A Study on Lower Limb Asymmetries in Parkinson’s Disease during Gait Assessed through Kinematic-Derived Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Spatiotemporal and Kinematic Data Collection and Processing
- Spatiotemporal gait parameters (i.e., gait speed, cadence, step length, step width, stance, swing and double support phase duration);
- Kinematic parameters (pelvic tilt, rotation and obliquity; hip flexion–extension, adduction–abduction and rotation; knee flexion–extension, ankle dorsi–plantarflexion, and foot progression). From these parameters, additional indexes on gait deviation from normality were obtained, namely the Gait Variable Scores (GVS) and Gait Profile Score (GPS) [22];
- Dynamic range of motion (ROM) for hip and knee flexion–extension and ankle dorsi–plantarflexion. Values were obtained as the difference between the maximum and minimum angle value recorded during the gait cycle;
- Sagittal kinematics of hip, knee and ankle (i.e., hip and knee flexion–extension and ankle dorsi–plantarflexion angles during the gait cycle) which were also employed to calculate the interlimb symmetry parameters as described later in detail.
2.3. Inter-Limb Symmetry Quantification by Means of Waveform-Based Method
- Cyclogram area (degrees2): area enclosed by the curve obtained from the left–right angle diagram [25]. A hypothetical symmetrical gait would lead left and right joints to assume the same angular position during the gait cycle. In this way, cyclogram points would lie on a 45° line in the diagram with a null area;
- Cyclogram orientation (degrees): this parameter is expressed as the absolute value of the angular difference φ between the perfect symmetry line (45° line) and the orientation of the principal axis of inertia [24,26], which is the direction of the eigenvector of the inertial matrix for the cyclogram points in the x–y (left vs. right joint angle) reference system. Low φ angles indicate higher interlimb symmetry;
- Trend Symmetry (dimensionless): Calculated to assess the similarity of two waveforms (i.e., right and left leg angular trend across the gait cycles for each joint) by means of an eigenvector analysis [27]. Trend Symmetry index is obtained by dividing the variability about the eigenvector to the variability along the eigenvector and is not affected by a shift or magnitude differences in two considered waveforms. Low or null values indicate higher symmetry, and interlimb asymmetry results in high Trend Symmetry values;
- Range offset, a measure of the differences in operating range of each limb, is calculated as the absolute value of the difference between the average of the right-side waveform from the average of the left-side waveform [27]. In particular, this parameter indicates if one side operates in a wider flexion range than the opposite side; zero values indicate that both sides work within the same ROM.
2.4. Statistical Analysis
- Gait speed, cadence and step width, for which both limbs are involved;
- Stance, swing, double support phases and step length, where only one limb is involved.
3. Results
3.1. Spatiotemporal Parameters of Gait
Control Group | PD Group | |
---|---|---|
Speed (m/s) | 1.18 ± 0.22 | 1.06 ± 0.26 ** |
Cadence (steps/min) | 112.32 ± 10.24 | 111.49 ± 12.99 |
Step Length (m) | 0.63 ± 0.08 | 0.55 ± 0.11 ** |
Step Width (m) | 0.20 ± 0.02 | 0.19 ± 0.04 |
Stance Phase (% of the gait cycle) | 59.96 ± 1.65 | 60.77 ± 2.62 |
Swing Phase (% of the gait cycle) | 40.06 ± 1.65 | 38.67 ± 2.47 ** |
Double Support Phase (% of the gait cycle) | 20.07 ± 3.29 | 22.60 ± 4.73 ** |
Symmetry Index | Control Group | PD Group |
---|---|---|
Step Length | 2.90 ± 1.92 | 4.90 ± 3.52 ** |
Stance Phase Duration | 1.66 ± 1.20 | 2.39 ± 2.94 |
Swing Phase Duration | 2.45 ± 1.79 | 3.62 ± 4.04 |
Double Support Phase Duration | 7.90 ± 6.29 | 14.22 ± 17.03 * |
3.2. Gait Kinematics, GPS and GVS
Control Group | PD Group | |
---|---|---|
GPS | 6.60 ± 1.35 | 7.37 ± 1.31 ** |
Pelvic Obliquity GVS | 2.23 ± 0.88 | 2.60 ± 0.95 * |
Pelvic Tilt GVS | 5.45 ± 3.14 | 6.04 ± 3.55 |
Pelvic Rotation GVS | 3.35 ± 1.02 | 4.18 ± 1.34 ** |
Hip Abduction–Adduction GVS | 3.69 ± 1.29 | 3.94 ± 1.29 |
Hip Flexion–Extension GVS | 7.96 ± 3.35 | 8.54 ± 4.14 |
Hip Rotation GVS | 7.83 ± 3.23 | 8.86 ± 3.14 |
Knee Flexion–Extension GVS | 7.61 ± 2.51 | 8.98 ± 2.69 ** |
Ankle Dorsi–plantarflexion GVS | 5.84 ± 1.99 | 6.34 ± 2.21 |
Foot Progression GVS | 7.94 ± 2.60 | 8.47 ± 3.64 |
3.3. Dynamic ROM
Joint | Control Group | PD Group |
---|---|---|
Hip ROM | 46.52 ± 6.11 | 42.02 ± 5.89 ** |
Knee ROM | 58.80 ± 4.67 | 55.69 ± 5.53 ** |
Ankle ROM | 26.47 ± 4.94 | 24.93 ± 4.98 |
3.4. Point-by-Point Analysis of Kinematic Curves
- At the hip joint level, significant differences between pwPD and CG from 30 to 67% of the gait cycle;
- At the knee joint, between 1 and 3%, between 20 and 56% and between 87 and 100% of the gait cycle;
- At the ankle joint from 51 to 64% of the gait cycle.
3.5. Waveform-Based Symmetry Indexes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Miller-Patterson, C.; Buesa, R.; McLaughlin, N.; Jones, R.; Akbar, U.; Friedman, J.H. Motor asymmetry over time in Parkinson’s disease. J. Neurol. Sci. 2018, 393, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Laihinen, A.; Ruottinen, H.; Rinne, J.O.; Haaparanta, M.; Bergman, J.; Solin, O.; Koskenvuo, M.; Marttila, R.; Rinne, U.K. Risk for Parkinson’s disease: Twin studies for the detection of asymptomatic subjects using [18F]6-fluorodopa PET. J. Neurol. Suppl. 2000, 247, 110–113. [Google Scholar] [CrossRef]
- Burn, D.J.; Mark, M.H.; Playford, E.D.; Maraganore, D.M.; Zimmerman, T.R.; Duvoisin, R.C.; Harding, A.E.; Marsden, C.D.; Brooks, D.J. Parkinson’s disease in twins studied with 18–dopa and positron emission tomography. Neurology 1992, 42, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Sawle, G.V.; Wroe, S.J.; Lees, A.J.; Brooks, D.J.; Frackowiak, R.S.J. The identification of presymptomatic parkinsonism: Clinical and {18F}dopa positron emission tomography studies in an irish kindred. Ann. Neurol. 1992, 32, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Djaldetti, R.; Ziv, I.; Melamed, E. The mystery of motor asymmetry in Parkinson’s disease. Lancet Neurol. 2006, 5, 796–802. [Google Scholar] [CrossRef]
- Hughes, A.J.; Ben-Shlomo, Y.; Daniel, S.E.; Lees, A.J. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: A clinicopathologic study. Neurology 1992, 42, 1142–1146. [Google Scholar] [CrossRef]
- Lee, C.S.; Schulzer, M.; Mak, E.; Hammerstad, J.P.; Calne, S.; Calne, D.B. Patterns of asymmetry do not change over the course of idiopathic parkinsonism: Implications for pathogenesis. Neurology 1995, 45, 435–439. [Google Scholar] [CrossRef]
- Gelb, D.J.; Oliver, E.; Gilman, S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 1999, 56, 33–39. [Google Scholar] [CrossRef]
- Toth, C.; Rajput, M.; Rajput, A.H. Anomalies of asymmetry of clinical signs in Parkinsonism. Mov. Disord. 2003, 19, 151–157. [Google Scholar] [CrossRef]
- Elbaz, A.; Bower, J.H.; Peterson, B.J.; Maraganore, D.M.; McDonnell, S.K.; Ahlskog, J.E.; Schaid, D.J.; Rocca, W.A. Survival study of Parkinson disease in Olmsted County, Minnesota. Arch. Neurol. 2003, 60, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uitti, R.J.; Baba, Y.; Wszolek, Z.K.; Putzke, D.J. Defining the Parkinson’s disease phenotype: Initial symptoms and baseline characteristics in a clinical cohort. Park. Relat. Disord. 2005, 11, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Baltadjieva, R.; Giladi, N.; Gruendlinger, L.; Peretz, C.; Hausdorff, J.M. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur. J. Neurosci. 2006, 24, 1815–1820. [Google Scholar] [CrossRef]
- Fling, B.W.; Curtze, C.; Horak, F.B. Gait asymmetry in people with Parkinson’s disease is linked to reduced integrity of callosal sensorimotor regions. Front. Neurol. 2018, 9, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanhoe-Mahabier, W.; Snijders, A.; Delval, A.; Weerdesteyn, V.; Duysens, J.; Overeem, S.; Bloem, B. Walking patterns in Parkinson’s disease with and without freezing of gait. Neuroscience 2011, 182, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Plotnik, M.; Giladi, N.; Balash, Y.; Peretz, C.; Hausdorff, J.M. Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Ann. Neurol. 2005, 57, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Yogev, G.; Plotnik, M.; Peretz, C.; Giladi, N.; Hausdorff, J.M. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: When does the bilateral coordination of gait require attention? Exp. Brain Res. 2006, 177, 336–346. [Google Scholar] [CrossRef]
- Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupicka, R.; Kauler, J.; Szabo, Z. Gait symmetry measures: A review of current and prospective methods. Biomed. Signal Process. Control 2018, 42, 89–100. [Google Scholar] [CrossRef]
- Zanardi, A.P.J.; da Silva, E.S.; Costa, R.R.; Passos-Monteiro, E.; dos Santos, I.O.; Kruel, L.F.M.; Peyré-Tartaruga, L.A. Gait parameters of Parkinson’s disease compared with healthy controls: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 752. [Google Scholar] [CrossRef]
- Gibb, W.R.G.; Lees, A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988, 51, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Baker, R.; McGinley, J.; Schwartz, M.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The Gait Profile Score and Movement Analysis Profile. Gait Posture 2009, 30, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Goswami, A. Kinematic quantification of gait symmetry based on bilateral cyclograms. In Proceedings of the International Society of Biomechanics XIXth Congress, Dunedin, New Zealand, 6–11 July 2003. [Google Scholar]
- Hershler, C.; Milner, M. Angle-angle diagrams in the assessment of locomotion. Am. J. Phys. Med. 1980, 59, 109–125. [Google Scholar]
- Goswami, A. A new gait parameterization technique by means of cyclogram moments: Application to human slope walking. Gait Posture 1998, 8, 15–36. [Google Scholar] [CrossRef]
- Crenshaw, S.J.; Richards, J.G. A method for analyzing joint symmetry and normalcy, with an application to analyzing gait. Gait Posture 2006, 24, 515–521. [Google Scholar] [CrossRef]
- Bruening, D.A.; Frimenko, R.E.; Goodyear, C.D.; Bowden, D.R.; Fullenkamp, A.M. Sex differences in whole body gait kinematics at preferred speeds. Gait Posture 2015, 41, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Corona, F.; Pau, M.; Guicciardi, M.; Murgia, M.; Pili, R.; Casula, C. Quantitative assessment of gait in elderly people affected by Parkinson’s Disease. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016. [Google Scholar] [CrossRef]
- Švehlík, M.; Zwick, E.B.; Steinwender, G.; Linhart, W.E.; Schwingenschuh, P.; Katschnig, P.; Ott, E.; Enzinger, C. Gait Analysis in Patients with Parkinson’s Disease Off Dopaminergic Therapy. Arch. Phys. Med. Rehabil. 2009, 90, 1880–1886. [Google Scholar] [CrossRef]
- Peppe, A.; Chiavalon, C.; Pasqualetti, P.; Crovato, D.; Caltagirone, C. Does gait analysis quantify motor rehabilitation efficacy in Parkinson’s disease patients? Gait Posture 2007, 26, 452–462. [Google Scholar] [CrossRef]
- Morris, M.E.; Huxham, F.; McGinley, J.; Dodd, K.; Iansek, R. The biomechanics and motor control of gait in Parkinson disease. Clin. Biomech. 2001, 16, 459–470. [Google Scholar] [CrossRef]
- Morris, M.E.; Iansek, R.; Matyas, T.A.; Summers, J.J. Ability to modulate walking cadence remains intact in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1994, 57, 1532–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Emmerik, R.E.A.; Wagenaar, R.C.; Winogrodzka, A.; Wolters, E.C. Identification of axial rigidity during locomotion in parkinson disease. Arch. Phys. Med. Rehabil. 1999, 80, 186–191. [Google Scholar] [CrossRef]
- Sofuwa, O.; Nieuwboer, A.; Desloovere, K.; Willems, A.M.; Chavret, F.; Jonkers, I. Quantitative gait analysis in Parkinson’s disease: Comparison with a healthy control group. Arch. Phys. Med. Rehabil. 2005, 86, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inkster, L.M.; Eng, J.J.; MacIntyre, D.L.; Stoessl, A.J. Leg muscle strength is reduced in Parkinson’s disease and relates to the ability to rise from a chair. Mov. Disord. 2002, 18, 157–162. [Google Scholar] [CrossRef]
- Morris, M.E.; McGinley, J.; Huxham, F.; Collier, J.; Iansek, R. Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum. Mov. Sci. 1999, 18, 461–483. [Google Scholar] [CrossRef]
- Dietz, V.; Zijlstra, W.; Prokop, T.; Berger, W. Leg muscle activation during gait in Parkinson’s disease: Adaptation and interlimb coordination. Electroencephalogr. Clin. Neurophysiol. Mot. Control 1995, 97, 408–415. [Google Scholar] [CrossRef]
- DiPaola, M.; Pavan, E.E.; Cattaneo, A.; Frazzitta, G.; Pezzoli, G.; Cavallari, P.; Frigo, C.A.; Isaias, I.U. Mechanical energy recovery during walking in patients with Parkinson disease. PLoS ONE 2016, 11, e0156420. [Google Scholar] [CrossRef] [Green Version]
- Porta, M.; Pau, M.; Leban, B.; Deidda, M.; Sorrentino, M.; Arippa, F.; Marongiu, G. Lower limb kinematics in individuals with hip osteoarthritis during gait: A focus on adaptative strategies and interlimb symmetry. Bioengineering 2021, 8, 47. [Google Scholar] [CrossRef]
- Pau, M.; Leban, B.; Deidda, M.; Putzolu, F.; Porta, M.; Coghe, G.; Cocco, E. Kinematic analysis of lower limb joint asymmetry during gait in people with multiple sclerosis. Symmetry 2021, 13, 598. [Google Scholar] [CrossRef]
- Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture 2000, 12, 34–45. [Google Scholar] [CrossRef]
- Barbieri, F.A.; Vitório, R. Parkinson’s Disease and Gait Asymmetry. In Locomotion and Posture in Older Adults: The Role of Aging and Movement Disorders; Springer: Cham, Switzerland, 2017; pp. 161–175. [Google Scholar] [CrossRef]
- Frazzitta, G.; Ferrazzoli, D.; Maestri, R.; Rovescala, R.; Guaglio, G.; Bera, R.; Volpe, D.; Pezzoli, G. Differences in muscle strength in Parkinsonian patients affected on the right and left side. PLoS ONE 2015, 10, e0121251. [Google Scholar] [CrossRef] [PubMed]
Control Group (19 F, 28 M) | PD Group (24 F, 37 M) | |
---|---|---|
Age (years) | 66.0 ± 8.3 | 68.9 ± 9.3 |
Body mass (kg) | 66.9 ± 11.1 | 67.1 ± 10.9 |
Height (cm) | 164.7 ± 6.9 | 164.5 ± 7.8 |
Disease Duration (years) | - | 7.7 ± 5.6 |
UPDRS III score | - | 19.9 ± 9.3 |
Cyclogram Parameter | Control Group | PD Group | |
---|---|---|---|
Area | 116.57 ± 88.11 | 87.95 ± 72.18 | |
Hip | Orientation φ | 2.26 ± 2.36 | 1.92 ± 1.76 |
Trend Symmetry | 0.24 ± 0.21 | 0.29 ± 0.26 | |
Range Offset | 2.27 ± 2.02 | 3.22 ± 2.08 * | |
Area | 268.76 ± 213.97 | 213.53 ± 156.65 | |
Knee | Orientation φ | 1.47 ± 1.40 | 1.62 ± 1.35 |
Trend Symmetry | 0.49 ± 0.42 | 0.48 ± 0.32 | |
Range Offset | 4.52 ± 3.97 | 5.50 ± 3.22 | |
Area | 62.52 ± 51.59 | 84.58 ± 63.71 | |
Ankle | Orientation φ | 1.99 ± 1.44 | 3.92 ± 2.80 * |
Trend Symmetry | 1.54 ± 1.21 | 2.27 ± 1.48 * | |
Range Offset | 2.83 ± 2.05 | 3.57 ± 2.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arippa, F.; Leban, B.; Monticone, M.; Cossu, G.; Casula, C.; Pau, M. A Study on Lower Limb Asymmetries in Parkinson’s Disease during Gait Assessed through Kinematic-Derived Parameters. Bioengineering 2022, 9, 120. https://doi.org/10.3390/bioengineering9030120
Arippa F, Leban B, Monticone M, Cossu G, Casula C, Pau M. A Study on Lower Limb Asymmetries in Parkinson’s Disease during Gait Assessed through Kinematic-Derived Parameters. Bioengineering. 2022; 9(3):120. https://doi.org/10.3390/bioengineering9030120
Chicago/Turabian StyleArippa, Federico, Bruno Leban, Marco Monticone, Giovanni Cossu, Carlo Casula, and Massimiliano Pau. 2022. "A Study on Lower Limb Asymmetries in Parkinson’s Disease during Gait Assessed through Kinematic-Derived Parameters" Bioengineering 9, no. 3: 120. https://doi.org/10.3390/bioengineering9030120
APA StyleArippa, F., Leban, B., Monticone, M., Cossu, G., Casula, C., & Pau, M. (2022). A Study on Lower Limb Asymmetries in Parkinson’s Disease during Gait Assessed through Kinematic-Derived Parameters. Bioengineering, 9(3), 120. https://doi.org/10.3390/bioengineering9030120