Broadhurst, D.I. 1H NMR Derived Metabolomic Profile of Neonatal Asphyxia in Umbilical Cord Serum: Implications for Hypoxic Ischemic Encephalopathy. J. Proteome Res. 2013, 12, 4230–4239. [Google Scholar] [CrossRef]
- Kumr, D.; Yelamali, B.; Pol, R. Serum calcium and magnesium levels in predicting short term outcome of term neonates with Hypoxic Ischemic Encephalopathy. Med. Innov. 2018, 7, 44–47. [Google Scholar]
- Yu, T.; Qing Kui, L.; Ming, Q.Z. Effect of asphyxia on non-protein-bound iron and lipid peroxidation in newborn infants. Dev. Med. Child Neurol. 2003, 45, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Longini, M.; Giglio, S.; Perrone, S.; Vivi, A.; Tassini, M.; Fanos, V.; Sarafidis, K.; Buonocore, G. Proton nuclear magnetic resonance spectroscopy of urine samples in preterm asphyctic newborn: A metabolomic approach. Clin. Chim. Acta 2015, 444, 250–256. [Google Scholar] [CrossRef] [PubMed]
- El-Farghali, O.G.; El-Chimi, M.S.; El-Abd, H.S.; El-Desouky, E. Amino acid and acylcarnitine profiles in perinatal asphyxia: A case-control study. J. Matern. Fetal Neonatal Med. 2018, 31, 1462–1469. [Google Scholar] [CrossRef]
- Noto, A.; Pomero, G.; Mussap, M.; Barberini, L.; Fattuoni, C.; Palmas, F.; Dalmazzo, C.; Delogu, A.; Dessì, A.; Fanos, V.; et al. Urinary gas chromatography mass spectrometry metabolomics in asphyxiated newborns undergoing hypothermia: From the birth to the first month of life. Ann. Transl. Med. 2016, 4, 417. [Google Scholar] [CrossRef]
- Weiss, J.B.; Eisenhardt, S.U.; Stark, G.B.; Bode, C.; Moser, M.; Grundmann, S. MicroRNAs in ischemia-reperfusion injury. Am. J. Cardiovasc. Dis. 2012, 2, 237. [Google Scholar]
- Wainwright, M.S.; Mannix, M.K.; Brown, J.; Stumpf, D.A. L-carnitine reduces brain injury after hypoxia-ischemia in newborn rats. Pediatr. Res. 2003, 54, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Munir, J.; Yoon, J.K.; Ryu, S. Therapeutic miRNA-enriched extracellular vesicles: Current approaches and future prospects. Cells 2020, 9, 2271. [Google Scholar] [CrossRef]
- Milne, G.; Dai, Q.; Roberts, L.J., II. The isoprostanes—25 years later. Biochim. Biophys. Acta 2015, 1851, 433–445. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Torres-Cuevas, I.; Sanchez-Illana, A.; Escobar, J.; Kuligowski, J.; Solberg, R.; Garberg, H.; Huun, M.; Saugstad, O.; Vento, M. Development of a reliable analytical method to determine lipid peroxidation biomarkers in newborn plasma samples. Talanta 2016, 153, 152–157. [Google Scholar] [CrossRef]
- Mehta, A.; Chawla, D.; Kaur, J.; Mahajan, V.; Guglani, V. Salivary lactate dehydrogenase levels can provide early diagnosis of hypoxic–ischaemic encephalopathy in neonates with birth asphyxia. Acta Paediatr. 2015, 104, e236–e240. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Illana, Á.; Piñeiro-Ramos, J.D.; Kuligowski, J. Small molecule biomarkers for neonatal hypoxic ischemic encephalopathy. Semin. Fetal Neonatal Med. 2020, 25, 101084. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, T.; Hiraga, T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem. Biophys. Res. Commun. 2005, 328, 679–687. [Google Scholar] [CrossRef]
- Debuf, M.J.; Carkeek, K.; Piersigilli, F. A Metabolomic Approach in Search of Neurobiomarkers of Perinatal Asphyxia: A Review of the Current Literature. Front. Pediatr. 2021, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.S.; Chen, T.B. An integrated analysis of hypoxic–ischemic encephalopathy-related cell sequencing outcomes via genes network construction. iBRAIN 2022, 8, 78–92. [Google Scholar] [CrossRef]
- Beamer, E.; O’Dea, M.I.; Garvey, A.A.; Smith, J.; Menéndez-Méndez, A.; Kelly, L.; Pavel, A.; Quinlan, S.; Alves, M.; Jimenez-Mateos, E.M.; et al. Novel Point-of-Care Diagnostic Method for Neonatal Encephalopathy Using Purine Nucleosides. Front. Mol. Neurosci. 2021, 14, 191. [Google Scholar] [CrossRef]
- O’Boyle, D.S.; Dunn, W.B.; O’Neill, D.; Kirwan, J.A.; Broadhurst, D.I.; Hallberg, B.; Boylan, G.B.; Murray, D.M. Improvement in the prediction of neonatal hypoxic-ischemic encephalopathy with the integration of umbilical cord metabolites and current clinical makers. J. Pediatr. 2021, 229, 175–181.e1. [Google Scholar] [CrossRef]
- Tsuji, M.; Sawada, M.; Watabe, S.; Sano, H.; Kanai, M.; Tanaka, E.; Ohnishi, S.; Sato, Y.; Sobajima, H.; Hamazaki, T. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: A pilot study for feasibility and safety. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
Genomics | |||||
---|---|---|---|---|---|
S. No | Biomarker | Biological Fluid | Analytical Platform | Study Models | Key Findings |
1 | NOS3 gene [18] | Blood [19] | PCR and sequencing | Pre-term and full-term neonates with HIE | Strongly suggests an association of the NOS3 gene polymorphism with the intensity of brain damage. |
2 | AGT gene [20] | Blood [19] | PCR and sequencing | Neonates with HIE | Polymorphism in the AGT gene is associated with HIE. |
3 | BMP gene [21] | Cerebral blood | Neuroanatomical studies in gene knockouts | BMP-3b knockout mouse models |
|
4 | AT2R gene [22] | RNA extracted from brain tissue | Real-time RT-PCR | Mouse model |
|
Transcriptomics | |||||
S. No | Biomarker | Biological Fluid | Analytical Platform | Study Models | Key Findings |
1 | HIF-1 [23] | Serum | qRT-PCR | Neonates with HIE |
|
2 | miR-374a [24,25] | Umbilical cord blood | miRNA microarray, real-time PCR | Neonates with HIE | Significant stepwise downregulation of hsa-miR-374a expression in the cord blood of infants with perinatal asphyxia and subsequent HIE. |
3 | miR-210 and miR-374a [26] | Umbilical cord blood | Real-time PCR | Neonates with HIE |
|
4 | miR 210, miR 21, miR 424, miR 199a, miR 20b, and miR 373 [27] | Maternal whole blood | qRT-PCR | Women undergoing induction of labor at term |
|
5 | HIF1A, MALAT1, and RICTOR [4] | Whole-blood RNA | Next-generation sequencing | Neonate with HIE | Striking upregulation in these gene expression profiles at birth in neonatal encephalopathy. |
6 | RGS1 and SMC4 [4] | Whole-blood RNA | RT-PCR | Neonate with HIE |
|
Proteomics | |||||
---|---|---|---|---|---|
S. No | Biomarker | Biological Fluid | Analytical Platform | Study Models | Key Findings |
1 | GFAP [74] | Umbilical cord blood and neonatal serum | Electro-chemiluminescent sandwich immunoassay | Neonates with HIE |
|
2 | S100B [16] | Urine | Immuno- luminometric assay | Neonates with HIE | In term neonates with perinatal hypoxia, elevated S100B protein urine levels appear to indicate a higher risk of neonatal morbidity. |
3 | UCHL1 [48,75] | Serum | ELISA | Neonates with HIE |
|
4 | Activin A [76] | Cerebrospinal fluid | ELISA | Neonates with HIE | Newborns with severe HIE had higher CSF activin A concentrations than infants without the condition. |
5 | Tau proteins [54] | Umbilical cord blood | ELISA | Neonates with HIE | The prognosis in HIE can be predicted by serum Tau protein levels on days 3 and 7. |
6 | Pro-inflammatory cytokines [59] | Serum | ELISA | Newborns with HIE and their mothers | To spot early evidence of brain damage in newborns with prenatal hypoxia, IL-6 in the umbilical cord may be helpful. |
7 | Interleukin-1β [77] | Umbilical cord blood | Radioimmunoassay | Neonates with HIE |
|
8 | NSE [67] | Serum | Immunometric assay | Neonates with HIE |
|
9 | MBP [47] | Serum | Chemiluminescent Immunoassay | Neonates with HIE | MBP can be a specific biomarker of white matter lesions or nerve fiber demyelination as its concentration increases rapidly in blood and cerebrospinal fluid with the severity of the myelin damage. |
10 | BDNF [51] | Umbilical cord blood | ELISA | Neonates with perinatal asphyxia |
|
11 | MMP-9 [47] | Serum | ELISA | Neonates with HIE |
|
12 | VEGF [47] | Plasma | Chemiluminescent Immunoassay | Neonates with HIE | In hypoxia–ischemia, VEGF, an angiogenic factor released by astrocytes and microglia, is overexpressed. |
13 | S100A8 [78] | Plasma | LC-MS/MS | Neonates with HIE | The S100A8 levels were significantly increased in all three groups of HIE patients and reflected the severity of HIE. |
Metabolomics | |||||
---|---|---|---|---|---|
S. No | Biomarker | Biological Fluid | Analytical Platform | Study Models | Key Findings |
1 | Amino acids, acylcarnitines, and glycerophospholipids [57] | Umbilical cord blood | LC-MS/MS | Neonates with HIE and asphyxiated infants | Infants with both hypoxia and HIE had higher levels of acylcarnitines compared to controls, but infants with HIE had higher levels of amino acids. |
2 | Acylcarnitine [86] | Dried blood spots | Tandem-mass spectrometry | Neonates with HIE |
|
3 | Isoprostanoids [87] | Plasma | LC-MS/MS | Neonates with HIE | Isofurans (isoFs) and neurofurans (neuroFs) detected as preliminary biomarkers in newborns with HIE undergoing therapeutic hypothermia treatment. |
4 | Organic acids and amino acids [88] | Urine | LC-MS/MS | Neonates with HIE |
|
5 | Kynurenine [89] | Umbilical cord blood | LC-MS/MS | Neonates with HIE | Kynurenine levels in neonates with HIE have significantly decreased. |
6 | Inositol [88] | Urine | LC-MS/MS | Neonates with HIE | In newborns with HIE, inositol levels increased considerably within the first three days. |
7 | Urinary organic acids [90] | Urine | LCMS-MS | Newborns with perinatal asphyxia | Eight urinary organic acids (ethylmalonate, 3-hydroxy-3-methylglutarate, 2-hydroxy-glutarate and 2-oxo-glutarat, glutarate, methylmalonate, 3-hydroxy-butyrate, and orotate) in distinct biochemical pathways were elevated in neonates with perinatal asphyxia. |
8 | Organic metabolites [91] | Umbilical cord blood | H NMR | Newborns with perinatal asphyxia | Infants with severe HIE had significant alterations in acetone, 3-hydroxybutyrate, succinate, and glycerol. |
9 | Calcium and magnesium [92] | Serum | ICPMS | Neonates with HIE | It was shown that newborns with HIE had lower total serum calcium and magnesium levels. They could be prognostic indicators in HIE. |
10 | Non-protein-bound iron [93] | Plasma | Photometry | Neonates with HIE | Significant increase in the detectable rate of non-protein-bound iron in the plasma, and the concentration of lipid peroxidation in newborn infants with HIE might be due to the effect of asphyxia on the iron metabolism. |
11 | Lactate, glucose, trimethylamine-N-oxide, threonine, 3 hydroxyisovalerate, acetate, succinate, citrate, urea, formate [94] | Urine | 1H-NMR | Neonates with HIE | Metabolites such as lactate, glucose, trimethylamine-N-oxide (TMAO) with threonine, and 3-hydroxyisovalerate are characterizing markers in the asphyxiated group, with decreases in dimethylglycine, dimethylamine, creatine, succinate, formate, urea, and aconitate. |
12 | Alanine, valine, phenylalanine, acylcarnitines [95] | Cord dried blood spot | UPLC-MS | Neonates with HIE | The amino acids, alanine, valine, phenylalanine, leucine and methionine; and the acylcarnitines C0, C10, and C2 were elevated in the asphyxiated group, but decreased the citrulline-to-phenylalanine ratio, as well as the levels of histidine and ornithine and the acylcarnitines C14, C16, and C3. |
13 | Lactose, citrate, galactose, hydroxyl proline, taurine, lysine, oxalates [96] | Urine | 1H-NMR | Neonates with HIE | An increase in urine metabolites, such as lactose, citrate and hydroxyproline, and a decrease in lactate, taurine, lysine and oxalates. |
14 | Myoinositol, betaine, acetone, amino acids, sugars, creatine/creatinine ratio, cis-aconitate [84] | Urine | 1H-NMR | Neonates with HIE | Significant variations between the urine samples from HIE patients and healthy neonates at birth were shown via a multivariate analysis. Myoinositol, betaine, and the creatine/creatinine ratio were increased in HIE infants compared to normal infants. |
Parameter | Genomics | Transcriptomics | Proteomics | Metabolomics |
---|---|---|---|---|
Timing of injury | NOS3gene [18] | HIF-1 [23] | S100B [16] GFAP [74] | Amino acids, acylcarnitines, and glycerophospholipids [57]; urinary organic acids [90]; organic metabolites [91] |
Severity of injury | AT2R gene [22] | miR-374a [24,25] | S100A8 [78], NSE [67], activin A [76] | Acylcarnitine [86]; organic acids and amino acids [88] |
Mortality (Short-term outcome) | BMP gene [21] | miR-374a [24,25] | NSE [67] | Calcium and magnesium [92]; alanine, valine, phenylalanine, acylcarnitines [95] |
Neurodisability (Long-term outcome) | AGT gene [20] | miR 210, miR 21, miR 424, miR 199a, miR 20b, and miR 373 [27]; RGS1 and SMC4 [4] | GFAP [74], S100B [16], UCHL1 [48,75], Tau proteins [54] | Amino acids, acylcarnitines, and glycerophospholipids [57]; kynurenine [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasineni, G.K.; Panigrahy, N.; Rath, S.N.; Chinnaboina, M.; Konanki, R.; Chirla, D.K.; Madduri, S. Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic–Ischemic Encephalopathy in Neonates. Bioengineering 2022, 9, 498. https://doi.org/10.3390/bioengineering9100498
Rasineni GK, Panigrahy N, Rath SN, Chinnaboina M, Konanki R, Chirla DK, Madduri S. Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic–Ischemic Encephalopathy in Neonates. Bioengineering. 2022; 9(10):498. https://doi.org/10.3390/bioengineering9100498
Chicago/Turabian StyleRasineni, Girish Kumar, Nalinikanta Panigrahy, Subha Narayan Rath, Madhurarekha Chinnaboina, Ramesh Konanki, Dinesh Kumar Chirla, and Srinivas Madduri. 2022. "Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic–Ischemic Encephalopathy in Neonates" Bioengineering 9, no. 10: 498. https://doi.org/10.3390/bioengineering9100498
APA StyleRasineni, G. K., Panigrahy, N., Rath, S. N., Chinnaboina, M., Konanki, R., Chirla, D. K., & Madduri, S. (2022). Diagnostic and Therapeutic Roles of the “Omics” in Hypoxic–Ischemic Encephalopathy in Neonates. Bioengineering, 9(10), 498. https://doi.org/10.3390/bioengineering9100498