Hyper-Branched Cyclodextrin-Based Polymers as Anticoagulant Agents: In Vitro and In Vivo Studies
Abstract
:1. Introduction
- (I)
- The capacity of HBCD-Pol to chelate Ca2+;
- (II)
- The in vitro anticoagulant activity and its hemocompatibility to determine the blood clotting time and the plasma recalcification time. After these, we study the prothrombin time (PT) and the partial prothrombin time (PTT);
- (III)
- The in vivo PT, PTT, fibrinogen, and bleeding time using rats as a model.
2. Materials and Methods
2.1. Materials
2.2. In Vitro Protocols and Experiments
2.2.1. Synthesis of HBCD-Pol
2.2.2. Potentiometric Titration
2.2.3. Anticoagulant Activity
2.2.4. In Vitro Clotting Time
2.2.5. Plasma Recalcification Time (PRT)
2.2.6. Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT) Assays
2.2.7. Hemocompatibility Test
2.3. In Vivo Experiments
2.3.1. APPT and PT Assays
2.3.2. Fibrinogen Measurement
2.3.3. Bleeding Time
3. Results and Discussion
3.1. Potentiometric Titration
3.2. In-Vitro Anticoagulant Study
3.3. PT and aPTT Tests
3.4. Hemocompatibility
3.5. In Vivo Anticoagulant Characterization
3.5.1. Effects of Anticoagulation Agents on Clinical Coagulation Parameters
3.5.2. Fibrinogen Consumption and Bleeding Time Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis: Epidemiologic Aspects. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Raschke, C.R.; Warkentin, T.E.; Dalen, J.E.; Deykin, D.; Poller, L. Heparin: Mechanism of Action, Pharmacokinetics, Dosing Considerations, Monitoring, Efficacy, and Safety. CHEST 1995, 108, 258S–275S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.G.; Sadowski, J.A.; Matschiner, J.T. Mechanism of Action of Warfarin. Warfarin and Metabolism of Vitamin K1. Biochemistry 1972, 11, 1959–1961. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, B.S.; Dixon, D.L.; Neyens, R.R.; Page, R.L.; Gluckman, T.J. Select Drug-Drug Interactions With Direct Oral Anticoagulants. J. Am. Coll. Cardiol. 2020, 75, 1341–1350. [Google Scholar] [CrossRef]
- Trotta, F.; Caldera, F.; Cavalli, R.; Mele, A.; Punta, C.; Melone, L.; Castiglione, F.; Rossi, B.; Ferro, M.; Crupi, V.; et al. Synthesis and Characterization of a Hyper-Branched Water-Soluble β-Cyclodextrin Polymer. Beilstein J. Org. Chem. 2014, 10, 2586–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, Physicochemical Properties and Pharmaceutical Applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as Pharmaceutical Solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef]
- Santos, C.I.A.V.; Ribeiro, A.C.F.; Esteso, M.A. Drug Delivery Systems: Study of Inclusion Complex Formation between Methylxanthines and Cyclodextrins and Their Thermodynamic and Transport Properties. Biomolecules 2019, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef]
- Matencio, A.; Bermejo-Gimeno, M.J.; García-Carmona, F.; López-Nicolás, J.M. Separating and Identifying the Four Stereoisomers of Methyl Jasmonate by RP-HPLC and Using Cyclodextrins in a Novel Way. Phytochem. Anal. 2017, 28, 151–158. [Google Scholar] [CrossRef]
- Matencio, A.; Caldera, F.; Rubin Pedrazzo, A.; Khazaei Monfared, Y.K.; Dhakar, N.; Trotta, F. A Physicochemical, Thermodynamical, Structural and Computational Evaluation of Kynurenic Acid/Cyclodextrin Complexes. Food Chem. 2021, 356, 129639. [Google Scholar] [CrossRef]
- López-Nicolás, J.M.; García-Carmona, F. Effect of Hydroxypropyl-β-Cyclodextrin on the Aggregation of (E)-Resveratrol in Different Protonation States of the Guest Molecule. Food Chem. 2010, 118, 648–655. [Google Scholar] [CrossRef]
- Matencio, A.; Guerrero-Rubio, M.A.; Caldera, F.; Cecone, C.; Trotta, F.; García-Carmona, F.; López-Nicolás, J.M. Lifespan Extension in Caenorhabditis Elegans by Oxyresveratrol Supplementation in Hyper-Branched Cyclodextrin-Based Nanosponges. Int. J. Pharm. 2020, 589, 119862. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, X.; Zhang, Y.; Liu, Z.; Xue, W. Effect of Cyclodextrins on the Structure and Functions of Blood Components in Vitro. J. Bioact. Compat. Polym. 2015, 30, 541–554. [Google Scholar] [CrossRef]
- Palta, S.; Saroa, R.; Palta, A. Overview of the Coagulation System. Indian J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Francese, R.; Cecone, C.; Costantino, M.; Hoti, G.; Bracco, P.; Lembo, D.; Trotta, F. Identification of a ΒCD-Based Hyper-Branched Negatively Charged Polymer as HSV-2 and RSV Inhibitor. Int. J. Mol. Sci. 2022, 23, 8701. [Google Scholar] [CrossRef]
- Azeez, M.A.; Durodola, F.A.; Lateef, A.; Yekeen, T.A.; Adubi, A.O.; Oladipo, I.C.; Adebayo, E.A.; Badmus, J.A.; Abawulem, A.O. Green Synthesized Novel Silver Nanoparticles and Their Application as Anticoagulant and Thrombolytic Agents: A Perspective. IOP Conf. Ser. Mater. Sci. Eng. 2020, 805, 012043. [Google Scholar] [CrossRef]
- Janvikul, W.; Uppanan, P.; Thavornyutikarn, B.; Krewraing, J.; Prateepasen, R. In Vitro Comparative Hemostatic Studies of Chitin, Chitosan, and Their Derivatives. J. Appl. Polym. Sci. 2006, 102, 445–451. [Google Scholar] [CrossRef]
- Winter, W.E.; Flax, S.D.; Harris, N.S. Coagulation Testing in the Core Laboratory. Lab. Med. 2017, 48, 295–313. [Google Scholar] [CrossRef]
- Momi, S.; Nasimi, M.; Colucci, M.; Nenci, G.G.; Gresele, P. Low Molecular Weight Heparins Prevent Thrombin-Induced Thrombo-Embolism in Mice despite Low Anti-Thrombin Activity. Evidence That the Inhibition of Feed-Back Activation of Thrombin Generation Confers Safety Advantages over Direct Thrombin Inhibition. Haematologica 2001, 86, 297–302. [Google Scholar] [CrossRef]
- Kopić, A.; Benamara, K.; Schuster, M.; Leidenmühler, P.; Bauer, A.; Glantschnig, H.; Höllriegl, W. Coagulation Phenotype of Wild-Type Mice on Different Genetic Backgrounds. Lab. Anim. 2019, 53, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gresele, P.; Momi, S.; Berrettini, M.; Nenci, G.G.; Schwarz, H.P.; Semeraro, N.; Colucci, M. Activated Human Protein C Prevents Thrombin-Induced Thromboembolism in Mice. Evidence That Activated Protein c Reduces Intravascular Fibrin Accumulation through the Inhibition of Additional Thrombin Generation. J. Clin. Investig. 1998, 101, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Dejana, E.; Villa, S.; de Gaetano, G. Bleeding Time in Rats: A Comparison of Different Experimental Conditions. Thromb. Haemost. 1982, 48, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Vipulanandan, C. Effect of PH, Sulfate and Sodium on the EDTA Titration of Calcium. Cem. Concr. Res. 2003, 33, 621–627. [Google Scholar] [CrossRef]
- Tucker, B.B.; Kurtz, L.T. Calcium and Magnesium Determinations by EDTA Titrations. Soil Sci. Soc. Am. J. 1961, 25, 27–29. [Google Scholar] [CrossRef]
- Lucia Appleton, S.; Khazaei Monfared, Y.; Vidal-Sánchez, F.J.; Caldera, F.; Cavalli, R.; Trotta, F.; Matencio, A. Cyclodextrin-Based Nanosponges and Proteins. Encyclopedia 2022, 2, 752–760. [Google Scholar] [CrossRef]
Anticoagulant Drugs | Molecule | Polymer | ||
---|---|---|---|---|
Enoxaparin (synthetic heparin) ɫ | Warfarin ɫ | EDTA ɫ | HBCD-Pol [5] | |
Schematic structure | ||||
Description | Synthetic heparin, drug | Synthetic anticoagulant | Chelant | Polymer |
Molecular formula | C26H42N2O37S5 | C19H16O4 | C10H16N2O8 | (C162H94o107)n |
Molecular weight | 1134.9 | 308.3 | 292.24 | 37–42Kda |
Solubility (mg/mL) | 50 | 17 × 10−3 | 1 × 103 | 800 |
Bioactivity | Drug similar to that of heparin (binds to antithrombin, AT), although it exhibits a higher ratio of anti-Factor Xa to anti-Factor Iia activity | Drug; inhibits the regeneration of vitamin K1 epoxide and thus the synthesis of vitamin K-dependent clotting factors, which include Factors II, VII, IX and X, and the anticoagulant proteins C and S | Chelant; induces anticoagulation by Ca2+ binding | Aim of present work |
Can vehiculize biomolecules? | - | - | - | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monfared, Y.K.; Mahmoudian, M.; Hoti, G.; Bisericaru, D.M.; Caldera, F.; Cavalli, R.; Zakeri-Milani, P.; Matencio, A.; Trotta, F. Hyper-Branched Cyclodextrin-Based Polymers as Anticoagulant Agents: In Vitro and In Vivo Studies. Bioengineering 2022, 9, 765. https://doi.org/10.3390/bioengineering9120765
Monfared YK, Mahmoudian M, Hoti G, Bisericaru DM, Caldera F, Cavalli R, Zakeri-Milani P, Matencio A, Trotta F. Hyper-Branched Cyclodextrin-Based Polymers as Anticoagulant Agents: In Vitro and In Vivo Studies. Bioengineering. 2022; 9(12):765. https://doi.org/10.3390/bioengineering9120765
Chicago/Turabian StyleMonfared, Yousef Khazaei, Mohammad Mahmoudian, Gjylije Hoti, Daniel Mihai Bisericaru, Fabrizio Caldera, Roberta Cavalli, Parvin Zakeri-Milani, Adrián Matencio, and Francesco Trotta. 2022. "Hyper-Branched Cyclodextrin-Based Polymers as Anticoagulant Agents: In Vitro and In Vivo Studies" Bioengineering 9, no. 12: 765. https://doi.org/10.3390/bioengineering9120765
APA StyleMonfared, Y. K., Mahmoudian, M., Hoti, G., Bisericaru, D. M., Caldera, F., Cavalli, R., Zakeri-Milani, P., Matencio, A., & Trotta, F. (2022). Hyper-Branched Cyclodextrin-Based Polymers as Anticoagulant Agents: In Vitro and In Vivo Studies. Bioengineering, 9(12), 765. https://doi.org/10.3390/bioengineering9120765