Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems
Abstract
:1. Introduction
- It requires only one state, namely the blood glucose concentration, which is measured once every five minutes;
- No dynamic model of the patient is needed for the design of the control law;
- It is able to maintain normoglycemia (during postprandial and fasting periods) without the need for meal announcement or carbohydrate calculation;
- It is able to deal with both inter- and intrapatient variability;
- It has a good trade-off between simplicity and efficacy, which allows its implementation on low-power embedded hardware.
2. Virtual Patient Model
3. Intelligent Control
4. Materials and Methods
5. Results and Discussion
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S97–S112. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Ahmad, I.; Arif, H.; Ammara, U.E.; Majeed, A. Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. Appl. Syst. Innov. 2020, 3, 31. [Google Scholar] [CrossRef]
- Boughton, C.K.; Tripyla, A.; Hartnell, S.; Daly, A.; Herzig, D.; Wilinska, M.E.; Czerlau, C.; Fry, A.; Bally, L.; Hovorka, R. Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: An open-label, randomized crossover trial. Nat. Med. 2021, 27, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bergenstal, R.M.; Nimri, R.; Beck, R.W.; Criego, A.; Laffel, L.; Schatz, D.; Battelino, T.; Danne, T.; Weinzimer, S.A.; Sibayan, J.; et al. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): A multicentre, randomised, crossover trial. Lancet 2021, 397, 208–219. [Google Scholar] [CrossRef]
- Bruttomesso, D.; Farret, A.; Costa, S.; Marescotti, M.C.; Vettore, M.; Avogaro, A.; Tiengo, A.; Man, C.D.; Place, J.; Facchinetti, A.; et al. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: Preliminary studies in Padova and Montpellier. J. Diabetes Sci. Technol. 2009, 3, 1014–1021. [Google Scholar] [CrossRef]
- Boiroux, D.; Bátora, V.; Hagdrup, M.; Wendt, S.L.; Poulsen, N.K.; Madsen, H.; Jørgensen, J.B. Adaptive model predictive control for a dual-hormone artificial pancreas. J. Process Control 2018, 68, 105–117. [Google Scholar] [CrossRef]
- Paoletti, N.; Liu, K.S.; Chen, H.; Smolka, S.A.; Lin, S. Data-Driven Robust Control for a Closed-Loop Artificial Pancreas. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 1981–1993. [Google Scholar] [CrossRef]
- Haidar, A. The artificial pancreas: How closed-loop control is revolutionizing diabetes. IEEE Control Syst. Mag. 2016, 36, 28–47. [Google Scholar] [CrossRef]
- Kovatchev, B.P.; Breton, M.; Man, C.D.; Cobelli, C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 2009, 3, 44–55. [Google Scholar] [CrossRef]
- Bally, L.; Thabit, H.; Hovorka, R. Glucose-responsive insulin delivery for type 1 diabetes: The artificial pancreas story. Int. J. Pharm. 2018, 544, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Haidar, A. External Artificial Pancreas for Type 1 Diabetes: Modeling and Control. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2012. [Google Scholar]
- Bondia, J.; Romero-Vivo, S.; Ricarte, B.; Diez, J.L. Insulin estimation and prediction: A review of the estimation and prediction of subcutaneous insulin pharmacokinetics in closed-loop glucose control. IEEE Control Syst. Mag. 2018, 38, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Vettoretti, M.; Cappon, G.; Facchinetti, A.; Sparacino, G. Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors. Sensors 2020, 20, 3870. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.; Vettoretti, M.; Marturano, F.; Facchinetti, A.; Sparacino, G. A Neural-Network-Based Approach To Personalize Insulin Bolus Calculation Using Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2018, 12, 265–272. [Google Scholar] [CrossRef]
- Allam, F.; Nossair, Z.; Gomma, H.; Ibrahim, I.; Abdelsalam, M. Evaluation Of Using A Recurrent Neural Network RNN Furthermore, A Fuzzy Logic Controller FLC In Closed Loop System To Regulate Blood Glucose For Type-1 Diabetic Patients. Int. J. Intell. Syst. Appl. 2012, 4, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Daniels, J.; Liu, C.; Herrero, P.; Georgiou, P. Convolutional Recurrent Neural Networks For Glucose Prediction. J. Biomed. Health Inform. 2019, 24, 603–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asad, M.; Qamar, U.; Abbas, M. Blood Glucose Level Prediction of Diabetic Type 1 Patients Using Nonlinear Autoregressive Neural Networks. J. Healthc. Eng. 2021, 2021, 6611091. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Jensen, M.H.; Hejlesen, O. Short-term prediction of future continuous glucose monitoring readings in type 1 diabetes: Development and validation of a neural network regression model. Int. J. Med. Inform. 2021, 151, 104472. [Google Scholar] [CrossRef]
- Tejedor, M.; Woldaregay, A.Z.; Godtliebsen, F. Reinforcement learning application in diabetes blood glucose control: A systematic review. Artif. Intell. Med. 2020, 104, 101836. [Google Scholar] [CrossRef]
- Myhre, J.N.; Tejedor, M.; Kalervo Launonen, I.; El Fathi, A.; Godtliebsen, F. In-Silico Evaluation of Glucose Regulation Using Policy Gradient Reinforcement Learning for Patients with Type 1 Diabetes Mellitus. Appl. Sci. 2020, 10, 6350. [Google Scholar] [CrossRef]
- Zhu, T.; Li, K.; Herrero, P.; Georgiou, P. Basal Glucose Control in Type 1 Diabetes Using Deep Reinforcement Learning: An In Silico Validation. IEEE J. Biomed. Health Inform. 2020, 25, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Park, S.W.; Jin, S.M.; Park, S.M. Toward a Fully Automated Artificial Pancreas System Using a Bioinspired Reinforcement Learning Design: In Silico Validation. IEEE J. Biomed. Health Inform. 2021, 25, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Hovorka, R.; Canonico, V.; Chassin, L.J.; Haueter, U.; Massi-Benedetti, M.; Federici, M.O.; Pieber, T.R.; Schaller, H.C.; Schaupp, L.; Vering, T.; et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 2004, 25, 905–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.W.; Abid, M.; Khan, A.Q.; Mustafa, G. Controller design for a fractional-order nonlinear glucose-insulin system using feedback linearization. Trans. Inst. Meas. Control 2020, 42, 2372–2381. [Google Scholar] [CrossRef]
- Babar, S.A.; Ahmad, I.; Mughal, I.S. Sliding-mode-based controllers for automation of blood glucose concentration for type 1 diabetes. IET Syst. Biol. 2021, 15, 72–82. [Google Scholar] [CrossRef]
- Rosales, N.; De Battista, H.; Garelli, F. Hypoglycemia prevention: PID-type controller adaptation for glucose rate limiting in Artificial Pancreas System. Biomed. Signal Process. Control 2022, 71, 103106. [Google Scholar] [CrossRef]
- Abu-Rmileh, A.; Garcia-Gabin, W. Wiener sliding-mode control for artificial pancreas: A new nonlinear approach to glucose regulation. Comput. Methods Programs Biomed. 2012, 107, 327–340. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmed, N.; Ilyas, M.; Khan, W. Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients. Biomed. Signal Process. Control 2017, 38, 200–211. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Ozgoli, S.; Ramezani, A. Model free sliding mode controller for blood glucose control: Towards artificial pancreas without need to mathematical model of the system. Comput. Methods Programs Biomed. 2020, 195, 105663. [Google Scholar] [CrossRef]
- Nath, A.; Deb, D.; Dey, R. An augmented subcutaneous type 1 diabetic patient modelling and design of adaptive glucose control. J. Process Control 2020, 86, 94–105. [Google Scholar] [CrossRef]
- Patra, A.K.; Rout, P.K. Adaptive sliding mode Gaussian controller for artificial pancreas in T1DM patient. J. Process Control 2017, 59, 13–27. [Google Scholar] [CrossRef]
- Turksoy, K.; Hajizadeh, I.; Hobbs, N.; Kilkus, J.; Littlejohn, E.; Samadi, S.; Feng, J.; Sevil, M.; Lazaro, C.; Ritthaler, J.; et al. Multivariable artificial pancreas for various exercise types and intensities. Diabetes Technol. Ther. 2018, 20, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Rout, P.K. Backstepping Sliding Mode Gaussian Insulin Injection Control for Blood Glucose Regulation in Type 1 Diabetes Patient. J. Dyn. Syst. Meas. Control 2018, 140, 091006. [Google Scholar] [CrossRef]
- de Pereda, D.; Romero-Vivo, S.; Ricarte, B.; Rossetti, P.; Ampudia-Blasco, F.J.; Bondia, J. Real-time estimation of plasma insulin concentration from continuous glucose monitor measurements. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Turksoy, K.; Hajizadeh, I.; Samadi, S.; Feng, J.; Sevil, M.; Park, M.; Quinn, L.; Littlejohn, E.; Cinar, A. Real-time insulin bolusing for unannounced meals with artificial pancreas. Control Eng. Pract. 2017, 59, 159–164. [Google Scholar] [CrossRef]
- Sanz, R.; García, P.; Díez, J.L.; Bondia, J. Artificial Pancreas System with Unannounced Meals Based on a Disturbance Observer and Feedforward Compensation. IEEE Trans. Control Syst. Technol. 2020, 29, 454–460. [Google Scholar] [CrossRef]
- Palisaitis, E.; El Fathi, A.; von Oettingen, J.E.; Haidar, A.; Legault, L. A Meal Detection Algorithm for the Artificial Pancreas: A Randomized Controlled Clinical Trial in Adolescents With Type 1 Diabetes. Diabetes Care 2020, 44, 604–606. [Google Scholar] [CrossRef]
- Colmegna, P.H.; Bianchi, F.D.; Sánchez-Peña, R.S. Automatic glucose control during meals and exercise in type 1 diabetes: Proof-of-concept in silico tests using a switched LPV approach. In Proceedings of the American Control Conference, Virtually, 25–28 May 2021; pp. 4952–4957. [Google Scholar] [CrossRef]
- Garcia-Tirado, J.; Lv, D.; Corbett, J.P.; Colmegna, P.; Breton, M.D. Advanced hybrid artificial pancreas system improves on unannounced meal response - In silico comparison to currently available system. Comput. Methods Programs Biomed. 2021, 211, 106401. [Google Scholar] [CrossRef]
- Ma, D.; Chen, J. Delay Margin of Low-Order Systems Achievable by PID Controllers. IEEE Trans. Autom. Control 2019, 64, 1958–1973. [Google Scholar] [CrossRef]
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on model predictive control: An engineering perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, M. Fuzzy Control Systems: Past, Present and Future. IEEE Comput. Intell. Mag. 2019, 14, 56–68. [Google Scholar] [CrossRef]
- Bessa, W.M. Some remarks on the boundedness and convergence properties of smooth sliding mode controllers. Int. J. Autom. Comput. 2009, 6, 154–158. [Google Scholar] [CrossRef]
- Bessa, W.M.; Kreuzer, E.; Lange, J.; Pick, M.A.; Solowjow, E. Design and Adaptive Depth Control of a Micro Diving Agent. IEEE Robot. Autom. Lett. 2017, 2, 1871–1877. [Google Scholar] [CrossRef]
- dos Santos, J.D.B.; Bessa, W.M. Intelligent control for accurate position tracking of electrohydraulic actuators. Electron. Lett. 2019, 55, 78–80. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, P.; Fidan, B. Adaptive Control Tutorial; SIAM: Philadelphia, PA, USA, 2006. [Google Scholar] [CrossRef]
- Kanderian, S.S.; Weinzimer, S.A.; Steil, G.M. The identifiable virtual patient model: Comparison of simulation and clinical closed-loop study results. J. Diabetes Sci. Technol. 2012, 6, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergman, R.N.; Ider, Y.Z.; Bowden, C.R.; Cobelli, C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 1979, 236, E667. [Google Scholar] [CrossRef] [PubMed]
- Sala-Mira, I.; Díez, J.L.; Ricarte, B.; Bondia, J. Sliding-mode disturbance observers for an artificial pancreas without meal announcement. J. Process Control 2019, 78, 68–77. [Google Scholar] [CrossRef]
- Sala-Mira, I.; Siket, M.; Kovács, L.; Eigner, G.; Bondia, J. Effect of Model, Observer and Their Interaction on State and Disturbance Estimation in Artificial Pancreas: An In-Silico Study. IEEE Access 2021, 9, 143549–143563. [Google Scholar] [CrossRef]
- Bessa, W.M.; Brinkmann, G.; Duecker, D.A.; Kreuzer, E.; Solowjow, E. A Biologically Inspired Framework for the Intelligent Control of Mechatronic Systems and Its Application to a Micro Diving Agent. Math. Probl. Eng. 2018, 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bessa, W.M.; Dutra, M.S.; Kreuzer, E. An adaptive fuzzy dead-zone compensation scheme and its application to electro-hydraulic systems. J. Braz. Soc. Mech. Sci. Eng. 2010, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bessa, W.M.; Otto, S.; Kreuzer, E.; Seifried, R. An adaptive fuzzy sliding mode controller for uncertain underactuated mechanical systems. J. Vib. Control 2019, 25, 1521–1535. [Google Scholar] [CrossRef]
- Park, J.; Sandberg, I.W. Universal Approximation Using Radial-Basis-Function Networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Sandberg, I.W. Approximation Furthermore, Radial-Basis-Function Networks. Neural Comput. 1993, 5, 305–316. [Google Scholar] [CrossRef]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Kanderian, S.S.; Weinzimer, S.; Voskanyan, G.; Steil, G.M. Identification of Intraday Metabolic Profiles during Closed-Loop Glucose Control in Individuals with Type 1 Diabetes. J. Diabetes Sci. Technol. 2009, 3, 1047–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical targets for continuous glucose monitoring data interpretation: Recommendations from the international consensus on time in range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [Green Version]
- Gabbay, M.A.L.; Rodacki, M.; Calliari, L.E.; Vianna, A.G.D.; Krakauer, M.; Pinto, M.S.; Reis, J.S.; Puñales, M.; Miranda, L.G.; Ramalho, A.C.; et al. Time in range: A new parameter to evaluate blood glucose control in patients with diabetes. Diabetol. Metab. Syndr. 2020, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L.; Colette, C.; Wojtusciszyn, A.; Dejager, S.; Renard, E.; Molinari, N.; Owens, D.R. Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. Diabetes Care 2017, 40, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Forst, T.; Choudhary, P.; Schneider, D.; Linetzky, B.; Pozzilli, P. A practical approach to the clinical challenges in initiation of basal insulin therapy in people with type 2 diabetes. Diabetes/Metabolism Res. Rev. 2021, 37, e3418. [Google Scholar] [CrossRef]
- Mitsui, Y.; Kuroda, A.; Ishizu, M.; Mori, H.; Kurahashi, K.; Kondo, T.; Yoshida, S.; Akehi, Y.; Aihara, K.i.; Endo, I.; et al. Basal insulin requirement in patients with type 1 diabetes depends on the age and body mass index. J. Diabetes Investig. 2022, 13, 292–298. [Google Scholar] [CrossRef]
- Chan, W.B.; Chen, J.F.; Goh, S.Y.; Vu, T.T.H.; Isip-Tan, I.T.; Mudjanarko, S.W.; Bajpai, S.; Mabunay, M.A.; Bunnag, P. Challenges and unmet needs in basal insulin therapy: Lessons from the Asian experience. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 521–532. [Google Scholar] [CrossRef]
Mean | 49.00 | 47.00 | 2010.00 | 1.06 | 1.33 | 40.50 | 253.00 |
Breakfast | Lunch | Dinner | |
---|---|---|---|
Time (Mean ± SD) [hh:mm] | 07:30 ± 00:30 | 12:30 ± 00:30 | 19:30 ± 00:30 |
Carbohydrate (Mean ± SD) [g] | 42.00 ± 3.50 | 66.00 ± 5.50 | 51.00 ± 4.25 |
Center (c) | −25.0 | −10.0 | −8.0 | −5.0 | −2.0 | 0.0 | 5.0 | 10.0 | 20.0 | 40.0 | 100.0 |
Width (l) | 20.0 | 15.0 | 10.0 | 8.0 | 5.0 | 5.0 | 5.0 | 20.0 | 40.0 | 100.0 | 200.0 |
Peak [mg/dL] | Mean [mg/dL] | SD [mg/dL] | CV [%] | |
---|---|---|---|---|
Maximum | 213.04 (Patient 1) | 119.33 (Patient 7) | 35.89 (Patient 1) | 30.62 (Patient 1) |
Minimum | 74.77 (Patient 16) | 113.45 (Patient 20) | 26.47 (Patient 15) | 23.21 (Patient 15) |
Peak [mg/dL] | Mean [mg/dL] | SD [mg/dL] | CV [%] | |
---|---|---|---|---|
Maximum | 221.51 (Patient 1) | 117.33 (Patient 19) | 36.27 (Patient 1) | 32.16 (Patient 1) |
Minimum | 59.91 (Patient 7) | 107.74 (Patient 11) | 28.56 (Patient 12) | 25.06 (Patient 12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Farias, J.L.C.B.; Bessa, W.M. Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems. Bioengineering 2022, 9, 664. https://doi.org/10.3390/bioengineering9110664
de Farias JLCB, Bessa WM. Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems. Bioengineering. 2022; 9(11):664. https://doi.org/10.3390/bioengineering9110664
Chicago/Turabian Stylede Farias, João Lucas Correia Barbosa, and Wallace Moreira Bessa. 2022. "Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems" Bioengineering 9, no. 11: 664. https://doi.org/10.3390/bioengineering9110664
APA Stylede Farias, J. L. C. B., & Bessa, W. M. (2022). Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems. Bioengineering, 9(11), 664. https://doi.org/10.3390/bioengineering9110664