Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater and Activated Sludge
2.2. Magnetised Photocatalyst (Fe-TiO2)
2.3. Experimental Procedure
2.4. Experimental Design and Modelling
3. Results and Discussion
3.1. RSM Modelling and Statistical Analysis
3.2. Analysis of Variance (ANOVA)
3.3. One-Factor-At-Time Technique
3.3.1. Effect of Catalyst Load
3.3.2. Effect of Hydraulic Retention Time (HRT)
3.4. Response Surface Interaction Plots
3.5. Response Optimization and Confirmation Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bella, K.; Rao, P.V. Anaerobic digestion of dairy wastewater: Effect of different parameters and co-digestion options—A review. Biomass Convers. Biorefin. 2021, 1–26. [Google Scholar] [CrossRef]
- Guerra, J.B.S.O.d.; Berchin, I.I.; Garcia, J.; Neiva, S.D.S.; Jonck, A.V.; Faraco, R.A.; De Amorim, W.S.; Ribeiro, J.M.P. A literature-based study on the water-energy–food nexus for sustainable development. Stoch. Environ. Res. Risk Assess. 2021, 35, 95–116. [Google Scholar] [CrossRef]
- Wang, X.-C.; Jiang, P.; Yang, L.; Fan, Y.V.; Klemeš, J.J.; Wang, Y. Extended water-energy nexus contribution to environmentally-related sustainable development goals. Renew. Sustain. Energy Rev. 2021, 150, 111485. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Ngo, H.H.; Guo, W.; Nguyen, T.L.H.; Chang, S.W.; Nguyen, D.D.; Varjani, S.; Lei, Z.; Deng, L. Environmental impacts and greenhouse gas emissions assessment for energy recovery and material recycle of the wastewater treatment plant. Sci. Total Environ. 2021, 784, 147135. [Google Scholar] [CrossRef] [PubMed]
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.-B.; Sadegheih, A.; Mehrjerdi, Y.Z. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 2022, 238, 121602. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Amankwa, M.O.; Armah, E.K.; Rathilal, S. Fate of COVID-19 Occurrences in Wastewater Systems: Emerging Detection and Treatment Technologies—A Review. Water 2020, 12, 2680. Available online: https://www.mdpi.com/2073-4441/12/10/2680 (accessed on 25 November 2020). [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Rathilal, S. Application of Organic Coagulants in Water and Wastewater Treatment. Available online: https://www.intechopen.com/chapters/65706 (accessed on 25 November 2020).
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Mahtab, M.S.; Farooqi, I.H.; Khursheed, A. Zero Fenton sludge discharge: A review on reuse approach during wastewater treatment by the advanced oxidation process. Int. J. Environ. Sci. Technol. 2021, 1–14. [Google Scholar] [CrossRef]
- Babaei, A.A.; Golshan, M.; Kakavandi, B. A heterogeneous photocatalytic sulfate radical-based oxidation process for efficient degradation of 4-chlorophenol using TiO2 anchored on Fe oxides@carbon. Process Saf. Environ. Prot. 2021, 149, 35–47. [Google Scholar] [CrossRef]
- Ge, M.; Hu, Z.; Wei, J.; He, Q.; He, Z. Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: Performances, mechanism and perspectives. J. Alloy. Compd. 2021, 888, 161625. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Qian, R.; Zhou, G.; Wang, Y.; Lee, W.I.; Pan, J.H. Mesoporous WO3/TiO2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration. Chemosphere 2021, 263, 128344. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Noonia, A.; Dogra, A.; Thind, P.S. Optimising the parameters affecting degradation of Cypermethrin in an aqueous solution using TiO2/H2O2 mediated UV photocatalysis: RSM-BBD, kinetics, isotherms and reusability. Int. J. Environ. Anal. Chem. 2021, 1–15. [Google Scholar] [CrossRef]
- Deriase, S.F.; El-Salamony, R.A.; Amdeha, E.; Al-Sabagh, A.M. Statistical optimization of photocatalytic degradation process of methylene blue dye by SnO–TiO2–AC composite using response surface methodology. Environ. Prog. Sustain. Energy 2021, 40, e13639. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Ezugbe, E.O.; Asante-Sackey, D.; Armah, E.K.; Rathilal, S. Response Surface Methodology: Photocatalytic Degradation Kinetics of Basic Blue 41 Dye Using Activated Carbon with TiO2. Molecules 2021, 26, 1068. [Google Scholar] [CrossRef] [PubMed]
- Joy, V.M.; Feroz, S.; Dutta, S. Solar nanophotocatalytic pretreatment of seawater: Process optimization and performance evaluation using response surface methodology and genetic algorithm. Appl. Water Sci. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Dong, R. Recent progress towards in-situ biogas upgrading technologies. Sci. Total Environ. 2021, 800, 149667. [Google Scholar] [CrossRef]
- Fuentes, I.; Bernales, N.; Ulloa, C.; García, X. Kinetics of CO2 methanation using a Fe-bearing blast furnace sludge as catalytic precursor. Catal. Today 2021. [Google Scholar] [CrossRef]
- Carranzo, I.V. Standard Methods for examination of water and wastewater. In Anales De Hidrología Médic; Universidad Complutense de Madrid: Madrid, Spain, 2012; Volume 5, p. 185. [Google Scholar]
- Tetteh, E.K.; Amo-Duodu, G.; Rathilal, S. Synergistic Effects of Magnetic Nanomaterials on Post-Digestate for Biogas Production. Molecules 2021, 26, 6434. Available online: https://www.mdpi.com/1420-3049/26/21/6434 (accessed on 20 November 2021). [CrossRef] [PubMed]
- Apollo, S.; Onyango, M.S.; Ochieng, A. Modelling energy efficiency of an integrated anaerobic digestion and photodegradation of distillery effluent using response surface methodology. Environ. Technol. 2016, 37, 2435–2446. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Moon, G.-H.; Kim, B.; Tachikawa, T.; Majima, T.; Hong, S.; Cho, K.; Kim, W.; Choi, W. Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Appl. Catal. B Environ. 2021, 286, 119905. [Google Scholar] [CrossRef]
- Kobwittaya, K.; Sirivithayapakorn, S. Photocatalytic reduction of nitrate over Fe-modified TiO2. APCBEE Procedia 2014, 10, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Vargas, X.; Marin, J.; Restrepo, G. Evaluation of a coupled system using a nanomaterial Fe-doped TiO2 and a sequential batch reactor (SBR) to degrade azo dyes. Lat. Am. Appl. Res. 2016, 46, 81–86. [Google Scholar] [CrossRef]
- Manojkumar, N.; Muthukumaran, C.; Sharmila, G. A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources. J. King Saud Univ.-Eng. Sci. 2020, in press. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997. [Google Scholar] [CrossRef]
- Azadi, F.; Karimi-Jashni, A.; Zerafat, M.M.; Saadat, S. Fabrication, optimization, and performance of a novel double-skinned Al2O3. TiO2 ceramic nanocomposite membrane for forward osmosis application. Environ. Technol. Innov. 2021, 22, 101423. [Google Scholar] [CrossRef]
- Ajay, C.; Mohan, S.; Dinesha, P.; Rosen, M.A. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel 2020, 277, 118234. [Google Scholar] [CrossRef]
- Ghofrani-Isfahani, H.; Baniamerian Tsapekos, P.; Alvarado-Morales, M.; Kasama, T.; Shahrokhi, M.; Vossoughi, M.; Angelidaki, I. Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate. Energy 2020, 191, 116580. [Google Scholar] [CrossRef]
Water Quality | Value | Analytical Units |
---|---|---|
pH | 7.42 ± 2.3 | Hanna pH/EC/TDS Tester (H198130) |
Temperature (°C) | 26.42 ± 3.6 | Hanna pH/EC/TDS Tester (H198130) |
Color (abs 465 nm, Pt. Co) | 570.23 ± 12 | HACH Spectrophotometer (DR3900) |
Turbidity (NTU) | 732.32 ± 14 | Turbidity meter (HACH 2100N) |
Chemical oxygen demand (mg COD/L) | 2380.32 ± 14 | HACH Spectrophotometer (DR3900) |
Ammonia (mg NH3/L) | 0.74 ± 0.4 | HACH Spectrophotometer (DR3900) |
Total Kjeldahl nitrogen (mg TKN/L) | 30.52 ± 1.4 | HACH Spectrophotometer (DR3900) |
Nitrate (mg NO3/L) | 0.64 ± 0.5 | HACH Spectrophotometer (DR3900) |
Total nitrogen (mg TN/L) | 31.88 ± 7.8 | HACH Spectrophotometer (DR3900) |
Total suspended solids (mgTS/L) | 304.53 ± 15.6 | Analytical balance (HCB602H 22 ADAM) |
Volatile solids (mg VS/L) | 229.52 ± 25 | Analytical balance (HCB602H 22 ADAM) |
Ratio (%VS/TS) | 75.37 |
Symbol | Factor Name | Unit | Type | Low | Middle | High |
---|---|---|---|---|---|---|
Coded level | −1 | 0 | 1 | |||
A | Catalyst load | g | Factor | 2 | 4 | 6 |
B | HRT | d | Factor | 1 | 16 | 31 |
Factor 1 | Factor 2 | Experimental Results | RSM-BBD Model Predicted Results | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Run | A:Catalyst Load (g) | B:HRT (d) | Biogas (mL/d) | COD (%) | Color (%) | Turbidity (%) | Biogas (mL/d) | COD (%) | Color (%) | Turbidity (%) |
1 | 2 | 16 | 135 | 95 | 94 | 96.6 | 130.6 | 94.9 | 94.3 | 96.7 |
2 | 6 | 16 | 300 | 96 | 97 | 98.2 | 303.4 | 96.4 | 97.3 | 98.3 |
3 | 2 | 16 | 125 | 95 | 94 | 96.6 | 130.6 | 94.9 | 94.3 | 96.7 |
4 | 6 | 1 | 335 | 94 | 95 | 97.2 | 327.4 | 93.8 | 95.5 | 97.4 |
5 | 4 | 31 | 275 | 97 | 97 | 98.1 | 272.8 | 97.0 | 97.3 | 98.3 |
6 | 2 | 31 | 145 | 94 | 95 | 97.1 | 148.6 | 94.5 | 94.5 | 96.8 |
7 | 4 | 1 | 275 | 96 | 96 | 97.6 | 278.8 | 94.7 | 95.3 | 97.3 |
8 | 4 | 31 | 275 | 98 | 97 | 98.1 | 272.8 | 97.0 | 97.3 | 98.3 |
9 | 6 | 16 | 300 | 97 | 98 | 98.7 | 303.4 | 96.4 | 97.3 | 98.3 |
10 | 4 | 16 | 275 | 97 | 98 | 98.6 | 267.0 | 96.6 | 96.9 | 97.6 |
11 | 6 | 31 | 296 | 95 | 96 | 97.7 | 296.9 | 95.5 | 96.0 | 97.7 |
12 | 4 | 1 | 270 | 93 | 95 | 97.1 | 278.8 | 94.7 | 95.3 | 97.3 |
13 | 2 | 1 | 135 | 92 | 91 | 95.1 | 130.1 | 91.8 | 91.0 | 95.1 |
Response | Source | Sum of Squares | df | F-Value | p-Value | R2 | Adeq Precision |
---|---|---|---|---|---|---|---|
Biogas (Y1) | Model | 69,092.95 | 5 | 289.5 | <0.0001 | 0.9952 | 42.025 |
A-Catalyst | 59,685.12 | 1 | 1250.42 | <0.0001 | |||
B-HRT | 72 | 1 | 1.51 | 0.2591 | |||
AB | 600.25 | 1 | 12.58 | 0.0094 | |||
A2 | 7000 | 1 | 146.65 | <0.0001 | |||
B2 | 214.38 | 1 | 4.49 | 0.0718 | |||
Residual | 334.13 | 7 | |||||
COD(Y2) | Model | 29.57 | 5 | 20.48 | 0.0005 | 0.9360 | 16.0298 |
A-Catalyst | 4.5 | 1 | 17.65 | 0.0040 | |||
B-HRT | 10.12 | 1 | 25.00 | 0.0016 | |||
AB | 0.25 | 1 | 0.6449 | 0.4483 | |||
A2 | 10.8 | 1 | 49.41 | 0.0002 | |||
B2 | 8.23 | 1 | 25.78 | 0.0014 | |||
Residual | 7.2 | 7 | |||||
Color (Y3) | Model | 43.04 | 5 | 29.6 | 0.0001 | 0.9548 | 18.8142 |
A-Catalyst | 18 | 1 | 61.89 | 0.0001 | |||
B-HRT | 8 | 1 | 27.51 | 0.0012 | |||
AB | 2.25 | 1 | 7.74 | 0.0272 | |||
A2 | 12.01 | 1 | 41.31 | 0.0004 | |||
B2 | 6.91 | 1 | 23.78 | 0.0018 | |||
Residual | 2.04 | 7 | |||||
Turbidity (Y4) | Model | 11.4 | 5 | 31.36 | 0.0001 | 0.9573 | 19.0872 |
A-Catalyst | 5.15 | 1 | 70.86 | <0.0001 | |||
B-HRT | 2 | 1 | 27.51 | 0.0012 | |||
AB | 0.5625 | 1 | 7.74 | 0.0272 | |||
A2 | 2.99 | 1 | 41.11 | 0.0004 | |||
B2 | 1.73 | 1 | 23.78 | 0.0018 | |||
Residual | 0.5089 | 7 |
Response | Predicted | Observed | * Std Dev | * SE Mean |
---|---|---|---|---|
Biogas (mL/d) | 267 | 250 | 6.95 | 4.53 |
COD (%) | 98 | 95 | 1.01 | 0.67 |
Color (%) | 98 | 96 | 0.53 | 0.38 |
Turbidity (%) | 99 | 97 | 1.87 | 1.67 |
Waste Type | Process | Operating Condition | Efficiency | Reference |
---|---|---|---|---|
Blast furnace sludge (BFS) with a Fe-rich residue, as a catalyst | A Laboratory scale differential reactor | Temperature of 300–350 °C, 1 atm, and variable partial pressures of H2 (10–50 kPa) and CO (0.25–3.0 kPa) | The methane production and selectivity achieved were 2.63 μmolCH4/gcat/min and 49.5% | [22] |
Municipality wastewater seeded with 2 g of Fe2O4-TiO2 MNPs | Biochemical Methane Potential (BMP) Test | Temperature 40 °C for 30 days | biogas production (400 mL/day) and methane yield (100% CH4) | [24] |
Municipality wastewater | Biochemical Methane Potential (BMP) Test | Temperature 40 °C for 30 days | Biogas production (350 mL/day) and methane yield (65% CH4). | [24] |
Distillery wastewater | Integrated anaerobic -photocatalysis | Organic load rate (OLR) of 3 kg COD/m3.d) and hydraulic retention time (HRT) of 20 days | 98% COD, 50% color, bioenergy of 180.5 kWh/m3 | [25] |
Lignocellulosic materials | Anaerobic digestion | 0.252 mg of NiO–TiO2/g total solids (TS) and HRT of 4 days | Soluble chemical oxygen demand (COD) and 67% increase in volatile fatty acids (VFAs) | [33] |
Municipality wastewater seeded with Fe-TiO2 | Biophotocatalytic system | 4 g catalyst load and HRT of 21 d | 267 mL/d of biogas, 97.75% COD, 98% color and 99% turbidity | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetteh, E.K.; Rathilal, S. Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery. Bioengineering 2022, 9, 95. https://doi.org/10.3390/bioengineering9030095
Tetteh EK, Rathilal S. Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery. Bioengineering. 2022; 9(3):95. https://doi.org/10.3390/bioengineering9030095
Chicago/Turabian StyleTetteh, Emmanuel Kweinor, and Sudesh Rathilal. 2022. "Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery" Bioengineering 9, no. 3: 95. https://doi.org/10.3390/bioengineering9030095
APA StyleTetteh, E. K., & Rathilal, S. (2022). Response Surface Optimization of Biophotocatalytic Degradation of Industrial Wastewater for Bioenergy Recovery. Bioengineering, 9(3), 95. https://doi.org/10.3390/bioengineering9030095