VEGF Polymorphism rs3025039 and Human T-Cell Leukemia Virus 1 (HTLV-1) Infection among Older Japanese Individuals: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Study Population
2.3. Data Collection and Laboratory Measurements
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population by rs3025039 Genotype
3.2. Association between rs3025039 Genotype (Three Categories) and HTLV-1 Infection
3.3. Association between rs3025039 Genotype (Two Categories) and HTLV-1 Infection
3.4. Sex-Specific Analysis of rs3025039 Genotype (Two Categories) and HTLV-1 Infection
3.5. Association between rs3025020 Genotype (Three Categories) and HTLV-1 Infection
3.6. Association between rs3025020 Genotype (Two Categories) and HTLV-1 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eusebio-Ponce, E.; Anguita, E.; Paulino-Ramirez, R.; Candel, F.J. HTLV-1 infection: An emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases. Rev. Esp. Quimioter. 2019, 32, 485–496. [Google Scholar] [PubMed]
- Pinto, D.O.; DeMarino, C.; Pleet, M.L.; Cowen, M.; Branscome, H.; Al Sharif, S.; Jones, J.; Dutartre, H.; Lepene, B.; Liotta, L.A.; et al. HTLV-1 extracellular vesicles promote cell-to-cell contact. Front. Microbiol. 2019, 10, 2147. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Watanabe, T. Human T lymphotropic virus type-I and adult T-cell leukemia in Japan. Int. J. Hematol. 2002, 76 (Suppl. 2), 240–245. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.L.; Hanchard, B.; Figueroa, J.P.; Gibbs, W.N.; Lofters, W.S.; Campbell, M.; Goedert, J.J.; Blattner, W.A. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int. J. Cancer. 1989, 43, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.E.; Osame, M.; Kubota, H.; Igata, A.; Nishitani, H.; Maeda, Y.; Khabbaz, R.F.; Janssen, R.S. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune. Defic. Syndr. (1988) 1990, 3, 1096–1101. [Google Scholar]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Kawashiri, S.Y.; Yamanashi, H.; Tamai, M.; Nagata, Y.; Maeda, T. Possible mechanisms underlying the association between human T-cell leukemia virus type 1 (HTLV-1) and hypertension in elderly Japanese population. Environ. Health Prev. Med. 2021, 26, 17. [Google Scholar] [CrossRef]
- El-Sabban, M.E.; Merhi, R.A.; Haidar, H.A.; Arnulf, B.; Khoury, H.; Basbous, J.; Nijmeh, J.; de Thé, H.; Hermine, O.; Bazarbachi, A. Human T-cell lymphotropic virus type 1-transformed cells induce angiogenesis and establish functional gap junctions with endothelial cells. Blood 2002, 99, 3383–3389. [Google Scholar] [CrossRef] [Green Version]
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 2004, 56, 549–580. [Google Scholar] [CrossRef] [Green Version]
- Sedding, D.G.; Boyle, E.C.; Demandt, J.A.F.; Sluimer, J.C.; Dutzmann, J.; Haverich, A.; Bauersachs, J. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front. Immunol. 2018, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Jerome, M.V.; Paysant, J.; Soria, P.C.; Vannier, J.P. The role of angiogenesis in leukemia proliferation. Am. J. Pathol. 1999, 155, 1007–1008. [Google Scholar]
- Haouas, H. Angiogenesis and acute myeloid leukemia. Hematology 2014, 19, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, A.; Kantarjian, H.; Manshouri, T.; Gidel, C.; Estey, E.; Thomas, D.; Koller, C.; Estrov, Z.; O’Brien, S.; Keating, M.; et al. Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 2000, 96, 2240–2245. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Vacca, A.; Levato, D.; Merchionne, F.; Ribatti, D. Angiogenesis in acute and chronic lymphocytic leukemia. Leuk. Res. 2004, 28, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Al-Habboubi, H.H.; Sater, M.S.; Almawi, A.W.; Al-Khateeb, G.M.; Almawi, W.Y. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. Eur. Cytokine. Netw. 2011, 22, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Yamanashi, H.; Kawashiri, S.Y.; Nobusue, K.; Nonaka, F.; Aoyagi, K.; Nagata, Y.; Maeda, T. Vascular endothelial growth factor (VEGF) polymorphism rs3025039 and atherosclerosis among older with hypertension. Sci. Rep. 2022, 12, 5564. [Google Scholar] [CrossRef]
- Shimizu, Y.; Maeda, T. Influence of height on endothelial maintenance activity: A narrative review. Environ. Health Prev. Med. 2021, 26, 19. [Google Scholar] [CrossRef]
- Yamanashi, H.; Koyamatsu, J.; Nagayoshi, M.; Shimizu, Y.; Kawashiri, S.Y.; Kondo, H.; Fukui, S.; Tamai, M.; Sato, S.; Yanagihara, K.; et al. Human T-cell leukemia virus-1 infection is associated with atherosclerosis as measured by carotid intima-media thickness in Japanese community-dwelling older people. Clin. Infect. Dis. 2018, 67, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Takamura, N.; Akashi, S.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, Y.; Kusano, Y.; Aoyagi, K. Evaluation of clinical markers of atherosclerosis in young and elderly Japanese adults. Clin. Chem. Lab. Med. 2006, 44, 824–829. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Kawashiri, S.Y.; Nobusue, K.; Nonaka, F.; Noguchi, Y.; Honda, Y.; Arima, K.; Abe, Y.; Nagata, Y.; et al. Contribution of VEGF polymorphism rs3025020 to short stature and hypertension in elderly Japanese individuals: A cross-sectional study. J. Physiol. Anthropol. 2021, 40, 4. [Google Scholar] [CrossRef]
- Lambert, S.; Bouttier, M.; Vassy, R.; Seigneuret, M.; Petrow-Sadowski, C.; Janvier, S.; Heveker, N.; Ruscetti, F.W.; Perret, G.; Jones, K.S.; et al. HTLV-1 uses HSPG and neuropilin-1 for entry by molecular mimicry of VEGF165. Blood 2009, 113, 5176–5185. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.; Osada, T.; Clay, T.; Lyerly, H.; Morse, M. Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Curr. Mol. Med. 2009, 9, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Furugen, R.; Iwasaki, T.; Fukuda, H.; Hayashida, H.; Kawasaki, K.; Kiyoura, K.; Kawashiri, S.Y.; et al. Association between human T cell leukemia virus 1 (HTLV-1) infection and advanced periodontitis in relation to hematopoietic activity among elderly participants: A cross-sectional study. Environ. Health Prev. Med. 2019, 24, 42. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Furugen, R.; Iwasaki, T.; Fukuda, H.; Hayashida, H.; Kawasaki, K.; Kiyoura, K.; Kawashiri, S.Y.; et al. Association between human T cell leukemia virus type-1 (HTLV-1) infection and advanced periodontitis in relation to atherosclerosis among elderly Japanese: A cross-sectional study. Environ. Health. Prev. Med. 2019, 24, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, R.; Gou, H.; Wang, X.; Li, L.; Xu, Y.; Svensson, P.; Wang, K. Microcirculation and somatosensory profiling of patients with periodontitis: A preliminary case control report. Clin. Oral. Investig. 2021, 25, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, M. Epidemiology of HTLV-1 infection and ATL in Japan: An update. Front. Microbiol. 2020, 11, 1124. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kawashiri, S.Y.; Kiyoura, K.; Koyamatsu, J.; Fukui, S.; Tamai, M.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Circulating CD34+ cells and active arterial wall thickening among elderly men: A prospective study. Sci. Rep. 2020, 10, 4656. [Google Scholar] [CrossRef] [Green Version]
- Skóra, J.P.; Antkiewicz, M.; Kupczyńska, D.; Kulikowska, K.; Strzelec, B.; Janczak, D.; Barć, P. Local intramuscular administration of ANG1 and VEGF genes using plasmid vectors mobilizes CD34+ cells to peripheral tissues and promotes angiogenesis in an animal model. Biomed. Pharmacother. 2021, 143, 112186. [Google Scholar] [CrossRef]
rs3025039 | p value | |||
CC | CT | TT | ||
No. of participants | 1234 | 584 | 106 | |
Men, % | 36.7 | 37.2 | 38.7 | 0.915 |
Age | 70.4 ± 5.2 | 70.1 ± 5.4 | 69.5 ± 5.4 | 0.224 |
Hypertension, % | 60.8 | 56.5 | 67.0 | 0.067 |
CIMT, mm | 0.93 ± 0.2 | 0.93 ± 0.2 | 0.90 ± 0.2 | 0.266 |
rs3025020 (CC) | 42.5 | 67.8 | 91.5 | <0.001 |
rs3025020 (CT) | 42.9 | 31.5 | 8.4 | <0.001 |
rs3025020 (TT) | 14.5 | 0.5 | 0.0 | <0.001 |
rs3025020 | p value | |||
CC | CT | TT | ||
No. of participants | 1019 | 723 | 182 | |
Men, % | 38.3 | 35.1 | 36.8 | 0.408 |
Age | 70.2 ± 5.2 | 70.3 ± 5.3 | 70.5 ± 5.2 | 0.693 |
Hypertension, % | 59.9 | 60.7 | 56.0 | 0.516 |
CIMT, mm | 0.93 ± 0.20 | 0.94 ± 0.20 | 0.92 ± 0.19 | 0.506 |
rs3025039 (CC) | 51.5 | 73.3 | 98.4 | <0.001 |
rs3025039 (CT) | 39.0 | 25.4 | 1.6 | <0.001 |
rs3025039 (TT) | 9.5 | 1.2 | 0.0 | <0.001 |
rs3025039 | |||||
---|---|---|---|---|---|
CC | CT | p | TT | p | |
Number of participants | 1234 | 584 | 106 | ||
Number of participants with HTLV-1 infection, (%) | 244 (19.8) | 90 (15.4) | 13 (12.3) | ||
Model 1 | Reference | 0.75 (0.57–0.97) | 0.031 | 0.59 (0.32–1.08) | 0.085 |
Model 2 | Reference | 0.72 (0.55–0.95) | 0.021 | 0.57 (0.31–1.06) | 0.075 |
rs3025039 | |||
---|---|---|---|
CC | CT or TT | p | |
Number of participants | 1234 | 690 | |
Number of participants with HTLV-1 infection, (%) | 244 (19.8) | 103 (14.9) | |
Model 1 | Reference | 0.72 (0.56, 0.93) | 0.012 |
Model 2 | Reference | 0.70 (0.54, 0.91) | 0.009 |
rs3025020 | |||||
---|---|---|---|---|---|
CC | CT | p | TT | p | |
Number of participants | 1019 | 723 | 182 | ||
Number of participants with HTLV-1 infection, (%) | 184 (18.1) | 126 (17.4) | 37 (20.3) | ||
Model 1 | Reference | 0.94 (0.73, 1.21) | 0.621 | 1.14 (0.76, 1.69) | 0.526 |
Model 2 | Reference | 0.86 (0.67, 1.12) | 0.265 | 0.96 (0.64, 1.45) | 0.854 |
rs3025020 | |||
---|---|---|---|
CC | CT or TT | p | |
Number of participants | 1019 | 905 | |
Number of participants with HTLV-1 infection, (%) | 184 (18.1) | 163 (18.0) | |
Model 1 | Reference | 0.88 (0.69, 1.13) | 0.324 |
Model 2 | Reference | 0.88 (0.69, 1.13) | 0.313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, Y.; Yamanashi, H.; Miyata, J.; Takada, M.; Noguchi, Y.; Honda, Y.; Nonaka, F.; Nakamichi, S.; Nagata, Y.; Maeda, T. VEGF Polymorphism rs3025039 and Human T-Cell Leukemia Virus 1 (HTLV-1) Infection among Older Japanese Individuals: A Cross-Sectional Study. Bioengineering 2022, 9, 527. https://doi.org/10.3390/bioengineering9100527
Shimizu Y, Yamanashi H, Miyata J, Takada M, Noguchi Y, Honda Y, Nonaka F, Nakamichi S, Nagata Y, Maeda T. VEGF Polymorphism rs3025039 and Human T-Cell Leukemia Virus 1 (HTLV-1) Infection among Older Japanese Individuals: A Cross-Sectional Study. Bioengineering. 2022; 9(10):527. https://doi.org/10.3390/bioengineering9100527
Chicago/Turabian StyleShimizu, Yuji, Hirotomo Yamanashi, Jun Miyata, Midori Takada, Yuko Noguchi, Yukiko Honda, Fumiaki Nonaka, Seiko Nakamichi, Yasuhiro Nagata, and Takahiro Maeda. 2022. "VEGF Polymorphism rs3025039 and Human T-Cell Leukemia Virus 1 (HTLV-1) Infection among Older Japanese Individuals: A Cross-Sectional Study" Bioengineering 9, no. 10: 527. https://doi.org/10.3390/bioengineering9100527
APA StyleShimizu, Y., Yamanashi, H., Miyata, J., Takada, M., Noguchi, Y., Honda, Y., Nonaka, F., Nakamichi, S., Nagata, Y., & Maeda, T. (2022). VEGF Polymorphism rs3025039 and Human T-Cell Leukemia Virus 1 (HTLV-1) Infection among Older Japanese Individuals: A Cross-Sectional Study. Bioengineering, 9(10), 527. https://doi.org/10.3390/bioengineering9100527