COVID-19 Vaccines: An Updated Overview of Different Platforms
Abstract
:1. Introduction
2. COVID-19 Vaccine Platforms and Their Characteristics
2.1. Protein Subunit (PS) Vaccines
2.2. Vaccines Containing Non-Replicating Viral Vector (VVnr)
- Chimpanzee adenovirus vector ChAdOx1 (formerly known as ChAdY25). The AZD1222/Vaxzevria/Covishield vaccine (AstraZeneca, UK (AZD1222)) is based on this vector [17];
- Recombinant human adenovirus type 26 (Ad26) vector, contained in the Ad26.COV2.S/Jcovden (Janssen Pharmaceutical/Johnson & Johnson, Belgium/the Netherlands (Ad26.COV2.S)). It is recommended for people over the age of 18 who do not have access to other vaccines [18,19]. The same vector is used in Sputnik Light, (Gamaleya National Center of Epidemiology and Microbiology, Russia (Sputnik Light)). The Sputnik Light vaccine has the advantage of forming strong immunity after a single injection, can be used as a booster, and is effective against the Delta and Omicron strains [20];
- The Ad5-nCoV vaccine/Convidicea (CanSino Biologics, China (Ad5-nCoV)) is based on an adenovirus type 5 (Ad5) vector [21];
2.3. DNA Vaccines
2.4. Vaccines Containing Inactivated Virus
2.5. RNA Vaccines
2.6. Viral Vector (Replicating)
2.7. Pathogen-Specific aAPCs
3. Various Vaccine Delivery (Administration) Methods
4. Monoclonal Antibodies for the Prevention of COVID-19
5. Immunogenicity and Safety of Vaccines
6. Vaccinations of Various Populations
6.1. General Population
6.2. Use in Pregnancy
6.3. Children and Adolescents
6.4. People Who Have Had COVID-19
6.5. Immunocompromised Patients
6.6. Booster Vaccination
7. Vaccines and New Strains
8. Immunization Schedule
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 1 November 2022).
- Starshinova, A.; Malkova, A.; Zinchenko, U.; Kudlay, D.; Glushkova, A.; Dovgalyk, I.; Yablonskiy, P.; Shoenfeld, Y. Efficacy of Different Types of Therapy for COVID-19: A Comprehensive Review. Life 2021, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Interim Statement on the Composition of Current COVID-19 Vaccines. Available online: https://www.who.int/news/item/17-06-2022-interim-statement-on--the-composition-of-current-COVID-19-vaccines (accessed on 30 August 2022).
- Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; et al. Coronavirus Pandemic (COVID-19). 2020. Available online: https://ourworldindata.org/coronavirus (accessed on 30 August 2022).
- Available online: https://covid19.who.int/table (accessed on 31 August 2022).
- Kudlay, D.; Svistunov, A. COVID-19 Vaccines: An Overview of Different Platforms. Bioengineering 2022, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 1 November 2022).
- Vaccination Rates, Approvals & Trials by Country—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/trials-vaccines-by-country/ (accessed on 26 October 2022).
- Vaccines—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/vaccines/approved/#vaccine-list (accessed on 31 August 2022).
- Wambani, J.; Okoth, P. Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. Egypt. J. Intern. Med. 2022, 34, 34. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Nazari, M. New Generation Vaccines for COVID-19 Based on Peptide, Viral Vector, Artificial Antigen Presenting Cell, DNA or mRNA. Avicenna J. Med. Biotechnol. 2022, 14, 30–36. [Google Scholar] [CrossRef]
- Junaidi, K.; Fitrina, D.W.; Anggrainy, F.; Herman, D. Overview of COVID-19 Vaccine Development Strategy. Biosci. Med. J. Biomed. Transl. Res. 2022, 6, 1537–1559. [Google Scholar] [CrossRef]
- CDC. COVID-19 Vaccination. Centers for Disease Control and Prevention; 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/proteinsubunit.html (accessed on 16 August 2022).
- Pack, S.M.; Peters, P.J. SARS-CoV-2–Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines 2022, 10, 236. [Google Scholar] [CrossRef]
- Ryzhikov, A.B.; Ryzhikov, E.A.; Bogryantseva, M.P.; Usova, S.V.; Danilenko, E.D.; Nechaeva, E.A.; Pyankov, O.V.; Pyankova, O.G.; Gudymo, A.S.; Bodnev, S.A.; et al. A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18-60 years (phase I-II). Инфекция Иммунитет 2021, 11, 283–296. [Google Scholar] [CrossRef]
- In Russia, the Production of the EpiVacCoron Vaccine Has Ceased. RBC. Available online: https://nsk.rbc.ru/nsk/23/05/2022/628b36a29a7947b64836230c (accessed on 18 July 2022).
- EpiVacCorona-N or Aurora-CoV? The Fifth Vaccine Against Coronavirus Appeared in Russia. PharmMedProm. Available online: https://pharmmedprom.ru/news/epivakkorona-n-ili-aurora-cov-v-rossii-poyavilas-pyataya-vaktsina-ot-koronavirusa/ (accessed on 30 August 2022).
- Kharit, S.M.; Fridman, I.V. Efficacy and safety of vector vaccines for the prevention of new coronavirus infection. J. Infect. 2022, 14, 14–26. (In Russian) [Google Scholar] [CrossRef]
- The Janssen COVID-19 Vaccine Emergency Use Authorization (EUA) Official Website. Available online: https://www.janssencovid19vaccine.com/hcp.html (accessed on 31 August 2022).
- Sputnik Light Is an Approved One-Component Vaccine, Which Is the First Component of the Sputnik V Vaccine Against COVID-19, Developed by the N.F. Gamaleya with the Support of the Russian Direct Investment Fund in Russia. Available online: https://sputnikvaccine.com/rus/about-vaccine/sputnik-light/ (accessed on 18 July 2022).
- Simões, R.S.Q.; Rodríguez-Lázaro, D. Classical and Next-Generation Vaccine Platforms to SARS-CoV-2: Biotechnological Strategies and Genomic Variants. Int. J. Env. Res. Public Health 2022, 19, 2392. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, Z.; Wu, J.; Zhang, J.; Hu, H.; Zhu, T.; Zhang, J.; Luo, L.; Fan, P.; et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: Preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect. Dis. 2021, 21, 1654–1664. [Google Scholar] [CrossRef]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet Lond. Engl. 2017, 389, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Davidovic, T.; Schimpf, J.; Abbassi-Nik, A.; Stockinger, R.; Sprenger-Mähr, H.; Lhotta, K.; Zitt, E. Humoral and Cellular Immune Response After a 3-Dose Heterologous SARS-CoV-2 Vaccination Using the mRNA-BNT162b2 and Viral Vector Ad26COVS1 Vaccine in Hemodialysis Patients. Front. Immunol. 2022, 13, 907615. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Lee, W.S.; Pilkington, E.H.; Kelly, H.G.; Li, S.; Selva, K.J.; Wragg, K.M.; Subbarao, K.; Nguyen, H.O.; Rowntree, L.C.; et al. Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine. ACS Nano 2022, 16, 11769–11780. [Google Scholar] [CrossRef]
- Padín-González, E.; Lancaster, P.; Bottini, M.; Gasco, P.; Tran, L.; Fadeel, B.; Wilkin, T.; Monopoli, M.P. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front. Bioeng. Biotechnol. 2022, 10, 882363. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines 2021, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Mallapaty, S. India’s DNA COVID vaccine is a world first—More are coming. Nature 2021, 597, 161–162. [Google Scholar] [CrossRef]
- Dai, X.; Xiong, Y.; Li, N.; Jian, C. Vaccine Types. Vaccines—the History and Future. IntechOpen. 2019. Available online: https://www.intechopen.com/chapters/undefined/state.item.id (accessed on 31 August 2022).
- Lim, W.W.; Mak, L.; Leung, G.M.; Cowling, B.J.; Peiris, M. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe 2021, 2, e423. [Google Scholar] [CrossRef]
- The Sinovac-CoronaVac COVID-19 Vaccine: What You Need to Know. Available online: https://www.who.int/ru/news-room/feature-stories/detail/the-sinovac-covid-19-vaccine-what-you-need-to-know (accessed on 31 August 2022).
- Paternina-Caicedo, A.; Jit, M.; Alvis-Guzmán, N.; Fernández, J.C.; Hernández, J.; Paz-Wilches, J.J.; Rojas-Suarez, J.; Dueñas-Castell, C.; Alvis-Zakzuk, N.J.; Smith, A.D.; et al. Effectiveness of CoronaVac and BNT162b2 COVID-19 mass vaccination in Colombia: A population-based cohort study. Lancet Reg. Health Am. 2022, 12, 100296. [Google Scholar] [CrossRef]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021, 28, 117–129. [Google Scholar] [CrossRef]
- Yoon, W.; Park, Y.; Kim, S.; Bang, I.S. Development of an Oral Salmonella-Based Vaccine Platform against SARS-CoV-2. Vaccines 2022, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- The Development of a COVID19 Oral Vaccine Consisting of Bacillus Subtilis Spores. Clinicaltrials.gov; Report No.: NCT05057923. Available online: https://clinicaltrials.gov/ct2/show/NCT05057923 (accessed on 13 November 2022).
- Jonny, J.; Putranto, T.A.; Sitepu, E.C.; Irfon, R. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo? Expert Rev. Vaccines 2022, 21, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Shenzhen Geno-Immune Medical Institute. Phase I/II Multicenter Trial of Lentiviral Minigene Vaccine (LV-SMENP) of COVID-19 Coronavirus. Clinicaltrials.gov; Report No.: NCT04276896; 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04276896 (accessed on 17 July 2022).
- El Sahly, H.M.; Baden, L.R.; Essink, B.; Doblecki-Lewis, S.; Martin, J.M.; Anderson, E.J.; Campbell, T.B.; Clark, J.; Jackson, L.A.; Fichtenbaum, C.J.; et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N. Engl. J. Med. 2021, 385, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.-M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Moreira, E.D.; Kitchin, N.; Xu, X.; Dychter, S.S.; Lockhart, S.; Gurtman, A.; Perez, J.L.; Zerbini, C.; Dever, M.E.; Jennings, T.W.; et al. Safety and Efficacy of a Third Dose of BNT162b2 COVID-19 Vaccine. N. Engl. J. Med. 2022, 386, 1910–1921. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Ferrara, F.; Auti, A.M.; Di Domenico, M.; Boccellino, M. Advances in the Omicron variant development. J. Intern. Med. 2022, 292, 81–90. [Google Scholar] [CrossRef]
- Guo, W.; Deguise, J.; Tian, Y.; Huang, P.C.E.; Goru, R.; Yang, Q.; Peng, S.; Zhang, L.; Zhao, L.; Xie, J.; et al. Profiling COVID-19 Vaccine Adverse Events by Statistical and Ontological Analysis of VAERS Case Reports. Front. Pharmacol. 2022, 13, 870599. [Google Scholar] [CrossRef]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Vaccine Effectiveness against Symptomatic Disease Caused by the Omicron and Delta Variants in England. News-Medical.net. 2022. Available online: https://www.news-medical.net/news/20220425/Vaccine-effectiveness-against-symptomatic-disease-caused-by-the-Omicron-and-Delta-variants-in-England.aspx (accessed on 18 August 2022).
- Mascellino, M.T.; Di Timoteo, F.; De Angelis, M.; Oliva, A. Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety. Infect. Drug Resist. 2021, 14, 3459–3476. [Google Scholar] [CrossRef]
- Bos, R.; Rutten, L.; van der Lubbe, J.E.M.; Bakkers, M.J.G.; Hardenberg, G.; Wegmann, F.; Zuijdgeest, D.; de Wilde, A.H.; Koornneef, A.; Verwilligen, A.; et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines 2020, 5, 91. [Google Scholar] [CrossRef] [PubMed]
- Sputnik Light Booster after Sputnik V Vaccination Induces Robust Neutralizing Antibody Response to B.1.1.529 (Omicron) SARS-CoV-2 Variant|Medrxiv. Available online: https://www.medrxiv.org/content/10.1101/2021.12.17.21267976v1 (accessed on 16 August 2022).
- Tukhvatulin, A.I.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; Botikov, A.G.; et al. An open, non-randomised, phase 1/2 trial on the safety, tolerability, and immunogenicity of single-dose vaccine “Sputnik Light” for prevention of coronavirus infection in healthy adults. Lancet Reg. Health Eur. 2021, 11, 100241. [Google Scholar] [CrossRef] [PubMed]
- Evidence Assessment: Sinopharm/BBIBP COVID-19 Vaccine. 2021. Available online: https://cdn.who.int/media/docs/default-source/immunization/sage/2021/april/2_sage29apr2021_critical-evidence_sinopharm.pdf (accessed on 28 October 2022).
- Wang, C.; Chen, L.Y.; Lu, Q.B.; Cui, F. Vaccination with the Inactivated Vaccine (Sinopharm BBIBP-CorV) Ensures Protection against SARS-CoV-2 Related Disease. Vaccines 2022, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, S.; Erdinc, F.; Akalın, E.H.; Tabak, O.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- The CanSino Biologics Ad5-nCoV-S [recombinant] COVID-19 Vaccine: What You Need to Know. Available online: https://www.who.int/news-room/feature-stories/detail/the--cansino-biologics-ad5-ncov-s--recombinant---covid-19-vaccine--what-you-need-to-know (accessed on 18 August 2022).
- Coronavirus Disease (COVID-19): Vaccines. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-vaccines (accessed on 31 August 2022).
- Kozlov, V.A.; Tikhonova, E.P.; Savchenko, A.A.; Kudryavtsev, I.V.; Andronova, N.V.; Anisimova, E.N.; Golovkin, A.S.; Demina, D.V.; Zdzitovetsky, D.E.; Kalinina, Y.U.S.; et al. Borisov. Clinical Immunology. In A Practical Guide for Infectious Disease Specialists; Polikor: Krasnoyarsk, Russia, 2021; p. 563. [Google Scholar] [CrossRef]
- Tardiolo, G.; Brianti, P.; Sapienza, D.; dell’Utri, P.; Dio, V.D.; Rao, G.; Calabrò, R.S. Are We Paving the Way to Dig Out of the “Pandemic Hole”? A Narrative Review on SARS-CoV-2 Vaccination: From Animal Models to Human Immunization. Med. Sci. 2021, 9, 53. [Google Scholar] [CrossRef]
- Alu, A.; Chen, L.; Lei, H.; Wei, Y.; Tian, X.; Wei, X. Intranasal COVID-19 vaccines: From bench to bed. eBioMedicine 2022, 76, 103841. [Google Scholar] [CrossRef]
- Voronina, E.; Doguzova, V. The Ministry of Health Has Registered a Nasal “Sputnik”. Available online: https://pharmvestnik.ru/content/news/Minzdrav-zaregistriroval-nazalnyi-Sputnik.html (accessed on 18 July 2022).
- Salnavak. Combined Vector Vaccine for the Prevention of Coronavirus Infection Caused by the SARS-CoV-2 Virus. Medi.Ru. Available online: https://medi.ru/instrukciya/salnavak_27297/ (accessed on 15 August 2022).
- Arnold, L.M.; Emir, B.; Murphy, T.K.; Zeiher, B.G.; Pauer, L.; Scott, G.; Petersel, D. Safety profile and tolerability of up to 1 year of pregabalin treatment in 3 open-label extension studies in patients with fibromyalgia. Clin. Ther. 2012, 34, 1092–1102. [Google Scholar] [CrossRef]
- Vaxart. A Phase 2, Double-Blind, Multi-Center, Randomized, Placebo-Controlled, Dose-Ranging Trial to Determine the Safety, Immunogenicity and Efficacy of an Adenoviral-Vector Based Vaccine Expressing Severe Acute Respiratory Syndrome (SARS-CoV-2) and dsRNA Adjuvant Administered Orally. clinicaltrials.gov; Report No.: NCT05067933. May 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05067933 (accessed on 14 August 2022).
- Vaxart COVID-19 Oral Vaccine. Available online: https://www.precisionvaccinations.com/vaccines/vaxart-covid-19-oral-vaccine (accessed on 15 August 2022).
- Brand, M. Pipeline [Internet]. iosBio. Available online: https://iosbio.com/pipeline/ (accessed on 15 August 2022).
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Case, J.B.; Mackin, S.; Errico, J.M.; Chong, Z.; Madden, E.A.; Whitener, B.; Guarino, B.; Schmid, M.A.; Rosenthal, K.; Ren, K.; et al. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nat. Commun. 2022, 13, 3824. [Google Scholar] [CrossRef]
- EMA. Clinical Evaluation of New Vaccines. European Medicines Agency. 2018. Available online: https://www.ema.europa.eu/en/clinical-evaluation-new-vaccines (accessed on 31 August 2022).
- Guidelines on Clinical Evaluation of Vaccines: Regulatory Expectations. Available online: https://www.who.int/publications/m/item/WHO-TRS-1004-web-annex-9 (accessed on 31 August 2022).
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- Kudlay, D.; Kofiadi, I.; Khaitov, M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines 2022, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Martynova, E.; Hamza, S.; Garanina, E.E.; Kabwe, E.; Markelova, M.; Shakirova, V.; Khaertynova, I.M.; Kaushal, N.; Baranwal, M.; Rizvanov, A.A.; et al. Long Term Immune Response Produced by the SputnikV Vaccine. Int. J. Mol. Sci. 2021, 22, 11211. [Google Scholar] [CrossRef] [PubMed]
- Lapa, D.; Grousova, D.M.; Matusali, G.; Meschi, S.; Colavita, F.; Bettini, A.; Gramigna, G.; Francalancia, M.; Garbuglia, A.R.; Girardi, E.; et al. Retention of Neutralizing Response against SARS-CoV-2 Omicron Variant in Sputnik V-Vaccinated Individuals. Vaccines 2022, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chandrashekar, A.; Sellers, D.; Barrett, J.; Lifton, M.; McMahan, K.; Sciacca, M.; VanWyk, H.; Wu, C.; Yu, J.; et al. Vaccines Elicit Highly Cross-Reactive Cellular Immunity to the SARS-CoV-2 Omicron Variant. medRxiv 2022, preprint. [Google Scholar] [CrossRef]
- He, Q.; Mao, Q.; Zhang, J.; Bian, L.; Gao, F.; Wang, J.; Xu, M.; Liang, Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front. Immunol. 2021, 12, 669339. [Google Scholar] [CrossRef]
- Ashmawy, R.; Hamdy, N.A.; Elhadi, Y.A.M.; Alqutub, S.T.; Esmail, O.F.; Abdou, M.S.M.; Reyad, O.A.; El-Ganainy, S.O.; Gad, B.K.; El-Deen, A.E.-S.N.; et al. A Meta-Analysis on the Safety and Immunogenicity of COVID-19 Vaccines. J. Prim. Care Community Health 2022, 13, 21501319221089256. [Google Scholar] [CrossRef]
- Clinical Guidance for COVID-19 Vaccination|CDC. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html (accessed on 31 August 2022).
- Care AGD of H and A. ATAGI Clinical Guidance for COVID-19 Vaccine Providers. Australian Government Department of Health and Aged Care; 2021. Available online: https://www.health.gov.au/initiatives-and-programs/covid-19-vaccines/advice-for-providers/clinical-guidance (accessed on 31 August 2022).
- Temporary Guidelines for Prevention, Diagnosis and Treatment of Novel Coronavirus Disease (COVID-19) Version 16.pdf. Available online: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/%D0%92%D0%9C%D0%A0_COVID-19_V16.pdf (accessed on 30 August 2022).
- 05072021_MR_Preg_v4.pdf. Available online: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/057/333/original/05072021_MR_Preg_v4.pdf (accessed on 20 July 2022).
- Public Health Agency of Canada. Archive 38: COVID-19 Vaccine Guidance Updates: Canadian Immunization Guide: June 21 2022. Available online: https://www.canada.ca/en/public-health/services/immunization/national-advisory-committee-on-immunization-naci/summary-updates-canadian-immunization-guide-june-21-2022-covid-19-vaccines.html (accessed on 31 August 2022).
- Temporary Guidelines. The Procedure for Vaccination against a New Coronavirus Infection (COVID-19). 2022. Available online: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/087/original/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5_%D1%80%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8_02062022_%282%29.pdf?1655803717 (accessed on 18 August 2022).
- Public Health Agency of Canada. COVID-19 Vaccine: Canadian Immunization Guide. 2021. Available online: https://www.canada.ca/en/public-health/services/publications/healthy-living/canadian-immunization-guide-part-4-active-vaccines/page-26-covid-19-vaccine.html (accessed on 31 August 2022).
- Letter of the Ministry of Health of Russia. Dated December 22 2021 N 30-4/I/2-21694. On the Submission of Updated Temporary Guidelines. The Procedure for Vaccination against a New Coronavirus Infection (COVID-19). Available online: https://spboms.ru/sites/default/files/pismo_minzdrava_rossii_ot_22_12_2021_n_30-4_i_2-21694_o.pdf (accessed on 31 August 2022).
- COVID-19 Vaccination: Booster Dose Resources—GOV.UK. Available online: https://www.gov.uk/government/publications/covid-19-vaccination-booster-dose-resources (accessed on 31 August 2022).
- About Clarification of the Procedure for Re-Vaccination against COVID-19. Available online: http://www.7gsp.by/polezno-znat/stati/558-o-razyasnenii-poryadka-provedeniya-povtornoj-vaktsinatsii-protiv-covid-19 (accessed on 14 August 2022).
- Abu-Raddad, L.J.; Chemaitelly, H.; Ayoub, H.H.; AlMukdad, S.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Tang, P.; Hasan, M.R.; Coyle, P.; et al. Effect of mRNA Vaccine Boosters against SARS-CoV-2 Omicron Infection in Qatar. N. Engl. J. Med. 2022, 386, 1804–1816. [Google Scholar] [CrossRef]
- CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention; 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html (accessed on 31 August 2022).
- UK Grants World’s First Approval for Moderna’s Omicron Covid Vaccine. Bloomberg.com. 2022. Available online: https://www.bloomberg.com/news/articles/2022-08-15/uk-takes-world-s-first-step-toward-omicron-tailored-covid-shot (accessed on 25 August 2022).
- Au, W.Y.; Cheung, P.P.H. Effectiveness of heterologous and homologous COVID-19 vaccine regimens: Living systematic review with network meta-analysis. BMJ 2022, 377, e069989. [Google Scholar] [CrossRef]
- Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 31 August 2022).
- Mohammadi, M.; Shayestehpour, M.; Mirzaei, H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz. J. Infect. Dis. 2021, 25, 101606. [Google Scholar] [CrossRef]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody Resistance of SARS-CoV-2 Variants, B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef]
- Singh, M.; Novitsky, V.; Carpenter-Azevedo, K.; Howison, M.; Huard, R.C.; King, E.; Kantor, R. SARS-CoV-2 Variants in Rhode Island; May 2022 Update. RI Med. J. 2022, 105, 6–11. [Google Scholar]
- Parums, D.V. Editorial: World Health Organization (WHO) Variants of Concern Lineages Under Monitoring (VOC-LUM) in Response to the Global Spread of Lineages and Sublineages of Omicron, or B.1.1.529, SARS-CoV-2. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2022, 28, e937676. [Google Scholar] [CrossRef] [PubMed]
- Statement on Omicron Sublineage BA.2. Available online: https://www.who.int/ru/news/item/22-02-2022-statement-on-omicron-sublineage-ba.2 (accessed on 15 August 2022).
- WHO-2019-nCoV-Vaccine-Effectiveness-Measurement-2021.1-Eng.pdf. Available online: https://apps.who.int/iris/bitstream/handle/10665/340301/WHO-2019-nCoV-vaccine-effectiveness-measurement-2021.1-eng.pdf?sequence=1&isAllowed=y (accessed on 31 August 2022).
- Noor, R.; Shareen, S.; Billah, M. COVID-19 vaccines: Their effectiveness against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants. Bull. Natl. Res. Cent. 2022, 46, 96. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, T.; Chaudhuri, S.; Ponnaiah, M.; Yadav, P.D.; Sabarinathan, R.; Sahay, R.R.; Ahmed, F.; Aswathy, S.; Bhardwaj, P.; Bilimale, A.; et al. Effectiveness of BBV152/Covaxin and AZD1222/Covishield vaccines against severe COVID-19 and B.1.617.2/Delta variant in India, 2021: A multi-centric hospital-based case-control study. Int. J. Infect. Dis. 2022, 122, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Ikegame, S.; Siddiquey, M.N.A.; Hung, C.T.; Haas, G.; Brambilla, L.; Oguntuyo, K.Y.; Kowdle, S.; Chiu, H.-P.; Stevens, C.S.; Vilardo, A.E.; et al. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Nat. Commun. 2021, 12, 4598. [Google Scholar] [CrossRef]
- Marta, R.A.; Nakamura, G.E.K.; de Matos Aquino, B.; Bignardi, P.R. COVID-19 Vaccines: Update of the vaccines in use and under development. Vacunas 2022, 23, S88–S102. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, Y.; Chu, M. Role of COVID-19 Vaccines in SARS-CoV-2 Variants. Front. Immunol. 2022, 13, 898192. [Google Scholar] [CrossRef]
- Grewal, R.; Nguyen, L.; Buchan, S.A.; Wilson, S.E.; Nasreen, S.; Austin, P.C.; Brown, K.A.; Fell, D.B.; Gubbay, J.; Schwartz, K.L.; et al. NACI Recommendations on the use of bivalent Omicron-containing mRNA COVID-19 vaccines. medRxiv 2022. [Google Scholar]
- Moderna: Spikevax Bivalent Original/Omicron BA.4/BA.5—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/vaccines/224/ (accessed on 29 October 2022).
- EMA. Adapted Vaccine Targeting BA.4 and BA.5 Omicron Variants Original SARS-CoV-2 Recommended for Approval. European Medicines Agency. 2022. Available online: https://www.ema.europa.eu/en/news/adapted-vaccine-targeting-ba4-ba5-omicron-variants-original-sars-cov-2-recommended-approval (accessed on 28 October 2022).
- EMA. EMA Starts Rolling Review of COVID-19 Vaccine (Vero Cell) Inactivated. European Medicines Agency. 2021. Available online: https://www.ema.europa.eu/en/news/ema-starts-rolling-review-covid-19-vaccine-vero-cell-inactivated (accessed on 14 August 2022).
- Order of the Ministry of Health of the Russian Federation Dated December 6, 2021 N 1122n On the Approval of the National Calendar of Preventive Vaccinations, the Calendar of Preventive Vaccinations for Epidemic Indications and the Procedure for Conducting Preventive Vaccinations. Available online: https://docs.cntd.ru/document/727605537?ysclid=l7gh4jwwkz698458785 (accessed on 30 August 2022).
Country | Vaccine Trials | Approved Vaccines | Vaccines |
---|---|---|---|
Argentina | 18 | 9 | mRNA-1273, BNT162b2, Ad5-nCoV, Sputnik Light, Sputnik V, AZD1222 (Vaxzevria + Covishield), BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) |
Australia | 31 | 5 | NVX-CoV2373, mRNA-1273, mRNA-1273.214, BNT162b2, Ad26.COV2.S, and AZD1222 |
Belgium | 19 | 6 | NVX-CoV2373, mRNA-1273, mRNA-1273.214, BNT162b2, BNT162b2 (B.1.1.529), BNT162b2 Bivalent, Ad26.COV2.S, AZD1222, and VLA2001 |
Brazil | 32 | 7 | BNT162b2, Sputnik V, Ad26.COV2.S, AZD1222 (Vaxzevria + Covishield), BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) |
Canada | 25 | 8 | NVX-CoV2373, Covifenz, mRNA-1273, mRNA-1273.214, BNT162b2, Ad26.COV2.S, and AZD1222 (Vaxzevria + Covishield) |
China | 98 | 8 | Zifivax, V-01, Ad5-nCoV-IH, Ad5-nCoV, KCONVAC, BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) (Inactivated (Vero Cells) + CoronaVac) |
Germany | 31 | 9 | NVX-CoV2373, mRNA-1273, mRNA-1273.214, BNT162b2 (B.1.1.529), BNT162b2 Bivalent, Ad26.COV2.S, AZD1222, and VLA2001 |
India | 36 | 12 | NVX-COV2373, Corbevax, ZyCoV-D, GEMCOVAC-19, mRNA-1273, iNCOVACC, Sputnik Light, Sputnik V, Ad26.COV2.S, AZD1222 (Vaxzevria + Covishield), and BBV152 |
Indonesia | 22 | 13 | Zifivax, IndoVac, NVX-COV2373, mRNA-1273, BNT162b2, AWcorna, Ad5-nCoV, Sputnik V, Ad26.COV2.S, AZD1222, KCONVAC, BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) |
Islamic Republic of Iran | 26 | 12 | Noora vaccine, Soberana 02, Razi Cov Pars, SpikoGen, Sputnik Light, Sputnik V, Ad26.COV2.S, AZD1222, BBV152, FAKHRAVAC (MIVAC), COVIran Barekat, and BBIBP-CorV |
Japan | 44 | 7 | TAK-019, mRNA-1273.214, BNT162b2, BNT162b2 (B.1.1.529), BNT162b2 Bivalent, TAK-919, and AZD1222 |
Philippines | 22 | 11 | NVX-CoV2373, BNT162b2, mRNA-1273, Sputnik Light, Sputnik V, Ad26.COV2.S, AZD1222, BBV152, BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) (Inactivated (Vero Cells) + CoronaVac) |
Republic of Korea | 22 | 8 | NVX-CoV2373, SKYCovione, mRNA-1273, mRNA-1273.214, BNT162b2, BNT162b2 (B.1.1.529), Ad26.COV2.S, and AZD1222 |
Russia | 33 | 6 | Aurora-CoV, EpiVacCorona, Gam-COVID-Vac, Sputnik Light, Sputnik V, and KoviVac |
South Africa | 26 | 6 | NVX-COV2373, BNT162b2, Ad26.COV2.S, AZD1222, BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) |
Spain | 22 | 9 | NVX-CoV2373, mRNA-1273, mRNA-1273.214, BNT162b2, BNT162b2 (B.1.1.529), BNT162b2 Bivalent, Ad26.COV2.S, AZD1222, and VLA2001 |
Thailand | 22 | 7 | NVX-COV2373, mRNA-1273, BNT162b2, Ad26.COV2.S, AZD1222, BBIBP-CorV, and COVID-19 Vaccine (Vero Cell) |
United Kingdom of Great Britain and Northern Ireland | 29 | 8 | NVX-CoV2373, mRNA-1273, mRNA-1273.214, BNT162b2, BNT162b2 (B.1.1.529), Ad26.COV2.S, AZD1222, and VLA2001 |
United States of America | 109 | 6 | NVX-CoV2373, mRNA-1273, mRNA-1273.214, BNT162b2 Bivalent, and Ad26.COV2.S |
Vaccine | Type | Dose Regimen | Prevention of Symptomatic Infection, % (95% CI) | Efficacy against the Omicron Strain | Main Adverse Events |
---|---|---|---|---|---|
BNT162b2 | mRNA | 2 doses, 3-week interval | 95.0 (90.3–97.6) [39] | 65.5% (95% CI, 63.9–67.0), 2–4 weeks after two doses; 8.8% (95% CI, 7.0–10.5), ≥25 weeks after two doses [40] | Myalgia, arthralgia, pain in the extremities, nervous system disorder, and headache [41] |
mRNA-1273 | mRNA | 2 doses, 4-week interval | 93.2 (91.0–94.8) [39] | 20% after the first dose, 42.8% after the second dose, 67.7% after the third dose [42] | Thrombotic complications [43] |
Ad26.COV2.S | VV | Single dose | 66.5 (55.5–75.1) [44] | Guillain–Barré syndrome and thrombotic complications [43] | |
AZD1222 | VV | 2 doses, 4-week interval | 67.1 (52.3–77.3) [45] | When assessed five months after the second dose, there was no protective effect against symptomatic Omicron infection after two doses [46] | Disseminated intravascular coagulation, thromboembolic events, injection-site pain, erythema, myalgia, arthralgia, and headache [47] |
Sputnik V | VV | 2 doses, 3-week interval | 91.1 (83.8–95.1) [48] | The serum titer of neutralizing antibodies to the Omicron variant in patients re-vaccinated with Sputnik Light was statistically comparable to the serum titer of neutralizing antibodies to the B.1.1.1 variant in patients vaccinated with Sputnik V [49] | |
Sputnik Light | VV | 1 dose | Any injection-site symptoms, injection-site pain, erythema, general symptoms, flu-like syndrome, fatigue, headache, muscle and joint pain, pyrexia, chills, decreased appetite, rash, and dizziness [50] | ||
BBIBP-CorV | IV | 2 doses, 4-week interval | 78.1 (64.9–86.3) [51] | Injection-site redness and swelling, and fever [52] | |
CoronaVac | IV | 2 doses, 4-week interval | 83.5 (65.4–92.1) [53] | Pain, erythema, and swelling at the injection-site, as well as weakness, myalgia, nausea, and chills [53] | |
Ad5-nCoV | VV | 1 dose | 58 [54] | Thrombosis with thrombocytopenia syndrome, Guillain–Barré syndrome, and anaphylaxis [54] | |
NVX-CoV2373 | PS | ||||
BBV152 | IV | 2 doses, 4-week interval [55] |
Route of Administration | Number | Main Variants |
---|---|---|
Oral | 5 | VXA-CoV2-1 Ad5 adjuvanted Oral Vaccine platform, bacTRL-Spike oral DNA vaccine, CoV2-OGEN1, protein-based vaccine, and COVID19 Oral Vaccine Consisting of Bacillus Subtilis Spores |
Sub cutaneous | 5 | IMP CoVac-1, COVID-19/aAPC vaccine, hAd5 S+N bivalent vaccine, SARS-CoV-2-RBD-Fc fusion protein (AKS-452), and SARS-CoV-2 VLP Vaccine |
Intradermal | 9 | INO-4800+electroporation, nCov vaccine, CORVax12-Spike (S) Protein Plasmid DNA Vaccine, GLS-5310, COVIGEN, EXG-5003, Plasmid DNA vaccine, PepGNP-SARSCoV2, Ad26.cov2.s + bcg vaccine, and XS-1223U |
Intramuscular | 142 | BNT162b2, mRNA-1273, Ad26.COV2.S, AZD1222, Sputnik V, Sputnik Light, BBIBP-CorV, CoronaVac, Ad5-nCoV, and BBV152 |
Intranasal | 13 | Sputnik V, DelNS1-2019-nCoV-RBD-OPT1, COVI-VAC, CIGB-669, AdCOVID, BBV154, MV-014-212, PIV5, NDV-HXP-S, ACM-SARS-CoV-2-beta ACM-CpG, and Salnavac |
Aerosol | 1 | Ad5-triCoV/Mac |
Inhaled | 2 | MVA-SARS-2-ST Vaccine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudlay, D.; Svistunov, A.; Satyshev, O. COVID-19 Vaccines: An Updated Overview of Different Platforms. Bioengineering 2022, 9, 714. https://doi.org/10.3390/bioengineering9110714
Kudlay D, Svistunov A, Satyshev O. COVID-19 Vaccines: An Updated Overview of Different Platforms. Bioengineering. 2022; 9(11):714. https://doi.org/10.3390/bioengineering9110714
Chicago/Turabian StyleKudlay, Dmitry, Andrey Svistunov, and Oleg Satyshev. 2022. "COVID-19 Vaccines: An Updated Overview of Different Platforms" Bioengineering 9, no. 11: 714. https://doi.org/10.3390/bioengineering9110714
APA StyleKudlay, D., Svistunov, A., & Satyshev, O. (2022). COVID-19 Vaccines: An Updated Overview of Different Platforms. Bioengineering, 9(11), 714. https://doi.org/10.3390/bioengineering9110714