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Abstract: Mesenchymal stem cells (MSCs) are attractive in various fields of regenerative medicine
due to their therapeutic potential and complex unique properties. Basic stem cell research and the
global COVID-19 pandemic have given impetus to the development of cell therapy for infectious
diseases. The aim of this review was to systematize scientific data on the applications of mesenchymal
stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) in the combined treatment of
infectious diseases. Application of MSCs and MSC-EVs in the treatment of infectious diseases has
immunomodulatory, anti-inflammatory, and antibacterial effects, and also promotes the restoration
of the epithelium and stimulates tissue regeneration. The use of MSC-EVs is a promising cell-free
treatment strategy that allows solving the problems associated with the safety of cell therapy and
increasing its effectiveness. In this review, experimental data and clinical trials based on MSCs
and MSC-EVs for the treatment of infectious diseases are presented. MSCs and MSC-EVs can be
a promising tool for the treatment of various infectious diseases, particularly in combination with
antiviral drugs. Employment of MSC-derived EVs represents a more promising strategy for cell-free
treatment, demonstrating a high therapeutic potential in preclinical studies.

Keywords: mesenchymal stem cells; extracellular vesicles; regenerative medicine; tissue engineering;
infectious diseases; COVID-19; influenza; HIV; tuberculosis; cholera

1. Introduction

Infectious diseases are a large group of diseases caused by the impact of various
pathogenic or conditionally biological agents on the human body. Several types are dis-
tinguished depending on the origin of the pathogen: viral, bacterial, fungal, as well as
infections caused by prions, protozoa, and parasites. There are many historic examples of
the devastating consequences caused by infectious diseases (e.g., smallpox, plague, cholera,
typhoid, influenza, etc.), which are called “plague diseases”. Despite the sanitary well-
being and the achievements of modern medicine, it is naive to believe that humanity has
defeated infectious diseases, and each of us is not at risk. Currently, epidemics of COVID-19,
tuberculosis (TB), AIDS, malaria, measles, influenza, and other diseases are constantly
active in the world. According to the World Health Organization (WHO), about 50% of
the world’s population lives in conditions of constant threat of epidemics (www.who.int
(accessed on 12 February 2019)).

There are several objective conditions for the development of infectious diseases: the
active development of tourism [1–3], the increase in migration processes [4–8], returning
and re-emerging diseases [9,10], as well as the likelihood of using pathogens of various
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infectious diseases as biological weapons [11–13]. Improved social and environmental con-
ditions help with reducing the risk of contracting and spreading infectious diseases [14,15],
but, paradoxically, as the living standards rise, the mortality from some of them also in-
creases. For example, in the case of paralytic poliomyelitis or chicken pox, the severity of
the infectious process complications (including pneumonia, acute neurological disorders,
thrombocytopenia, chickenpox encephalitis with damage to the myelin sheaths of the brain
and spinal cord, etc.) is directly correlated to the age of the patient [16,17]. The use of
antibiotics and active immunization of the population have made it possible to defeat or
take control of most of the infections, however, there are still many infectious diseases that
cannot be treated (AIDS, a multidrug resistant form of TB, viral hepatitis C, prion infections,
etc.), as well as leading to serious complications (COVID-19, influenza, etc.).

The active growth of basic stem cell research has given impetus to the development
of translational medicine, which is grounded on the results obtained and promotes new
treatments for various diseases. One of these areas is cell therapy, which is based on
the use of cells and cellular secretome that can stimulate tissue regeneration, provide
anti-inflammatory, immunomodulatory, and other therapeutic effects on the body [18,19].
Despite the fact that many biological mechanisms concerning the effect of MSCs on dam-
aged tissues remain insufficiently studied, the possibility of using cell therapy for various
diseases, including infectious diseases, both as a monotherapy or in combination with other
agents, is currently being actively studied [20–23].

The global stem cell therapy market is projected to grow to USD 18.51 billion by 2026 at
a compound annual growth rate of 9.8% (Figure S1). Such predictions are driven primarily
by increased awareness of the therapeutic efficacy of stem cells, as well as the development
of the infrastructure associated with obtaining and banking stem cells. The largest com-
panies in this market are Anterogen Co., Ltd. (Seoul, Korea), Mesoblast Ltd. (Melbourne,
Australia), Osiris Therapeutics Inc. (Columbia, MD, USA), AlloSource (Centennial, CO,
USA), Cellular Engineering Technologies (Coralville, IA, USA), BIOTIME Inc. (Carlsbad,
CA, USA), Astellas Pharma US Inc. (Northbrook, IL, USA), Vericel (Cambridge, MA, USA),
RTI Surgical Inc. (Deerfield, IL, USA), and Takara Bio Company (Kusatsu, Tokyo).

At the moment, cell therapy is not yet widely used and distributed, which is associ-
ated with its high cost, as well as the personalized approach and the use of autologous
cells. However, in recent years, there has been a significant demand for allogeneic cells
due to a more affordable process for their cultivation and an increase in the commercial-
ization of allogeneic therapy products. The most commonly used allogeneic stem cells
in clinical research include: mesenchymal stem cells (MSCs) isolated from bone marrow
(bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue (adipose tissue-
derived mesenchymal stem cells (A-MSCs)), umbilical cord (umbilical cord blood-derived
mesenchymal stem cells (UC-MSCs), and placenta (placenta-derived mesenchymal stem
cells (P-MSCs). The data available support the safety of therapy with both autologous and
allogeneic MSCs. Despite the fact that the evidence on the effectiveness of cell therapy is of-
ten preliminary, the great advantages of MSCs are still their weak immunogenic properties
and the possibility of rapid application for the treatment of various diseases [24,25].

2. MSCs and MSC-Derived Extracellular Vesicles (MSC-EVs)

The concept of “adult” MSCs, first proposed by Kaplan, appeared in accordance with
the concept of the cell origin in the embryonic mesoderm [26]. Despite that it does not
strictly correspond to the biological definition of MSCs [27,28], this term is widely used by
clinicians and scientists to this day [29]. Due to the use of various methods for obtaining
and culturing stem cells, the discussion on the specific characteristics used to determine
MSCs is rather conflicting. Since these cells can be isolated from almost any tissue, it has
been suggested that MSCs from different sources may be sufficiently distinct to combine
them into a single classification (Table 1).
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Table 1. Commonly used sources of MSCs.

Source Abbreviation Proliferation
Rate

Doubling
Time Immunogenicity MSCs Phenotype References

1 Bone Marrow BM-MSCs Lowest 40 h Medium Stro-1, CD271,
SSEA-4, CD146 [30–36]

2 Adipose
Tissue A-MSCs Higher 5 days High CD271, CD146 [33–36]

3 Umbilical
Cord UC-MSCs Medium 30 h High CD146 [35–38]

4 Placenta P-MSCs High 36 h High c-Kit, Oct-4,
SSEA-4, Y-box 2 [39,40]

BM-MSCs have a longer doubling time and age earlier compared to cells obtained
from other sources [41,42]. Approximately 98–100% of cells remain viable when derived
from adipose tissue (A-MSCs) compared to cell isolation from bone marrow [43]. A-MSCs
secrete various cytokines and growth factors with anti-inflammatory, antiapoptotic, and
immunomodulatory characteristics including vascular endothelial growth factor (VEGF),
hepatocyte growth factor (HGF), and insulin-like growth factor (IGF), which are involved
in angiogenesis and damaged tissues repair. Additionally, due to their immunomodulatory
effects, A-MSCs are an excellent source for allogeneic transplants, since they do not express
type II major histocompatibility complex (MHC class II) and the risk of transplant rejection
is thus minimized [44]. A minimal risk of immune response was also observed with in vivo
administration of allogeneic UC-MSCs. This property and ease of their preparation also
make UC-MSCs suitable candidates for cell therapy [45]. P-MSCs express embryonic stem
cell markers such as c-Kit, Oct-4, stage-specific embryonic antigen (SSEA-4), as well as
markers that determine the sex of the donor Y-box 2. One of the main advantages when
applying P-MSCs is their high proliferative properties and plasticity [46,47].

In 2006, the International Society for Cell Therapy (www.isctglobal.org) defined three
minimum criteria for identifying MSCs: (1) adherence to plastic under standard culture
conditions; (2) the ability to differentiate into osteogenic, adipocyte, and chondrogenic
directions under appropriate cultivation conditions; and (3) phenotyping by the pres-
ence/absence of surface markers: ≥95% positive for CD105, CD73, and CD90; ≤5.2%
negative for CD45, CD34, CD14/CD11b, CD79a/CD19, and HLA-DR [48]. These cell types
(BM-MSCs, A-MSCs, UC-MSCs, and P-MSCs) share the minimal criteria defined by ISCT
and have additional characteristics which are associated with their tissue specificity [49,50].

Due to their therapeutic potential and unique properties, MSCs are appealing for
various fields of regenerative medicine [51,52], cancer therapy [53–55], and infectious
diseases [20,56–59]. MSCs synthesize factors that can restore damaged tissues. It has
recently been suggested that MSCs are able to modulate cellular autophagy in damaged
tissues/organs. MSCs can affect the autophagy of immune cells involved in injury-induced
inflammation, reducing their survival, proliferation, and level of inflammation. At the
same time, MSCs promote survival, proliferation, and differentiation of endogenous adult
or progenitor cells, thereby promoting tissue repair [60].

Initial preclinical data on the therapeutic efficacy of MSCs focused mainly on the
regenerative and differentiating ability of cells. However, there is now increasing evidence
that many, if not all, of the positive effects of MSCs are associated with the paracrine activity
of cells and their secretome, which consists of EVs [61,62], soluble proteins, cytokines,
chemokines, and growth factors [63–65], and not only with the integration of cells into
the damaged area [66,67]. MSCs have been found to play an immunomodulatory role in
numerous infection diseases through the production of soluble factors, and the transfer
of EVs containing various molecules [68]. It has been established that MSC-EVs have
the same immunomodulatory and anti-inflammatory and other effects as their parental
cells and recapitulate a broad range of the therapeutic effects shown by MSC treatment.

www.isctglobal.org
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The functional differences between MSC and MSC-EVs are not significant [69]. However,
there are different mechanisms underlying the interaction of various MSCs or MSC-EVs
with immune cells. EVs derived from different types of MSCs have similar and unique
characteristics (Table 2).

Table 2. Mechanisms of MSCs and MSC-EVs influence on immune cells.

Abbreviation Immune Cell Mechanism Effect Reference

1 BM-MSC-EVs CD4 + T cell
EVs-encapsulating miR-23a-3p and

post-transcriptionally regulated
TGF-beta receptor 2 in T cells

suppressive Th1 differentiation [70]

2 BM-MSC-EVs T cell increasing IL-10
and TGF-beta

promote T cells apoptosis and
inhibit proliferation [71]

3 UC-MSCs T cell through the COX2/PGE2/NF-kB
signaling pathway

inhibiting T cell proliferation and
DC

differentiation
[72]

4 AD-MSC T cell through regulating TGF-beta and
PGE2 regulate the Th17/Treg balance [73]

5 BM-MSC B cell inhibition of BAFF production suppress the excessive activation
of B-cells [74]

6 BM-MSC-EVs B cell targeting PI3K/AKT signaling
pathway inhibit activation of B cell [75]

7 BM-MSC B cell
increased expression of CCL2 by

CCL2-MST1-mTOR-STAT1 mediated
metabolic signaling pathway

prevent inhibition differentiation,
proliferation,

and antibody secretion of B-cell
[76]

8 BM-MSC-EVs DCs

expression of anti-inflammatory
factors (TGF-beta 1 and IL-10) and

reduce the generation of
proinflammatory cytokines (L-6 and

IL-12p70)

attenuate DCs maturation and
function [77]

9 G-MSC NK cell regulating IDO and PGE2 inhibit the activity of NK cells [78]

10 BM-MSCs NK cell inhibit IL-12 and IL-21
suppression NK cell proliferation

but increase IFN-gamma and
IFN-alpha production

[79]

11 UC-MSC macrophage regulating macrophage metabolic
pathways affect M1/M2 balance [80]

12 BM-MSC-EVs macrophage down-regulating
IL-23 and IL-22

enhances the anti-inflammatory
phenotype of macrophages,

promoting
inflammation remission

[81]

13 AD-MSCs macrophage down-regulating
IL-23 and IL-22

toward M2 phenotype
polarization [82]

14 BM-MSC-EVs macrophage through miR-223/pKNOX1 pathway promoting macrophages
differentiation toward M2 [83]

15 BM-MSC-EVs macrophage through TLR4/NF-kB/PI3K/Akt
signaling cascade

toward M2 phenotype
polarization [84]

16 UC-MSC-EVs macrophage increased the proportion of M2
macrophage polarization

attenuate DAH induced
inflammatory responses and

alveolar hemorrhage
[85]

MSC, mesenchymal stem cells; EVs, extracellular vesicles; BM-MSC, bone marrow-derived mesenchymal stem
cells; BM-MSC-EVs, bone marrow MSC-derived extracellular vesicles; UC-MSC, umbilical cord-derived mes-
enchymal stem cells; AD-MSC, adipose-derived MSC; G-MSC, gingiva-derived mesenchymal stem cells; DCs,
dendritic cells; IL, interleukin; IDO, indoleamine 2,3-dioxygenase; PGE2, prostaglandin E2; Th1, T-helper 1; Treg,
regulatory T; IFN, interferon; TGF-beta 1, transforming growth factor beta 1; DAH, diffuse alveolar hemorrhage;
Tfh, T follicular helper; IL-10, interleukin 10; TLR4, toll-like receptor 4; Th17, T-helper 17.

Currently, most clinical trials of MSC therapy for viral and bacterial infectious diseases
have focused on patients who have not responded to traditional disease drug therapy as
COVID-19, AIDS, and TB. However, the use of MSCs in therapeutic treatments still has
many challenges. An increasing number of studies reveal that MSCs are highly heteroge-
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neous with different multipotential properties, progenitors, and cell states. In addition,
MSCs isolated from different sources exhibit distinct characteristics, known as tissue
sources-associated heterogeneity [86–88]. Moreover, the intravenous administration of
MSCs can lead to aggregation or clumping of cells in the vascular system and is associated
with the risk of mutagenicity and oncogenicity [89,90].

The results of preclinical studies in vitro and in vivo show that MSC-EVs also ex-
hibit significant therapeutic properties in many pathophysiological conditions of the body,
restoring damaged organs and tissues [91–93] without the risks associated with direct cell
engraftment (i.e., immunogenicity, tumorigenicity, and teratoma formation) [94,95]. The
application of MSC-EVs in the treatment of diseases is a novel concept with particular
advantages over the whole-cell therapy. MSC-EVs are well-tolerated and have low immu-
nogenicity and also have a more stable membrane structure than MSCs. Another advantage
of MSC-EVs over MSCs is the possibility of storing them for several weeks/months allow-
ing their safe transportation and delayed therapeutic use [96]. These advantages of EVs
provide broader prospects for disease treatment. However, the studying of the mechanism
of EVs in the treatment of diseases is the primary connection to future clinical research.

2.1. Extracellular Vesicles (EVs)

EVs are heterogeneous vesicles surrounded by a lipid bilayer and secreted not only by
MSCs, but also by all cell types. EVs mediate intercellular communication and are involved
in many physiological and pathophysiological processes, including modulating immune
responses, maintaining homeostasis, inflammation, angiogenesis, and others [97–100]
(Figure 1).

Figure 1. Molecules released by MSC-EVs. The MSC-EVs contain cytokines, growth factors, and
other active molecules that maintain the modulation of the immune response, have anti-inflammatory,
antiviral/antibacterial effects, and promote epithelial repair and tissue regeneration. MSCs, mes-
enchymal stem/stromal cells; EVs, extracellular vesicles; AECs; alveolar epithelial cells; macrophage;
T-cell; B-cell; NK, natural killer cell.

Depending on the origin and size of EVs, they are divided into various subtypes:
ectosomes, microvesicles, microparticles, exosomes, oncosomes, apoptotic bodies, etc. [101].
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However, these EV subtypes are further characterized by different, often overlapping, defi-
nitions based primarily on vesicle biogenesis (cellular pathway, cellular or tissue identity,
etc.) [102]. In order to avoid contradictions in definitions, the International Society for
Extracellular Vesicles (ISEV) (www.isev.org (accessed on 3 May 2018)) proposed in 2018
to call a particle secreted by a cell an “extracellular vesicle” if its specific biogenetic origin
cannot be demonstrated.

The regenerative potential of EVs is mainly explained by the regulation of apoptosis,
cell proliferation, differentiation, angiogenesis, and inflammation [103]. The exact mecha-
nisms underlying the therapeutic effects of EVs remain to be fully elucidated. However,
several factors have proven to be promising contenders for the transfer of regenerative po-
tential: microRNA (miRNA), messenger RNA (mRNA), and proteins. MSC-EVs of different
origin are quite heterogeneous and have significant differences in the qualitative and quan-
titative composition of proteins, cytokines, nucleic acids, lipids, mRNA, microRNA, and
other active components [104,105]. The paracrine action of EVs can be mediated through
three mechanisms, including internalization, direct fusion, and ligand–receptor interaction
with the target cell [106]. Using these pathways, EVs deliver various biomolecules and are
involved in the inhibition and/or induction of signaling in target cells.

2.2. Application of Tissue Engineering Methods to Improve Therapeutic Effectiveness of MSCs and
MSC-EVs

The rather low efficiency of cell therapy is one of the factors that significantly limits
its use. The effectiveness of cell therapy is influenced by various factors: methods of ad-
ministration, multiplicity, stability, efficiency of retention in the target tissue, heterogeneity,
content of vesicles, etc. Positive effects of MSCs can be further enhanced in various ways,
for example, by changing the method of cultivation (under conditions of hypoxia compared
with normoxic conditions) [107,108], or the form of cultivation (3D or 2D culture) [109–111],
as well as exposing cells to various influences (e.g., heat shock) [112], or genetic modifica-
tions [113]. It has been shown that pretreated MSCs demonstrate enhanced differentiation
efficiency [114–118], improved paracrine functions [119], superior survival [120], and an
enhanced ability of EVs to accumulate and remain in damaged tissue [121–124]. An addi-
tional approach that makes it possible to increase the efficiency of cell therapy is the use of
various biomaterials [125,126], as well as the cultivation of cells in cell sheets [127–129].

Various methods can also be used to enhance the therapeutic efficacy of MSC-EVs:
preconditioning of donor cells to increase the beneficial contents of EVs [130–132], using
genetically modified cells [133] to change the composition of EVs [134,135], and dosing and
multiple application [136]. However, each of these methods has its drawbacks. For example,
the use of preconditioned media, unfortunately, does not give a high yield of MSC-EVs,
which is a limiting factor for the use of cell-free therapy, while the genetic modification of
cells and repeated administration of EVs can be potential risk factors for tumor growth.

The structural versatility of EVs provides an opportunity for surface modifications
that can be performed using various methods, such as genetic engineering, chemical and
physical methods, and microfluidic technologies [137]. The efficiency and scalability of
methods for modifying EVs are critical in defining the scope for clinical application [138].
It is known that integrins are present on the surface membranes, and RGD peptides (Arg-
Gly-Asp) have a high binding affinity for integrins [139,140]. RGD-modified EVs have
been shown to exhibit increased targeting to blood vessels and represent a potential new
therapeutic tool for angiogenesis therapy [141].

Another approach that contributes to the creation of a more stable therapeutic effect
of EVs is the use of hydrogels. To date, there are several studies on the development of
hydrogel scaffolds for loading EVs and evaluating the mechanisms of interaction between
gels and EVs, which are still unclear [142,143]. It has been shown that a biocompatible
self-assembling RGD hydrogel easily conjugates with EVs, and such constructs increase the
therapeutic efficacy of MSC-derived vesicles for the treatment of kidneys [144], liver [145],

www.isev.org
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and other organs [146]. Loading EVs with various drugs also enhances their therapeutic
effect [147–149].

Research conducted to reveal the therapeutic potential of EVs, especially those that
secrete MSCs, has proven to be significant for regenerative medicine. However, how EVs
promote tissue regeneration and what drives their regenerative effect is still far from clear.

2.3. Mechanisms of Immunomodulatory Action of MSCs and MSC-EVs

MSCs are involved in innate and adaptive immunity and their immunomodulatory
functions are manifested mainly when interacting with immune cells (T-cells, B-cells, natu-
ral killer (NK-cells), macrophages, monocytes, dendritic cells, and neutrophils) through
the formation of intercellular contacts and implementation of paracrine activity [150]. By
influencing the adaptive immune system, T-cells in particular, MSCs inhibit the differentia-
tion of Th17, inducing the production of IL-10 and PGE2, as well as inhibiting IL-17, IL-22,
and IFN-γ [151]. However, the mechanisms underlying the interactions between MSCs
and Th17 lymphocytes have not yet been fully understood. In the innate immune system,
MSCs interact with NK-cells, inhibit their proliferation with the help of IL-2, and induce
cytotoxic activity, as well as the production of cytokines through the secretion of IDO and
PGE2 [152].

The key role in the development of the immunomodulatory potential of MSCs is
played by the interaction of cells with regulatory T-cells and monocytes. A-MSCs have been
shown to regulate T-cell function by inducing suppressor T-cells and inhibiting the produc-
tion of cytotoxic CD8+ T-cells, NK-cells, and proinflammatory cytokines including tumor
necrosis factor-alpha (TFN-alpha), IFN-gamma, and IL-12. The secretion of A-MSCs of solu-
ble factors such as IL-10, TGF-beta, and PGE2 renders cells immunosuppressive [44,153]. In
this regard, A-MSCs have the strongest immunomodulatory effect compared to BM-MSCs
and can become a better alternative for immunomodulatory therapy [154].

Through intercellular interactions, MSCs increase the survival of B-cells and promote
their differentiation [155]. A-MSCs not only inhibit caspase-3-mediated B-cell apoptosis by
up-regulating VEGF expression, but also inhibit proliferation by blocking the B-lymphocyte
cell cycle in the G0/G1 phase by activating p38 protein kinase (MARK) [156]. In addition,
MSCs prevent the death of neutrophils through an ICAM-1-dependent mechanism and
exert a tissue protective effect [157]. Thus, the interaction of MSCs with immune cells
contributes to a decrease in the inflammatory response, as well as the regeneration of
damaged tissue.

3. Viral Infectious Diseases

Over the past decades, a huge number of experimental and clinical studies have
been devoted to the use of cell therapy in the treatment of oncological, cardiovascular,
neurodegenerative, and other diseases [158–160]. Basic stem cell research and the global
COVID-19 pandemic have given rise to the development of cell therapy for infectious
diseases, which currently stands at 121 registered clinical trials [161].

3.1. COVID-19

Coronavirus and other respiratory viruses are the leading cause of morbidity and
mortality in acute lung injury (ALI) and acute respiratory distress syndrome. Although
scientific advances have enabled rapid progress in understanding pathogenesis and devel-
oping therapeutic agents, stem cell therapy has recently found numerous applications in
the treatment of viral infections.

Severe forms of the disease caused by COVID-19 are accompanied by increased
activation of the immune system, which, in addition to antiviral protection, leads to
a side effect—damage to lung tissue and other organs. To date, several studies have
proposed the use of MSCs for the treatment of pneumonia caused by COVID-19 [162–165].
MSCs have been shown to reduce inflammation and suppress viral infection [166]. In
the ALI mouse model, it was shown that, due to the anti-inflammatory effect, MSCs
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improve lung function, synthesizing the keratinocytes growth factor (KGF), VEGF, and
HGF to restore damaged epithelial cells and lung tissues. IDO, TGF-ß, and granulocyte-
macrophage colony-stimulating factor (G-CSF) act on macrophages, neutrophils, and
T-cells (Figure 2). The main mechanism of action is probably to reduce the secretion of
inflammatory factors [167].

Figure 2. MSC therapies for treatment of coronavirus-induced lung injury. COVID-19, coronavirus;
MSCs, mesenchymal stem/stromal cells; EVs, extracellular vesicles; macrophage; neutrophil; T-cell;
B-cell; dendritic cell; NK, natural killer cell.

Clinical intravenous administration of MSCs has shown an increase in the number of
peripheral lymphocytes, hyperactivation of some types of T-cells as well as a decrease in
the level of C-reactive protein [168]. A major factor in organ damage in severe COVID-19
cases is the cytokine storm. Due to their strong immunomodulatory ability, MSCs not
only suppress the cytokine storm, but also promote the activation of the endogenous
regenerative mechanism [169]. At the same time, MSC-EVs play an important role in the
implementation of intercellular communication, since they are able to enter the bloodstream,
pass through it for long distances and pass through histohematic barriers [170,171].

Several clinical studies have demonstrated the ability of MSC-EVs to reduce the level of
inflammatory factors and increase immunity in various forms of COVID-19 (NCT04384445,
USA; NCT04276987, China; NCT04491240, Russia). Two clinical trials are currently under-
way: one study group (NCT04276987) is investigating the efficacy of inhaled treatment of
COVID-19 pneumonia using EVs derived from A-MSCs, and the second one (NCT04313647)
is evaluating their safety and tolerability in healthy volunteers.

Due to their specific structure, various drugs can be introduced into MSC-EVs to use
them as delivery systems [172] and one of the tools in the treatment of viral infection [173].
In addition, compared with other types of treatment, such as monoclonal antibody therapy,
the economic costs of obtaining and using MSC-EV are significantly lower, which is im-
portant when using this method during a pandemic [28]. Ongoing clinical trials highlight
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the potential benefits of using both MSCs and MSC-EVs for the treatment of patients with
COVID-19. However, further studies to evaluate and confirm their efficacy and safety
are needed.

3.2. Flu

Due to the fact that infectious diseases of the respiratory organs caused by vari-
ous viruses can occur like the common cold but also have severe acute respiratory syn-
dromes [174], it is rather difficult to determine the specific agents involved in the infec-
tion [175]. Currently, influenza therapy mainly includes antibacterial and antiviral drugs.

Several studies on animal models infected with the influenza virus have shown a
positive effect of the use of MSCs of various tissue origins [176–180]. Cocultivation of BM-
MSCs with H5N1 virus-infected AECs inhibits their permeability under in vitro conditions.
Possible mechanisms for this are related to the secretion of angiopoietin-1 (Ang1) and KGF
by BM-MSCs [178]. In vivo experiments demonstrate that BM-MSCs have a significant
anti-inflammatory effect by increasing the number of macrophages and releasing various
cytokines and interleukins: IL-1 beta, IL-4, IL-6, IL-8, and IL-17 [180,181]. Similar anti-
inflammatory effects have been shown using another model of lung injury caused by the
H9N2 virus [179]. Intravenous injection of a suspension of BM-MSCs into virus-infected
mice significantly attenuates virus-induced lung inflammation by reducing the levels of
chemokines (GM-CSF, MCP-1, KC, MIP-1α, and MIG) and proinflammatory factors IL-1
alpha, IL-6, TNF-alpha, and IFN-gamma. Using an in vitro model of lung injury caused
by the H5N1 virus, human UC-MSCs, through the secretion of Ang1 and HGF, had the
same anti-inflammatory effect as BM-MSCs [182]. In one clinical study in patients with
lung injury caused by the H7N9 influenza virus, the use of MSCs did not cause side effects
and significantly increased their survival [183]. Despite the data indicating the therapeutic
effect of MSCs in various preclinical models of lung injury, some studies have shown
that the use of a suspension of MSCs with an antiviral drug was ineffective [184,185]. In
addition, when using cell therapy, it is necessary to take into account the condition of the
donor and recipient. It has been shown that when MSCs are administered to a patient with
ongoing disease, cells can become infected with the influenza virus, and transplantation
of BM-MSCs from influenza virus-infected donors, in turn, can also transmit the infection
to recipients. Thus, when using cell therapy in the treatment of pulmonary influenza, it is
imperative to take into account these factors and observe safety.

3.3. AIDS

The human immunodeficiency virus (HIV) is caused by a retrovirus of the lentivirus
genus. It affects cells of the immune system that have CD4 receptors on their surface:
T-helpers, monocytes, macrophages, Langerhans cells, dendritic cells, and microglial cells.
As a result, the work of the immune system is inhibited and the syndrome of acquired
immune deficiency (AIDS) develops, the patient’s body loses the ability to defend itself
against infections and tumors. Despite the fact that the first case of AIDS was discovered
almost 27 years ago, it is still not possible to effectively control the AIDS pandemic [186]. Of
the 35 million people living with HIV infection, a fraction survives thanks to antiretroviral
therapy, but in the absence of it, death occurs on average 9–11 years after infection. There
are currently three known cases of a cure for the virus. In the medical literature, they appear
under the names “Berlin”, “London”, and “Sao Paulo” patients [187,188].

Recently, a new strategy for the treatment of HIV and AIDS using stem cells, in
particular BM-MSCs, has emerged [189]. According to the data, circulating replicative HIV
remains the most serious threat to effective AIDS therapy. The main therapy strategy is
aimed at reducing the number of replicating virus particles. As a result of its application, the
destruction of HIV circulating in the blood occurs with the help of erythrocytes integrated
with the CD4 receptor and chemokine receptors, which selectively bind circulating HIV
particles [190–193].
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One of the most interesting studies focused on the use of MSCs to increase antiviral
immune activity and minimize the amount of virus. It has been shown that the adminis-
tration of MSCs, even in the absence of antiviral drugs, can enhance the host’s antiviral
response due to the restoration of lymphoid follicles and mucosal immunity, all of which
become the target of the virus at an early stage [194]. The results of scientific and clinical
studies provide an appropriate scientific basis for the future use of MSCs in the treatment
of HIV and other infectious diseases. Researchers are still developing comprehensive and
effective treatments for AIDS and related conditions.

Cell-based therapies initially were reserved to the most severely affected patients
with viral infectious diseases (COVID-19, flu, and AIDS) and most clinical trials were also
focused on them (Table 3).

Table 3. MSCs and MSC-EVs based clinical trials of the viral infection diseases.

Study Title Abbreviation
Viral

Infectious
Diseases

Status Country Description Reference

1

Bone Marrow-Derived
Mesenchymal Stem Cell

Treatment for Severe
Patients With Coronavirus
Disease 2019 (COVID-19)

BM-MSCs COVID-19 Phase 2 China

Conventional treatment
plus BM-MSCs

(1 × 106 cells/kg body
weight intravenously

[195]

2

Treatment of Severe
COVID-19 Pneumonia with
Allogeneic Mesenchymal

Stromal Cells
(COVID_MSV)

BM-MSCs COVID-19 Phase 2 Spain
IV injection of

1 × 106 cells/kg diluted in
100 mL saline

[196]

3

Mesenchymal Stem Cell
Therapy for

SARS-CoV-2-related Acute
Respiratory Distress

Syndrome

BM-MSCs/
BM-MSC-EVs COVID-19 Phase 3 Iran

Two doses of MSCs 1 × 108

at Day 0 and Day 2 plus
conventional treatment

[197]

4

Cellular Immuno-Therapy
for COVID-19 Acute
Respiratory Distress

Syndrome—Vanguard
(CIRCA-19)

BM-MSCs COVID-19 Phase 1 Canada IV administration [198]

5

Mesenchymal Stromal Cells
for

the Treatment of
SARS-CoV-2 Induced Acute

Respiratory Failure
(COVID-19 Disease)

BM-MSCs COVID-19 Early
Phase 1 USA 1 × 108 cells/kg body

weight intravenously
[199]

6

A Pilot Clinical Study on
Inhalation of Mesenchymal

Stem Cells Exosomes
Treating Severe Novel

Coronavirus Pneumonia

BM-MSC-EVs COVID-19 Phase 1 China

5 times aerosol inhalation
of MSC-EVs (2 × 108/3 mL
at Day 1, Day 2, Day 3, Day

4, Day 5)

[200]

7

Evaluation of Safety and
Efficiency of Method of
Exosome Inhalation in

SARS-CoV-2 Associated
Pneumonia.

(COVID-19EXO)

BM-MSC-EVs COVID-19 Phase 1
Phase 2 Russia

Twice a day during 10 days
inhalation of 3 mL special

solution contained
0.5–2 × 1010 of EVs.

[201]
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Table 3. Cont.

Study Title Abbreviation
Viral

Infectious
Diseases

Status Country Description Reference

8

Mesenchymal Stem Cells
(MSCs) in

Inflammation-Resolution
Programs of Coronavirus
Disease 2019 (COVID-19)

Induced Acute Respiratory
Distress Syndrome (ARDS)

BM-MSCs COVID-19 Phase 2 Germany

Infusion of allogeneic bone
marrow-derived human

mesenchymal stem
(stromal) cells

[202]

9

Safety and Efficacy of
Mesenchymal Stem Cells in
the Management of Severe

COVID-19 Pneumonia
(CELMA)

UC-MSCs COVID-19 Phase 2 USA 1 × 106 cells/kg body
weight intravenously

[203]

10
Therapy for Pneumonia
Patients Infected by 2019

Novel Coronavirus
UC-MSCs COVID-19 With-

drawn China

0.5 × 106/kg body weight
suspended in 100 mL saline
intravenously at Day 1, Day

3, Day 5, Day 7

[204]

11 Use of UC-MSCs for
COVID-19 Patients UC-MSCs COVID-19 Phase 2 USA

Conventional treatment
plus UC-MSCs (1 × 108/kg
body weight intravenously

[205]

12

Study of Human Umbilical
Cord Mesenchymal Stem
Cells in the Treatment of

Severe COVID-19

UC-MSCs COVID-19 Not yet
recruiting China

4 times of UC-MSCs
(0.5 × 106 UC-MSCs
cell/kg body weight

intravenously at Day 1, Day
3, Day 5, Day 7)

[206]

13

Clinical Research of Human
Mesenchymal Stem Cells in
the Treatment of COVID-19

Pneumonia

UC-MSCs COVID-19 Phase 2 China 1 × 106 UC-MSCs/kg
suspended in 100 mL saline

[207]

14
Autologous

Adipose-derived Stem Cells
(AdMSCs) for COVID-19

A-MSCs COVID-19 Phase 2 USA 3 doses of 2 × 106 cells
through IV every 3 days

[208]

15
Battle Against COVID-19

Using
Mesenchymal Stromal Cells

A-MSCs COVID-19 Phase 2 Spain Two serial doses of
1.5 × 106 cells/kg [209]

16

Clinical Trial to Assess the
Safety and Efficacy of

Intravenous
Administration of
Allogeneic Adult

Mesenchymal Stem Cells of
Expanded Adipose Tissue

in Patients With Severe
Pneumonia Due to

COVID-19

A-MSCs COVID-19 Phase 2 Spain Two doses of 8 × 106

A-MSCs
[210]

17
ASC Therapy for Patients
with Severe Respiratory

COVID-19
A-MSCs COVID-19 Phase 2 Denmark 1 × 108 cells/kg diluted in

100 mL saline
[211]

18 Zofin (Organicell Flow) for
Patients With COVID-19 MSC-EVs COVID-19 Phase 1 USA

Zofin with 1ml, containing
2–5 × 1011 EVs/mL in

addition to the Standard
care.

[212]

19

Umbilical Cord
Mesenchymal Stem Cells

for Immune Reconstitution
in HIV-infected Patients

UC-MSCs HIV/AIDS Phase 2 China

High and low doses of
MSCs (at 0, 4, 12, 24, 36 and
48 week since the onset of

treatment)

[213]
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Table 3. Cont.

Study Title Abbreviation
Viral

Infectious
Diseases

Status Country Description Reference

20

Treatment with MSC in
HIV-infected Patients with

Controlled Viremia and
Immunological Discordant

Response

A-MSCs HIV/AIDS Phase 1
Phase 2 Spain

Intravenous infusion of
4 doses of A-MSCs
(1 × 106 cells/kg,
weeks 0-4-8-20).

[214]

21

A Tolerance Clinical Study
on Aerosol Inhalation of
Mesenchymal Stem Cells

Exosomes In Healthy
Volunteers

MSC-EVs Healthy
Volunteers Phase 1 China Aerosol inhalation of

MSC-EVs [215]

22

Using Human Menstrual
Blood Cells to Treat Acute

Lung Injury Caused by
H7N9 Bird Flu Virus

Infection

MSCs H7N9 Bird Flu
Virus Infection

Phase 1
Phase 2 China

1~10 × 107 cells/kg
infusion frequency: 2 times

a week, 2 weeks for
infusion

[216]

23

Regenerative Medicine for
COVID-19 and Flu-Elicited

ARDS Using Lomecel-B
(RECOVER)

MSCs ARDS
COVID-19 Phase 1 USA 1 × 108 cells/kg on Day 0 [217]

MSC, mesenchymal stem cells; EVs, extracellular vesicles; MSC-EVs, MSC-derived extracellular vesicles; BM-MSC,
bone marrow-derived mesenchymal stem cells; AD-MSC, adipose-derived MSC; UC-MSC, umbilical cord-derived
mesenchymal stem cells.

The application of cell and vesicles therapy in most of the clinical trials resulted in
symptomatic relief and treatment success. However, in order to ensure the widespread
clinical implementation of MSC-based therapy, there are many challenges that need to be
resolved (stages of the disease, clinical indicators, gender and age of patients, the source
and age of MSCs, etc.).

4. Bacterial Infectious Diseases
4.1. Tuberculosis

Tuberculosis (TB) is one of the 10 leading causes of death worldwide. According
to WHO data for 2021, over 9.9 million people worldwide became infected and about
1.3 million people died from TB [218]. The emergence of the COVID-19 pandemic has
severely disrupted global TB prevention and control [219,220]. Nearly half a million people
suffer from the rifampin-resistant TB strain, of which 78% are multidrug-resistant. In this
regard, the actual direction is the search for fundamentally new approaches in the treatment
of resistant TB, among which a certain place is occupied by MSC therapy.

Once in the lower respiratory tract, mycobacteria (Mycobacterium tuberculosis (µTb))
are mainly absorbed by macrophages. In this case, the resulting inflammatory reaction
causes a large number of immune cells (monocytes, dendritic cells, neutrophils, and T-
lymphocytes) to be attracted to the infected area, resulting in the formation of tuberculous
granuloma (TG), which is a pathological sign of TB [221,222]. TG formation is a key event
in preventing the spread of infection, and the period during which µTb are able to avoid
the host’s immune response and remain dormant can be decades [223]. Numerous studies
show that MSCs are involved in the formation and development of TG. It was found
using CD29 as a marker that the cells are in a cluster with acid-resistant bacteria and are
distributed in the TG area. In the pathogenesis of TB, MSCs, on the one hand, are able to
inhibit the T-cell response through the synthesis of nitric oxide (NO) and, thereby, reduce
the immune response, and on the other hand, NO itself can inhibit the growth of µTb and
limit their proliferation within TG. Thus, it can be assumed that the formation of TG is
associated precisely with this mechanism [224]. It has been shown that MSCs are able to
regulate and limit the growth of µTb [225] using scavenger receptors for this [226,227].
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Whether MSCs can influence the growth of µTb in any other way is still a question that still
needs further study.

It has been shown that MSCs are natural host cells of latent µTb infection. In addition,
recent research found that MSCs exist in the lungs and extrapulmonary tuberculosis granu-
loma. After infection with MSCs, the metabolic activity of µTb in cells becomes low, and,
thus, they gradually acquire resistance to antituberculosis drugs [228,229]. Thus, along
with immune cells, MSCs can not only provide a niche for dormant µTb but also limit their
growth to a certain extent and participate in the emergence and development of TB.

The incidence of TB largely depends not on primary or secondary infection but on the
reactivation of the dormant form of TB against the background of the emerging immunode-
ficiency [230]. In this regard, in recent years, therapy methods aimed at increasing infection
control, reducing inflammation by modulating the immune response, and reducing tissue
damage have become widespread [231]. Immunomodulatory properties and the ability
to replace or repair damaged tissues make MSCs ideal candidates for the treatment of
both pulmonary and extrapulmonary TB [232]. A number of studies have shown that the
therapeutic potential of MSCs is associated with the antibacterial activity of cells directed
against various pathogens (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus au-
reus, Streptococcus pneumonia) through the secretion of antimicrobial peptides [233–235].
However, it is not yet known whether MSCs affect µTb growth in the same way.

MSCs and MSC-EVs have a wide range of immunomodulatory effects on various
cells of the immune system: they promote the function of regulatory T cells (Treg and
Th2) [236,237], inhibit the release of IFN-gamma, regulate the balance of Th1/Th2 [238],
promote polarization of macrophages from M1 to M2 by expression of IDO and activation
of CD39 and CD73/adenosine signaling pathways [237–239], and inhibit activation and
promote B cell transformation [240–242]. In addition, MSCs are able to regulate the sur-
vival of the alveolar epithelium by secreting factors KGF and HGF that protect cells from
apoptosis [243].

Previously, we showed that intravenous administration of MSCs results in accumu-
lation and retention of MSCs in µTb-affected rabbit kidney tissue, due to which the cells
are able to reduce the level of the inflammatory response and enhance the process of tissue
repair [244]. A decrease in the level of expression and synthesis of hydroxyproline, collagen
Types I and III leads to a decrease in fibrosis, restoration of damage, and prevention of
pulmonary edema [245–247].

A number of studies have shown that, at low concentrations, MSCs can inhibit the
activation of lymphocytes [248]. Thus, the ratio of the number of MSCs and immune cells
can be a turning point for inhibiting or activating the immune response. Overall, the results
obtained with MSCs in vivo are encouraging, but the safety and efficacy of MSCs in the
treatment of TB remains to be confirmed.

4.2. Cholera

Vibrio cholerae (VCh) is the causative agent of cholera, which is commonly associated
with a high infection rate, mortality, and a major public health problem in many parts of the
world [249,250]. According to WHO data, each year there are from 1.3 to 4 million cases of
cholera, and 100,000 to 130,000 deaths worldwide due to cholera per year. The emergence of
multidrug-resistant VCh strains in developing countries is of great concern [251,252]. The
high mortality rate and the lack of effective antimicrobials necessitate the development of
new effective approaches for the treatment of drug-resistant strains. Various vaccines have
been developed (Dukoral, Shanhol, and Euvichol), but none provide complete long-term
protection and are not approved for use in children under 1 year of age. Inflammation
caused by the interaction of Vibrio cholerae with epithelial cells is considered as the main
cause of the spread of bacteria in the gastrointestinal tract and the progression of its
consequences. One of the effective therapeutic approaches to treatment is to reduce the
level of inflammatory cytokines caused by VCh infection.
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MSCs exert their antibacterial properties through the synthesis of compounds such
as antimicrobial peptides (hCAP18/LL-37), which control the growth and reproduction
of bacteria. One study using a neonatal mouse model showed the immunomodulatory
effect of a medium conditioned with MSCs supplemented with LPS (lipopolysaccharide
necessary to protect the body from VCh) [253], a decrease in the level of the inflammatory
response and the induction of the production of vibriocidal antibodies that protect against
VCh. In addition, MSCs have been shown to be effective in the treatment of bacterial
sepsis [254,255].

A-MSCs show dual effects on inflammatory response and epithelial barrier integrity by
reduction of bacterial attachment and increasing bacterial internalization. On the one hand,
A-MSCs reduce bacterial adhesion and colony formation by secreting various antimicrobial
peptides (including IDO, and TIMP). A decrease in the rate of bacterial adhesion, in turn,
leads to a decrease in the expression of chloratoxin and an increase in the secretion of
IL-6, which has a positive effect on maintaining the integrity of the epithelial barrier. On
the other hand, increased bacterial internalization by cells stimulates the inflammatory
reactions. An increase in the level of expression of the proinflammatory genes TNF-alpha,
IL-1beta, and IL-8 leads to an increase in the level of cytokines, induction of apoptosis, and
degradation of the tight junction between epithelial cells. Thus, A-MSCs are able to exert
different effects on the inflammatory response and the integrity of the epithelial barrier by
reducing bacterial adhesion and enhancing bacterial internalization. The probable reason
for this effect is the high level of MSC expression of matrix metalloproteinases and tissue
inhibitor of proteinases (TIMP), as well as other antibacterial peptides [256]. Therefore, it is
recommended that future studies focus on the protective effects of MSCs’ secretome.

It can be assumed that the reduction of bacterial internalization may also become an
appropriate therapeutic approach to limit the inflammatory reactions caused by VCh, while
it is more efficient to use MSC-EVs as a therapeutic agent instead of intact cells.

Currently, the evaluation of the effectiveness of cell therapy for bacterial infectious
diseases is carried out mainly in vitro and in vivo conditions. There are few clinical studies
on this topic (Table 4).

Table 4. MSC- and MSC-EV-based clinical trials of the bacterial infection diseases.

Study Title Abbreviation Bacterial Diseases Status Country Description Reference

1

Effectivity of Local Implantation
of the Mesenchymal Stem Cell on

Vertebral Bone Defect Due to
Mycobaterium Tuberculosis

Infection (Clinical Trial)

MSCs Extrapulmonary
tuberculosis Phase 2 Indonesia

3 × 107 cells/kg
diluted in 2 mL

0.9% NaCl
intravenously

[257]

2

Systemic Transplantation of
Autologous Mesenchymal Stem
Cells of the Bone Marrow in the

Treatment of Patients With
Multidrug-Resistant Pulmonary

Tuberculosis

MSCs

Tuberculosis;
multidrug resistant,

extensive drug
resistant

Completed Russia Not stated [258]

3

Autologous Mesenchymal
Stromal Cell Infusion as Adjunct

Treatment in Patients With
Multidrug and Extensively

Drug-Resistant Tuberculosis: An
Open-Label Phase 1 Safety Trial.

BM-MSCs

Tuberculosis;
multidrug resistant,

extensive drug
resistant

Phase 1 Belarus 1 × 107 cells/kg
diluted in saline

[259]

4
Effectiveness of a Novel Cellular

Therapy to Treat
Multidrug-Resistant Tuberculosis.

BM-MSCs

Tuberculosis;
multidrug resistant,

extensive drug
resistant

Phase 1 Belarus 1 × 107 cells/kg
diluted in saline

[260]

MSC, mesenchymal stem cells; BM-MSC, bone marrow-derived mesenchymal stem cells.
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5. Conclusions

The therapeutic use of MSCs is not an unrealistic goal, as the cells offer a promising
treatment option for a number of diseases. Using MSC-EVs instead of cells seems to be a
promising strategy for cell-free treatment, as it allows to solve various problems associated
with cell administration. Nevertheless, for clinical use, a preliminary assessment of the
safety, efficacy, and long-term results of using both various types of MSCs, regardless of
the source of their production, and MSC-EVs, first in animal models and then in preclinical
trials, is necessary. At present, studies are being actively carried out on the selection and
establishment of optimal therapeutic doses and the frequency of administration of cells
and vesicles, optimal methods for their management, assessment of cellular and vesicular
heterogeneity, etc. In addition, it is known that the properties of MSCs change significantly
under inflammatory or anti-inflammatory stimuli, and therefore, it remains to be seen
how variability affects the immunomodulatory effects induced by cells and to establish
which subpopulations of cells or extracellular vesicles are the most therapeutically effective.
Although clinical research on MSCs is still in its infancy, there is great hope that MSCs and
MSC-EVs will become promising tools for future clinical applications in the treatment of
infectious diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9110662/s1, Figure S1: Growth of the global stem
cell therapy market.
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