
Citation: Ibtehaz, N.; Mahmud, S.;

Chowdhury, M.E.H.; Khandakar, A.;

Salman Khan, M.; Ayari, M.A.;

Tahir, A.M.; Rahman, M.S. PPG2ABP:

Translating Photoplethysmogram

(PPG) Signals to Arterial Blood Pressure

(ABP) Waveforms. Bioengineering

2022, 9, 692. https://doi.org/

10.3390/bioengineering9110692

Academic Editors: Faezeh

Marzbanrad and Chiranjibi Sitaula

Received: 20 September 2022

Accepted: 11 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

PPG2ABP: Translating Photoplethysmogram (PPG) Signals to
Arterial Blood Pressure (ABP) Waveforms
Nabil Ibtehaz 1, Sakib Mahmud 2 , Muhammad E. H. Chowdhury 2,* , Amith Khandakar 2 ,
Muhammad Salman Khan 2 , Mohamed Arselene Ayari 3,4 , Anas M. Tahir 5 and M. Sohel Rahman 6,*

1 Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
2 Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
3 Department of Civil and Architectural Engineering, Qatar University, Doha 2713, Qatar
4 Technology Innovation and Engineering Education Unit (TIEE), Qatar University, Doha 2713, Qatar
5 Department of Electrical and Computer Engineering, University of British Columbia,

Vancouver, BC V6T 1Z4, Canada
6 Department of CSE, BUET, ECE Building, West Palashi, Dhaka 1205, Bangladesh
* Correspondence: mchowdhury@qu.edu.qa (M.E.H.C.); sohel.kcl@gmail.com (M.S.R.)

Abstract: Cardiovascular diseases are one of the most severe causes of mortality, annually taking
a heavy toll on lives worldwide. Continuous monitoring of blood pressure seems to be the most
viable option, but this demands an invasive process, introducing several layers of complexities
and reliability concerns due to non-invasive techniques not being accurate. This motivates us to
develop a method to estimate the continuous arterial blood pressure (ABP) waveform through a
non-invasive approach using Photoplethysmogram (PPG) signals. We explore the advantage of deep
learning, as it would free us from sticking to ideally shaped PPG signals only by making handcrafted
feature computation irrelevant, which is a shortcoming of the existing approaches. Thus, we present
PPG2ABP, a two-stage cascaded deep learning-based method that manages to estimate the continuous
ABP waveform from the input PPG signal with a mean absolute error of 4.604 mmHg, preserving
the shape, magnitude, and phase in unison. However, the more astounding success of PPG2ABP
turns out to be that the computed values of Diastolic Blood Pressure (DBP), Mean Arterial Pressure
(MAP), and Systolic Blood Pressure (SBP) from the estimated ABP waveform outperform the existing
works under several metrics (mean absolute error of 3.449 ± 6.147 mmHg, 2.310 ± 4.437 mmHg, and
5.727 ± 9.162 mmHg, respectively), despite that PPG2ABP is not explicitly trained to do so. Notably,
both for DBP and MAP, we achieve Grade A in the BHS (British Hypertension Society) Standard and
satisfy the AAMI (Association for the Advancement of Medical Instrumentation) standard.

Keywords: blood pressure; cuff-less blood pressure; mobile health; Photoplethysmogram (PPG);
regression

1. Introduction

Even in today’s world of technological advances, cardiovascular disease (CVD) is one
of the most menacing causes of morbidity and mortality, crippling the aging population [1].
More than 4 million people die of cardiovascular diseases every year only in Europe,
and, when considering the whole world, the number of deaths exceeds 17 million [2].
Hypertension is one of the leading reasons for cardiovascular diseases. Alarmingly, only
in the USA, there are around a million patients with hypertension, which covers almost
one-third of the population, and, shockingly, only less than half of them try to control their
blood pressure [3]. Hypertension has thus been termed a ‘Silent Killer’ due to its dormant
nature that, eventually, leads to untimely death [4]. Therefore, continuous blood pressure
monitoring is essential. However, owing to the lack of expert physicians, as opposed to the
ever-increasing number of patients, the development of automated monitoring methods
seems to be the only feasible means to confront the crisis.
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Several methods capable of measuring blood pressure (BP) accurately have been
introduced. However, this accuracy comes at the cost of the invasiveness of such methods,
which are often cumbersome to apply. For a catheter-based approach [5], not only is the
intervention of an expert required, but such procedures also cause pain to already delicate
patients. Clinics nowadays rely on cuff-based methods to measure blood pressure, but those,
as well, are somewhat inconvenient and intrusive and, more importantly, not suitable for
continuous blood pressure monitoring [6]. Therefore, for a significant amount of time,
it has been the interest of the research community to develop methods and apparatus to
determine blood pressure from biomedical signals in a continuous, cuff-less, non-invasive
manner [7–9]. Though there are some popular volume-clamp-based techniques (Finapres
and CNAP) to measure BP non-invasively, they are not very accurate and reliable [10–13].
Photoplethysmography (PPG) has gained a lot of popularity recently, due to its widespread
inclusion in smartwatches and fitness bands and owing to its simplicity and cheapness.
The idea behind PPG is rather simple: it works based on the illumination of the skin and
detection of the light absorption of skin. A PPG sensor generally comprises a Light Emitting
Diode (LED) light source and a photodetector [14]; the LED emits light to the skin tissue
and the photodetector keeps track of the reflected light, i.e., the degree of absorption. It has
been empirically established that the amount of reflected light is proportional to the volume
of blood flowing in the illuminated region [15]. Since the volume of blood is related to
the speed of blood flow, which relates to the pressure exerted on the arteries, the PPG
signal has been prominently used for the measurement of blood pressure [16]. Furthermore,
PPG signals are also used for calculating the absorption of oxygen as well as the level of
hemoglobin in blood [17] and for the diagnosis of events such as hyperemia [18].

In recent years, a plethora of academic studies have been reported to assess the state
of blood pressure, using biomedical signals, mainly PPG, often in conjunction with several
other ones. The primary rationale behind measuring blood pressure from PPG is the
association between the speed of blood flow and blood pressure. Overall, when blood
vessels are contracted, blood flows rapidly, enforcing more pressure [19]. The opposite
scenario is observed when the vessels are relaxed: steady blood flow diminishes the
pressure. Therefore, studies have been conducted to investigate the velocity of the blood
pressure pulse, which is popularly termed Pulse Wave Velocity (PWV) [20]. Based on
PWV, blood pulses require a time delay to reach the periphery of the body from the heart,
which is denoted as Pulse Transit Time (PTT) [21]. Two other parameters, namely, Pulse
Arrival Time (PAT) and Pre-Ejection Period (PEP), are also relevant in such analyses [16].
A lot of research has been conducted to develop mathematical models of these various
parameters to infer blood pressure values [22–26]. While most prior works revolve around
fitting the delay terms, lately, several classical machine learning-based approaches have
been introduced [6,19,27–40]. These methods usually take the PPG signal, along with the
Electrocardiogram (ECG) signal, in most cases, and predict the values of Diastolic Blood
Pressure (DBP), Systolic Blood Pressure (SBP), and Mean Arterial Pressure (MAP). Some
other studies used Deep Machine Learning-based approaches for BP prediction from PPG
and/or ECG signals [40–50]. However, they are suffering from some limitations. Firstly,
most of these methods require ECG signals alongside PPG, which may be difficult to
include in wearable cuff-less systems. Secondly, some of these rely on handcrafted features
to predict the BP; however, to robustly compute such features, the algorithms often demand
the signals to be always of near ideal condition, which is impractical. To solve these
issues, in recent years, there have been a few studies that tried to estimate or reconstruct
Arterial Blood Pressure (ABP) waveforms from PPG and/or ECG signals using various deep
learning techniques such as 1D segmentation [51–53], variational autoencoders (VAEs) [54],
and CycleGAN [54].

This work presents PPG2ABP, a pioneering framework in this domain that uses
purpose-built, cascaded deep learning-based 1D segmentation models for continuously
estimating the waveshape of the ABP signals from only PPG signals. The first segmentation
network in the PPG2ABP pipeline tries to approximate the ABP waveform, while the
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second network takes in the approximated ABP waveforms and refines them. Furthermore,
being a deep learning-based pipeline, PPG2ABP is free from the need for handcrafted
features; therefore, the requirement of signals maintaining a standard shape is not essential.
Moreover, the different values of interest in the literature, i.e., SBP, DBP, and MAP, can
be calculated from the estimated ABP waveform, and, even in this objective, our method
outperforms most of the existing works, despite not being explicitly trained to do so.
The primary contributions of this study are as follows:

• To overcome the challenges in ABP estimation, we propose PPG2ABP, which is a
cascaded approach to divide this challenging task into two stages and reach a robust
outcome in the end.

• The Approximation network approximates the ABP waveforms, and the Refinement
network refines the outputs of the Approximation network.

• Our proposed PPG2ABP only requires PPG waveforms for ABP estimation, thus
mitigating the need for ECG probes in parallel to PPG collection devices. This makes
the solution simple, cost-effective, and user-friendly.

• PPG2ABP performs better than most studies in the literature while working on a
large dataset.

The rest of the paper is organized as follows: Section 2 described the methodology
followed by this study in detail, including a brief discussion about the dataset, data prepro-
cessing stages, and the proposed PPG2ABP pipeline. Section 3 contains the experimental
setup and comparative evaluations against the prior works using various evaluation met-
rics. The outcomes of the experiments and ablation studies are provided in Section 4 along
with interactive visualizations. Finally, the article is concluded with Section 5.

2. Materials and Methods

In this section, we discuss in detail the dataset used in this study and the proposed
methodology. In the methodology section, we elaborate on the data preprocessing steps
and the proposed PPG2ABP pipeline.

2.1. Dataset

To train and evaluate our proposed algorithm, a processed subset of the Multipa-
rameter Intelligent Monitoring in Intensive Care (MIMIC-III) dataset from the PhysioNet
repository [56,57] has been used. This dataset, compiled by Kachuee et al. [58,59], is present
in the University of California Irvine (UCI) Machine Learning Repository [60]. The database
compiled by Kachuee et al. [58] contains simultaneous PPG, ECG, and ABP signals recorded
in a clinical setup [57]. The sampling rate for all signals is 125 Hz, recorded with 8-bit
digital precision. The data present in this repository are in a convenient form to analyze
as raw signals as they are already pre-processed following their algorithm [58]. For the
sake of convenience, Kachuee et al. [59] ignored the signal episodes with too tiny or
too large blood pressure values, i.e., extreme cases. They only considered signals with
(60 mmHg ≤ DBP ≤ 130 mmHg) and (80 mmHg ≤ SBP ≤ 180 mmHg). In this study, we
wanted to test our algorithm on a broader range of signals, since a real-world application
scenario might exhibit extremely small and high BP values. Therefore, we considered
signals with DBP as low as 50 mmHg and SBP as high as 200 mmHg. The statistics of the
dataset are presented in Table 1. It can be observed that SBP has a comparatively greater
value of standard deviation. This extensive range is likely to cause severe difficulties when
predicting SBP, as hypothesized by Kachuee et al. [59].

For our analysis, we considered signal episodes of Te = 8.192 s long, i.e., we estimated
Te seconds long arterial blood pressure (ABP) waveform from PPG signals of Te seconds
long. Picking this Te of 8.192 seconds (which translates to 1024 samples due to the 125 Hz
sampling rate of the signals) allowed us to train a sufficiently deep neural network without
being crippled by extensive computational complexity. The authors have experimented
with the 8.192 s PPG signal length based on many popular SBP and DBP estimations
from PPG signal research works [31,61]. The following scheme was followed. In the UCI
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Machine Learning Repository [60], there are 12,000 PPG, ECG, and ABP records from
942 patients [59]. The “UCI Dataset” is already a filtered and processed version of the
MIMIC-III Waveform database [56]. The first three parts of the UCI dataset were combined
to make the train set (75% of the dataset—9000 Records). On the other hand, part four was
taken as an independent test set (25% of the dataset—3000 Records). During training, a ran-
domly selected 20% of the training set was used for validation. In total, 127,260 episodes
(segments) were created from the 12,000 records (bins). Each record was segmented into
episodes (segments) where each segment length was 1024 samples (8.192 s) long. Since the
records of different patients are organized sequentially in the dataset, as per the dataset
provider, this way of splitting data ensures that there is no leakage between training and
test sets. Furthermore, we did not omit PPG signals of sub-ideal quality; rather, the random
selection process led to the inclusion of a high number of low-quality signals so that the
model can learn different quality signals [62].

Table 1. Statistics of the dataset. Here we present the minimum, maximum, and average values
of DBP, MAP, and SBP, respectively. In addition, we also list their standard deviation. It can be
observed that SBP values have the highest variance, which makes their prediction the most difficult
one, comparatively.

Min (mmHg) Max (mmHg) Mean (mmHg) Std (mmHg)

DBP 50 165.17 66.14 11.45
MAP 59.96 176.88 90.78 14.15
SBP 71.56 199.99 134.19 22.93

2.2. Proposed Methodology

The proposed PPG2ABP pipeline that extracts PPG segments of Te seconds long per-
forms some minimal preprocessing (e.g., filtering) operation to attenuate the irregularities
and noises. Next, the filtered signal is processed using the “Approximation Network”,
which approximates the ABP waveforms based on the input PPG signals. The preliminary
rough estimate of ABP is further refined through the “Refinement Network”. Here, the lin-
early placed Approximation and Refinement networks are trained separately, maintaining
the ABP waveforms as the target for both networks. PPG is the input to the Approximation
network while approximated, intermediate ABP patterns are the input for the Refinement
network. Finally, in addition to the estimated ABP waveform, the values of SBP, DBP, and
MAP are computed in a simple manner. The PPG2ABP pipeline is depicted in Figure 1.
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Figure 1. Algorithmic pipeline of PPG2ABP. PPG2ABP takes PPG segments of Te seconds long as
the input and performs some preprocessing [58]. Next, the preprocessed signal is passed to the
Approximation Network to approximate the ABP waveform. After that, the Refinement Network
refines the approximated ABP waveforms. Finally, in addition to the ABP waveform, BP values such
as SBP, MAP, and DBP are computed.

2.2.1. Preprocessing

As mentioned earlier, for this study, we have used the signals already pre-processed by
Kachuee et al. [58]. Therefore, our preprocessing steps are almost identical to theirs, except
for some additional steps to prepare the dataset suitable for the deep learning pipeline. The
preprocessing stage primarily involves wavelet denoising [59], which is a very popular
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pre-processing step to eliminate motion artifacts [63]. The wavelet transform is performed
to 10 decomposition levels, with Daubechies 8 (db8) as the mother wavelet [64]. Then, the
very low (0–0.25 Hz) and very high frequency (250–500 Hz) components are negated by
setting the decomposition coefficients to zero, followed by soft Rigrsure thresholding [65,66].
Finally, the signal is retrieved by reconstructing the decomposition. To facilitate the training
of the deep learning models, the PPG and ABP signals were independently segmented,
bandpass filtered, and global min–max normalized. As mentioned earlier, the signals were
segmented into episodes of 1024 data points in length following the Dirichlet rectangular
windowing to facilitate training with the deep learning frameworks. A Butterworth filter
with cutoff frequencies of 0.1 Hz and 30 Hz was used to filter the signals. Both PPG and ABP
segments were separately normalized based on the global minimum and maximum values.
All segments need to be normalized for the deep learning models as they cannot handle
high amplitude signals properly, unlike classical ML models, especially when input PPG
has a much lower amplitude than the target ABP signals. Training the deep learning models
with normalized ABP segments will naturally produce normalized ABP segments during
estimation. Now, it is required to bring back the original amplitudes of ABP signals for
extracting the BP parameters (SBP and DBP). To make this process unbiased and non-leaky,
we ‘min–max’ normalized the signals in the whole dataset and noted down those global
min and max ABP values. After reconstruction, the ABP waveforms are denormalized
using the global min–max values obtained earlier.

2.2.2. Approximation Network

During this stage, the ABP signals are approximated from input PPG signals through
the “Approximation Network”, which is a one-dimensional (1D), deeply supervised U-Net
model. U-Net [67] had been primarily constructed using only convolutional layers for
two-dimensional (2D) semantic segmentation of biomedical images. The network structure
consists of symmetric pairs of encoder–decoder layers. The most innovative idea behind
U-Net is the use of skip connections to preserve the spatial feature maps lost during pooling
and up-sampling.

Though the original U-Net is designed to perform semantic segmentation on images,
for our purpose, we employ it to reconstruct 1D signals, which is primarily a one-to-one
regression task. Therefore, the two-dimensional convolution, pooling, and upsampling
operations are replaced by their one-dimensional counterparts. To produce a regression
output, the final convolutional layer uses a linear activation function. Moreover, we apply
deep supervision (L) in our U-Net network [68]. Deep supervision is a technique proven to
reduce overall errors by guiding the learning process of the hidden layers. In our deeply
supervised 1D U-Net, we compute an intermediate output, which is a subsampled version
of the actual output signal, before every upsampling operation in the decoder. The losses
are computed with gradually declining weights as we move deeper into the model. These
auxiliary losses drive the training of the hidden layers and make the final output much
more superior. The diagram of the Approximation Network is presented in Figure 2.

2.2.3. Refinement Network

The output of the Approximation Network sometimes deviates greatly from the target.
Therefore, we used an additional network, namely the ‘Refinement Network’, to refine the
output of the Approximation Network. The Refinement Network is a 1D MultiResUNet
model [69], an improved version of the U-Net model. The primary distinction between
the two is the inclusion of the Multi-Residual, or MultiRes, blocks (Figure 3b) and the
Residual, or Res, paths (Figure 3c) in the MultiResUNet model (Figure 3a). The MultiRes
blocks involve a compact form of multiresolution analysis using factorized convolutions.
On the other hand, Res paths impose additional convolutional operations along the shortcut
connections to reduce the disparity between the feature maps of the corresponding levels
of encoders and decoders.
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Figure 3. (a) Refinement Network. The PPG2ABP pipeline utilizes a 1D-MultiResUNet Network
consisting of (b) MultiResidual Blocks and (c) Residual Paths to refine the approximate waveform
constructed by the Approximation Network.

Similar to the Approximation Network, this network comprises one-dimensional
versions of convolution, pooling, and upsampling operations, and the final convolutional
layer uses linear activation. However, this model is not deeply supervised. An expanded
diagram of the Refinement Network is presented in Figure 3.

2.2.4. BP Parameters Calculation

In addition, to construct the continuous ABP waveforms, the typical BP values of
interest, namely, SBP, DBP, and MAP, can be computed by taking the max, min, and mean
values of the estimated signals, respectively, as shown in Equations (1)–(3).

SBP = max(ABP) (1)

DBP = min(ABP) (2)

MAP = mean(ABP) (3)

Here, ABP is the estimated Arterial Blood Pressure waveforms from the Refinement
Network.

3. Experiments

In this section, we reflect on various aspects of our experimental setup and insights into
the ablation studies performed to determine the optimum parameters for the deep learning
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architectures to estimate ABP waveforms from PPG signals. For this study, we have used
the Python programming language to implement the algorithms and conduct experiments.
The neural network modFgitels have been developed using TensorFlow 2.0 with a KERAS
frontend. Moreover, we have made the codes publicly available, which can be found in [70].

3.1. Selection of Models

In addition to U-Net and MultiResUNet, we also conducted some preliminary exper-
iments using other deep-learning models. However, U-Net and MultiResUNet yielded
better results. We also experimented with the combinations of U-Net and MultiResUNet for
the approximation and refinement networks. It was observed that U-Net, as the refinement
network, failed to reach the performance level of MultiResUNet. On the contrary, Mul-
tiResUNet, as the approximation network, performed better than U-Net, but the overall
performance followed by a MultiResUNet refinement network remained quite identical.
We hypothesize that though MultiResUNet is superior to U-Net and manages to obtain a
much better waveform, the refinement network reaches a plateau eventually. Nonetheless,
since U-Net is computationally lighter than MultiResUNet, we use U-Net and MultiRe-
sUNet as the approximation and the refinement network, respectively.

3.2. Selection of Loss Functions

Mean Squared Error (MSE) and Mean Absolute Error (MAE) is the most prevalently
used loss function for regression. For predicted values Ŷ =

[
ŷ1, ŷ2, ŷ3, . . . , ŷn

]
and the

ground truth Y =
[
y1, y2, y3, . . . , yn

]
, they are defined in Equations (4) and (5) as follows:

MSE =
∑n

i=1(yi − ŷi)
2

n
(4)

MAE =
∑n

i=1|yi − ŷi|
n

(5)

In our experiments, we found that using MAE as the loss function of the approximation
network (as opposed to MSE) significantly improves the performance. Upon inspecting
samples and outputs, we developed the following rationale. Since, at the approximation
network stage, we aim to obtain a rough estimate of the waveform, it suffices to put equal
weights to the entire range of errors. However, MSE squares the error terms, and the
bigger errors are more penalized. At this stage, we have rather little information regarding
the output waveform; therefore, putting more emphasis on eliminating the bigger error
terms degrades the overall performance. Thus, MAE in the approximation network stage
balances all the error terms, ensuring a rough yet satisfactory projection. On the contrary,
in the refinement network, we already have an approximation of the waveform. Hence,
it becomes beneficial to use MSE in that stage as the larger error terms will be diminished
better. The empirical evidence also supports this.

3.3. Effect of Number of Convolutional Filters

We have explored a pool of wider variants of the networks, comprising an increasing
number of convolutional kernels or filters. From experiments, it was observed that the
models with a higher number of filters performed better, which is obvious since the
inclusion of additional filters would allow the model to learn and capture additional shapes
and features. However, as the number of filters increases, the models become exponentially
heavier and computationally more expensive. Thus, after a certain level, the improvement
obtained from adding new filters is not worth the rising computational demand. Therefore,
we have used a U-Net model with the number of filters as multiples of 64, i.e., (64, 128, 256,
512, 1024) and, for the MultiResUNet, we have limited the value of weight multiplier alpha
(α) to 2.5, a parameter which controls the number of filters [69]. For both our approximation
and refinement networks, we have used the standard configurations of the convolutional
and pooling layers. In the convolutional layers, filter or kernel size was selected to be 3,
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while stride length was 1. Additionally, padding was used to zero-pad the intermediate
outputs to keep them consistent with the input shape. On the other hand, for max-pooling
layers, we used both a pool size and stride length of 2. Similarly, in the upsampling layers,
a window size of 2 was selected.

3.4. Effect of Deep Supervision

Additionally, we have experimented with the concept of deep supervision and em-
ployed auxiliary losses during training. For both U-Net and MultiResUNet models, we
have imposed additional loss functions on the outputs of the convolutional layers just
before the transposed convolution (i.e., upsampling through convolution) operations. More-
over, the weights of the losses have been selected as (1, 0.9, 0.8, 0.7, 0.6), i.e., the maximum
weight has been put on the final output and is gradually diminished for the premature
outputs from deeper decoder layers. For the U-Net model, a dramatic improvement was
observed after applying deep supervision while, for the MultiResUNet model, the improve-
ment was minimal. Therefore, to establish a trade-off between computational effort and
accuracy, deep supervision has been employed in the U-Net model (i.e., the Approximation
Model) only.

3.5. Training Methodology

As specified in Section 3.2, MAE and MSE are used as the loss functions of the
Approximation and the Refinement networks, respectively. To minimize these losses,
the Adam optimizer [71] is used, which adaptively computes different learning rates for
individual parameters based on the estimates of the first and second moments of the
gradients. In our experiments, we used Adam with the default parameters mentioned
in the original paper [71]. Each model has been trained for 100 epochs with an early
stopping criterion, i.e., the patience of 20 epochs. Validation loss was used as the metric for
early stopping.

3.6. K-Fold Cross Validation

We have performed 10-fold cross-validation using the training data, i.e., 90% of the
training data is used to train the model, and the remaining 10% of the data is used for
validation. This approach is repeated 10 times using different data splits, and, thus,
10 models are developed. The best-performing model is selected and is then evaluated
against the independent test set.

3.7. Evaluation Metrics

Since we are primarily working with a regression problem, we have used Mean Abso-
lute Error (MAE), defined in Equation (5), as our primary evaluation metric. Furthermore,
we have evaluated the outcomes from the PPG2ABP pipeline using domain-specific metrics
such as the British Hypertension Society (BHS) Standard, Association for the Advancement
of Medical Instrumentation (AAMI) Standard, Pearson Correlation Coefficient (PCC), Bland
Altman plots, etc. The details of these metrics will be presented in the following sections.

4. Results and Discussion

After training the PPG2ABP model, we evaluated the pipeline on the test data. The
following outcomes have been derived from the evaluation of the model on the independent
test set.

4.1. Estimating ABP Waveform

The primary and unique objective of this work is to transform PPG signals into the
corresponding ABP waveforms. Despite some correlation between the two, as established
from past studies [19,27], they are structurally quite different from each other when we
consider the two waveforms. Nevertheless, the proposed PPG2ABP model manages to
estimate the waveform of blood pressure by taking only the PPG signal as input. The output
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of the approximate network gives an overall rough estimate, which is further refined by
the refinement model. Figure 4 illustrates such an example. Although the output from
the Approximate Network follows the rough silhouette, it fails particularly in the rapid
slope down from the peaks. However, after refining this waveform using the Refinement
Network, such erroneous constructions are revised and improved, closely mimicking the
ground truth. For this example, the use of the Refinement Network reduces the mean
reconstruction error from 9.52 mmHg to 2.37 mmHg. The constructed waveform closely
follows the ground truth waveform. Therefore, from experimental results, it is evident
that PPG2ABP can translate PPG signals to corresponding blood pressure waveforms,
preserving the shape, magnitude, and phase in unison. Quantitatively, the mean absolute
error (MAE) of this blood pressure waveform construction is 4.604 ± 5.043 mmHg over the
entire test dataset. In addition, the mean absolute error of DBP, MAP, and SBP prediction
is 3.449 ± 6.147 mmHg, 2.310 ± 4.437 mmHg, and 5.727 ± 9.162 mmHg, respectively.
Furthermore, previous studies have pointed out that a phase lag exists between the PPG
and ABP signals of the MIMIC-III database 60, and some further processing is required to
align them. However, in our generated output, we can observe that our method has been
able to remarkably overcome this issue of phase lag. Indeed, this may turn out to be highly
beneficial in dealing with the phase lag between the two signals in real-world applications
due to the difference in Pulse Arrival Time (PAT) for recording them from two separate
body locations [72]. Therefore, unlike existing works, we do not exclude irregular signals
(details in the Supplementary Materials).
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A sample PPG signal is shown in Figure 4, from the test data given as input. It can be
observed that the output from the Approximation Network, despite roughly following the
overall pattern of the ground truth, falls short in certain aspects, vividly apparent around
the peaks. Furthermore, the reconstructed waveform fails to rapidly slope down from
the peak regions. However, the estimation from the Refined Network seems to be more
satisfactory. It can be observed that in addition to following the overall pattern of the
ground truth waveform, the final estimated waveform also successfully mimics the peak
regions and subsequent downward inclination. Therefore, the inclusion of the Refinement
Network on top of the Approximate Network significantly improves the results, as evident
from the drop in mean reconstruction error from 9.52 mmHg to 2.37 mmHg in this example.
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4.2. BHS Standard

The British Hypertension Society (BHS) introduced a structured protocol to assess
blood pressure measuring devices and methods [73]. Hence, this standard has been
frequently used in the literature as a metric [6,27,58,59]. The accuracy criteria of the BHS
standard appraisal methods are based on absolute error. The grades are provided by
counting what percentage of the predictions on the test samples fall under 5 mmHg,
10 mmHg, and 15 mmHg absolute error for grades A, B, and C, respectively. The three
grades are presented in Table 2. For an algorithm to obtain a certain grade, it must satisfy
all three thresholds simultaneously. In addition, there is a grade D for algorithms failing to
meet the requirements of grade C [73].

Table 2. Evaluation of BHS Standard. Here, we present the criteria used in grading the rank
of predictions using the BHS Standard. We also demonstrate how our results compare with the
BHS Standard.

Cumulative Error Percentage

≤5 mmHg ≤10 mmHg ≤15 mmHg

Our Results
DBP 82.836% 92.157% 95.734%
MAP 87.381% 95.169% 97.733%
SBP 70.814% 85.301% 90.921%

BHS
Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

The absolute error of computing DBP, MAP, and SBP is presented in Figure 5. We
have presented how the absolute errors of predicting DBP, SBP, and MAP of the samples
are distributed, with particular focus on the error boundaries of 5 mmHg, 10 mmHg, and
15 mmHg. We have achieved grade A for both DBP and MAP, but grade B for SBP. To the
best of our knowledge, the proposed algorithm is a pioneer work and one of the first that
obtained a grade B in SBP prediction on a significant portion of data from the MIMIC-III
dataset (more details in Section 4.5).
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Figure 5. Mean absolute error histogram. Here, we present how the absolute errors of predicting
DBP, SBP, and MAP of the samples are distributed. In addition, we also observe errors in how many
samples lie below the 5 mmHg (a), 10 mmHg (b), and 15 mmHg (c) thresholds, used in the evaluation
of the BHS Standard.

4.3. AAMI Standard

Like the BHS Standard, the Association for the Advancement of Medical Instrumen-
tation (AAMI) Standard is another metric to evaluate blood pressure measuring devices
and methods. The criterion set by the AAMI standard [74] requires the blood pressure
measuring methods to have a mean error and standard deviation of less than 5 mmHg and
8 mmHg, respectively, and the minimum number of subjects under study is 85. Table 3
shows our results under the AAMI criterion.
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Table 3. Evaluation of AAMI Standard. Here, we present the criterion used in grading the rank
of predictions using the AAMI Standard. We also demonstrate how our results compare with the
AAMI Standard.

ME (mmHg) STD (mmHg) Number of
Subjects

Our Results
DBP 1.619 6.859

942 [59]MAP 0.631 4.962
SBP −1.582 10.688

AAMI Standard ≤5 ≤8 ≥85

It can be observed that for both DBP and MAP, the requirements of the AAMI standard
are satisfied quite convincingly. However, for SBP, although the condition of mean error
is fulfilled, the value of standard deviation is a bit higher. It may be noted here that other
contemporary methods fail to satisfy the AAMI criterion for SBP on the MIMIC-III dataset,
as well. The histograms of error for the prediction of DBP, MAP, and SBP are presented
in Figure 6. Both for DBP and MAP, these errors have a mean of almost zero with a small
value of standard deviation. For SBP, the standard deviations seem more distributed.
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Figure 6. Mean error histogram. Here, we show how the MAE of DBP (a), SBP (b), and MAP (c) of
the estimated samples are distributed. From the plots, all errors have a mean of zero and a small
standard deviation, except SBP.

4.4. Statistical Analysis

Here, from Figure 7, it is evident that the error of predicting DBP, MAP, and SBP of
95% of the samples lies between [−11.825:15.0637], [−9.095:10.357], and [−22.531:19.367],
respectively. This presents the Bland–Altman plots [75] for predicting DBP, MAP, and SBP,
respectively. The 95% limits of agreement span the segment from µ − 1.96σ to µ + 1.96σ
(shown using dashed lines), where µ and σ are the mean and standard deviation of the
distribution, respectively. For DBP, MAP, and SBP, this limit translates to [−11.825:15.064],
[−9.095:10.357], and [−22.531:19.367] mmHg, respectively. Though these numbers appear
to be overwhelming from the plots from Figure 7, it can be seen that most of the error
terms fall within the 5-mmHg range. Nevertheless, all three plots contain a great chunk of
outliers, especially the SBP plot (Figure 7c).

In addition, Figure 8 depicts the regression plots for predicting DBP, MAP, and SBP,
respectively. From the plots, the correlation between the predictions and the ground truth
is evident. Moreover, the values of the Pearson Correlation Coefficient (PCC) for DBP, MAP,
and SBP predictions are 0.894, 0.966, and 0.936, respectively, indicating a strong positive
correlation. Furthermore, such high values of PCC on a sample size of 27,260 correspond to
(p < 0.000001). Stating our null hypothesis to be the lack of any correlation between ground
truth and predicted BP values, such a low p-value rejects the null hypothesis with a great
margin, indicating the statistical significance of our results.
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strengthens the statistical significance of our method.

4.5. Comparison with the Existing Methods

Despite there being a lot of research endeavors on this topic, there are only some recent
works that can be directly compared with our work. However, those recent articles cited our
article when it first appeared in the archive. Therefore, this paper is the pioneering work on
PPG to ABP synthesis. All other works used the concept of our work while our work was
in the review phase for around two years before we withdrew the paper to submit here for
fast review. However, to be fair in our comparison to the existing published literature, we
have compiled a list of works evaluated on the MIMIC-III dataset with a comparable and
sufficiently large number of patients and have presented a comparative analysis in Table 4.
Since we have made the pre-processed data and code available on GitHub, several groups
have worked on this dataset and managed to publish their article before us. A quote from
the Qin et al. [54] paper with proper references, “Ibtehaz et al. 76 firstly applies UNet 67,
a classic network in the field of medical imaging, in conjunction with the concept of deep supervision,
for generating ABP waveform from PPG signal. After that, Athaya et al. 51 did almost the same
work as Ibtehaz et al. 76 based on UNet. Mehrabadi et al. 55 apply two networks—LNet and UNet
for building ABP waveform predictive model, respectively.” Therefore, this is the pioneering
work in generating ABP signals from PPG alone, which has drawn significant attention
from the research community.
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Table 4. Comparison among different approaches. Here, we list the methods that used the MIMIC-III
dataset to evaluate their performance. Furthermore, for a fairer comparison, we have only included
the methods that consider a significant portion of the dataset. We compare the methods using
measures such as Mean Absolute Error (MAE) for predicting DBP, MAP, and SBP, in addition to BHS
and AAMI Standard.

Study Appearing Year Dataset Input Results

Kachuee et al. [58] 2015 MIMIC-III PPG, ECG

BHS Standard: DBP = Grade B, MAP = Grade C,
SBP = Grade D

MAE: DBP = 6.34 mmHg, MAP = 7.52 mmHg,
SBP = 12.38 mmHg

Kachuee et al. [59] 2016 MIMIC-III PPG, ECG

BHS Standard: DBP = Grade B, MAP = Grade C,
SBP = Grade D

AAMI Standard met for DBP, MAP
MAE: DBP = 5.35 mmHg, MAP = 5.92 mmHg,

SBP = 11.17 mmHg

Mousavi et al. [27] 2019 MIMIC-III PPG
BHS Standard: DBP = Grade A, MAP = Grade B,

SBP = Grade D
AAMI Standard met for DBP, MAP

Slapnivcar et al. [19] 2019 MIMIC-III PPG MAE: DBP = 9.43 mmHg, SBP = 6.88 mmHg

Athaya et al. [51] 2021 MIMIC-III PPG

BHS Standard: DBP = Grade A, MAP = Grade A,
SBP = Grade A

MAE: DBP = 2.17 mmHg, MAP = 1.97 mmHg,
SBP = 3.68 mmHg

Harfiya et al. [52] 2021 MIMIC-III PPG
BHS Standard: DBP = Grade A, MAP = Grade A,

SBP = Grade A
MAE: DBP = 2.41 mmHg, SBP = 4.05 mmHg

Qin et al. [54] 2021 MIMIC-III PPG

BHS Standard: DBP = Grade A, MAP = Grade A,
SBP = Grade B

MAE: DBP = 7.95 mmHg, MAP = 3.83 mmHg,
SBP = 4.11 mmHg

Mehrabadi et al. [55] 2022 MIMIC-III PPG
BHS Standard: DBP = Grade A, MAP = Grade A,

SBP = Grade A
MAE: DBP = 1.93 mmHg, SBP = 2.29 mmHg

PPG2ABP (Proposed) 2020 MIMIC-III PPG

BHS Standard: DBP = Grade A, MAP = Grade A,
SBP = Grade B

AAMI Standard met for: DBP, MAP
MAE: DBP = 3.45 mmHg, MAP = 2.31 mmHg,

SBP = 5.73 mmHg
Note: Shaded articles used deep learning and have cited our article in the archive. Athaya et al. [51] used the
concept of our work but did not cite our work. Please refer to the arxiv version of this article Ibtehaz et al. [76].

5. Conclusions

In this study, we tried to estimate Arterial Blood Pressure (ABP) waveforms from
Photoplethysmogram (PPG) signals through our proposed PPG2ABP pipeline. PPG2ABP,
in its novel approach, implements two 1D-CNN-based segmentation networks in series
and aims to gradually estimate the ABP waveforms through approximation and refinement.
Unlike the studies which tried to predict only discrete BP parameters, such as SBP, DBP,
MAP, and PPG2ABP, it can estimate the ABP waveform itself, which can be used to robustly
estimate cardiovascular anomalies from the waveform patterns and the BP parameters.
ABP waveforms, which are generally collected invasively, can now be reliably estimated
from externally acquired PPG signals. Contrary to some studies, which used ECG signals
alongside PPG to estimate ABP, PPG2ABP ignores ECG and manages to reach high perfor-
mance as well as promises simpler hardware during clinical trials. PPG2ABP is restricted
to estimate ABP from only clinical grade finger PPG signals, i.e., it will not perform well
with wrist PPG signals collected from wearables, which would be corrupted with severe
motion artifacts.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering9110692/s1, Figure S1: ABP in perspective of the
presence of inappropriate signals. For the comparative eminence of skewness in assessing PPG signal
quality we have used SSQI as the grade of PPG signals. It can be observed that as SSQI increases the
overall error of predicting DBP, SBP along with MAE diminishes. Also it should be noted that there
were only a few of PPG signals with extremely low SSQI which was learnt well by the model. Besides,
even some good quality PPG signals yielded a low SSQI score. References [62,77,78] are cited in the
supplementary materials.
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