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Abstract: Emotion recognition is receiving significant attention in research on health care and Human-
Computer Interaction (HCI). Due to the high correlation with emotion and the capability to affect
deceptive external expressions such as voices and faces, Electroencephalogram (EEG) based emotion
recognition methods have been globally accepted and widely applied. Recently, great improvements
have been made in the development of machine learning for EEG-based emotion detection. However,
there are still some major disadvantages in previous studies. Firstly, traditional machine learning
methods require extracting features manually which is time-consuming and rely heavily on human
experts. Secondly, to improve the model accuracies, many researchers used user-dependent models
that lack generalization and universality. Moreover, there is still room for improvement in the
recognition accuracies in most studies. Therefore, to overcome these shortcomings, an EEG-based
novel deep neural network is proposed for emotion classification in this article. The proposed 2D
CNN uses two convolutional kernels of different sizes to extract emotion-related features along both
the time direction and the spatial direction. To verify the feasibility of the proposed model, the pubic
emotion dataset DEAP is used in experiments. The results show accuracies of up to 99.99% and 99.98
for arousal and valence binary classification, respectively, which are encouraging for research and
applications in the emotion recognition field.

Keywords: emotion recognition; machine learning; convolutional neural network; electroencephalogram

1. Introduction
1.1. Background

Emotions are mainly the individuals’ inner responses (such as attention, memorization,
achieving goals, awareness of priority, knowledge motivation, communication with others,
learning development, mood status, and effort motivation) [1,2] to whether or not the
objective conditions meet their psychological expectations which could also reflect their
attitudes and perceptions [3]. Preliminary researchers in neuroscience, psychology, and
cognitive science have confirmed that emotions play a key role in rational decision making,
interpersonal communication, learning, memory, physical, and even mental health [4].
Long-term negative emotions and depression can interfere with individuals’ normal behav-
iors and health [5]. Affective computing is a branch of artificial intelligence that relates to,
arises from, or influences emotions and it has emerged as a significant field of study that
aims to develop systems that can automatically recognize emotions [2]. In the past decade,
there have been a variety of methods to recognize emotions, including those based on
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self-evaluation (such as the Self-Assessment Manikin (SAM)) [6], which reports behavioral
responses (such as vocal intonations, facial expressions, and body postures), and physio-
logical signals. However, due to the social nature of human beings, individuals usually do
not desire to express their real emotional states, they habitually disguise their expressions
and movements when a camera is on them [7]. Moreover, to ensure the monitored data is
of high quality, users are required to maintain a stable posture and position in front of the
camera, microphone, and other sensors. These limitations lead it to be challenging to apply
in a practical sense. By contrast, individuals are not able to disguise or conceal their physio-
logical responses easily, thus, physiological signals can truly reflect the emotional changes
of users. Consequently, methods of recognition based on physiological signals have become
mainstream [8]. Among these physiological signals used in emotion recognition, electrocar-
diogram (ECG), respiratory (RSP), body temperature, etc. have their disadvantages since
the variability of these signals is usually subtle and the change rate is typically slower. By
contrast, electroencephalography (EEG) signals have the advantage of a high real-time
differential and of being non-fakeable. In addition, emotion is essentially regulated by the
central nervous system. Therefore, using EEG signals to recognize emotion is usually more
accurate and objective than using other peripheral physiological signals [9–13]. EEG-based
emotion recognition has attracted an increasing number of scholars and has been proved to
be an effective method of emotion recognition in a multitude of research [14].

1.2. Related Work
1.2.1. Emotion Model

Since people have different ways to express their emotions, judging their emotions
is a challenging task. There are two main models of emotion. Some researchers hold the
view that emotions are composed of several basic discrete emotions. For example, Ekman
believes that emotions consist of happiness, sadness, fear, and anger. Under different
cultural backgrounds and social environments, these basic emotions form more complex
emotions by a combination in different forms [15]. By contrast, other researchers believe
that emotional states are consecutive and indissociable. Plutchik proposed the famous
emotion wheel model. As Figure 1 shows, the middle circle indicates the basic emotions.
The outer circle and the inner circle respectively represent the undersaturation and the
oversaturation of basic emotion [16].
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The most widely accepted emotion model is the two-dimensional model ‘Arousal-
Valence’, proposed in 1980 by Russell. Figure 2 illustrates the Arousal-Valence model, the
x-axis represents the Valence Dimension and the y-axis represents the Arousal Dimension.
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Different emotions can be located in this model. The emotion model used in the most
popular public emotion dataset ‘DEAP’ is the extended version of ‘Arousal-Valence’.
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1.2.2. EEG-Based Emotion Recognition

Most existing approaches are based on machine learning techniques for EEG emotion
recognition [17]. For the classifiers in emotion recognition, the traditional machine learning
algorithms such as support vector machine (SVM) and k-nearest neighbor (KNN) are
frequently used and achieve good results. Kroupi designed a linear discriminant analysis
model as the classification and used the power spectral density as a feature to recognize
emotion [18]. Bahari used a k-Nearest to classify the emotion and got the accuracy of 64.56%,
58.05%, and 67.42% for three classes of arousal, valence, and liking [19]. Zheng proposed
selecting 12 channel electrode features in SVM, which provided 86.65% on average [20].

However, the methods that use traditional machine learning algorithms have required
the extraction of the emotion-related features from the origin EEG fragment. The extraction
is time-consuming and the process uncertain. Moreover, the emotion recognition accuracies
of these methods could be improved. Therefore, deep learning-based methods in emo-
tion recognition have become increasingly popular. Tripathi used a DNN as the classifier
to obtain better results as the accuracy of valence and arousal is 81.4 and 73.4%, respec-
tively [21]. Zhang used the sparse autoencoder (SAE) and logistic regression to predict the
emotion status. The recognition accuracy has improved to 81.21% for valence and 81.26%
for arousal [22]. Nevertheless, the accuracy of emotion recognition by using CNN or SAE
is still not high. Alhagry proposed a long-short term (LSTM) model to address emotion
recognition. They used the DEAP dataset to test the method and the accuracies were
85.45% and 85.65% for valence and arousal, respectively [23]. Salama recognized emotions
by a 3D convolutional neural network(3D-CNN) model. They extracted multi-channel
EEG signals into 3D data for the Spatio-temporal feature extraction. The recognition
accuracies on the DEAP dataset were improved to 87.44% and 88.49% for valence and
arousal, respectively [24]. Song designed a dynamical graph convolutional neural network
(DGCNN) which used graph relation to represent EEG and then use graph convolution
network (GCN) to classify emotion. They tested the method on the DREAMER database
and achieved the recognition accuracies of 86.23%, 84.54%, and 85.02% for valence, arousal,
and dominance, respectively [25]. Zhong presented a regularized graph neural network
(RGNN) to capture both local and global inter-channel relations and the accuracy is 85.30
on the SEED dataset [26]. Yin combined the graph CNN and LSTM. They took advantage
of both methods to extract the graph domain features for emotion recognition and attained
the average classification accuracy of 84.81% and 85.27% for valence and arousal [27]. Yang
subtracted the Base Mean outcome from raw EEG data, then the processed data were
converted to 2D EEG frames. They proposed a fusion model of CNN and LSTM and
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achieved high performance with a mean accuracy of 90.80% and 91.03% on valence and
arousal classification tasks respectively [28]. Liu used a deep neural network and sparse
autoencoder combined model to classify emotion [29]. Zhang tried many kinds of deep
learning methods to classify emotions and got the best performance by using a CNN-LSTM
model (accuarcy:94.17%) [30]. Donmez designed their own experiment and collected an
emotion dataset, then used CNN to classify it and obtained an accuracy of 84.69% [31].
There are also some studies whose goals are not concerned with emotional recognization,
but the methods they used for the classification of EEG signals using deep learning are
worth learning from. For example, Abdani used Convolutional Neural Networks to test
subjects to determine whether the task is new or routine [32], and Anwar used the AlexNet
to classify motor imagery tasks [33].

1.3. The Contributions of This Study

There are still three main limitations, however, that need to be addressed in the studies
in the field of emotion recognition to improve performance. The first one is the feature
extraction problem. The shallow traditional machine learning models such as SVM and
KNN used in emotion recognition require researchers to extract the emotional-related
features manually as the input of their models. Some studies that used the deep learning
model also extracted features manually to improve the classification performance. Manually
extracting these features is time-consuming and the quality of these extracted features is
also unstable given the involvement of human subjective consciousness and experience.
Another main issue is that researchers used the user-dependent model to improve their
model’s performance. The training and testing data are chosen from the same subject in
the User-dependent model. Thus, the User-dependent emotion recognition model typically
shows high accuracy. Nevertheless, the User-dependent model lacks generalization and
universality. For every different subject, the User-dependent model requires training data
of the specific individual to perform the tuning process, which means the model needs to
be retrained every time the subject changes. The accuracies of most emotion recognition
models are not high enough, thus there is still room for improvement. To address the
above issues, we, therefore, propose a novel 2D-CNN model with two different sizes of
convolution kernels that convolve along with the time and space directions, respectively.
The proposed model does not need to manually extract the emotional-related features.
The emotion recognition classification result could be directly derived from the raw EEG
data by the proposed model, which realizes the end-to-end functionality. Furthermore,
the proposed model is a User-independent model that is more applicable to new users
because there is no need to create a new model for every single subject. The model just
needs to be trained once for all the subjects and it could effectively monitor the emotion of
a new user. Finally, the effectiveness of our model is examined on the DEAP dataset. The
proposed model achieves the state-of-the-art accuracy of 99.97% on the valence and 99.93%
on the arousal.

The layout of the paper is as follows: In Section 1, important background on emotion
reignition is described and also previous works are reviewed. Section 2 begins by introduc-
ing the domains of EEG signals and how they will be used in emotion recognition. It then
introduces the DEAP dataset and the process of the dataset. The experiment setup and the
entire process of our model are presented in detail at the end of Section 2. Section 3 explains
the results achieved by the proposed method to demonstrate its effectiveness. Finally, the
conclusion of this work and future work follows in Section 4.

2. Materials and Methods
2.1. EEG on Emotion

As the reflection of the central nervous system (CNS), asynchronous activity occurs in
different locations of the brain during emotions [34]. Therefore, EEG can reveal significant
information on emotions [35]. EEG is a waveform recording system that reads scalp
electrical activity generated by the human brain over a period of time. It measures voltage
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fluctuations resulting from the ionic current flowing through the neurons of the brain. The
EEG signal has a low amplitude which ranges from 10 uV to 100 uV [36]. The frequency
range of EEG signals is typically 0.5–100 Hz [37]. According to various mental states and
conditions, researchers divide EEG signals into five frequency sub-bands that are named
the delta (1–4 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz),
respectively [38].

2.2. The Dataset and Process

The majority of the past studies about EEG—based emotion recognition in the last
10 years used the public open dataset to compare with other researchers and to demonstrate
the advantages of their methods. The most used public open datasets are the MAHNOB-
HCI, the DEAP, and the SEED. Among the articles conducted by public open dataset, most
of them used the DEAP dataset [39]. To evaluate our proposed model, we adopted the most
popular emotion dataset, DEAP, to conduct the experiments and verify the effectiveness.
The DEAP (Database for Emotion Analysis using Physiological Signals) is a public open
emotion dataset collected by researchers from the Queen Mary’s University of London,
the University of Twente in the Netherlands, the University of Geneva in Switzerland,
and the Swiss Federal Institute of Technology in Lausanne. They recorded the EEG and
peripheral physiological signals of 32 healthy participants aged between 19 and 32 with
an equal number of males and females. All 32 subjects were stimulated to produce certain
emotions. Subjects were asked to relax for the first two minutes of the experiment. The first
twominute recording is regarded as the baseline. Then subjects were asked to watch 40
music video excerpts of oneminute duration and these served as the sources of emotion
elicitation. Figure 3 shows the process of the emotion elicitation experiment.
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Figure 3. Experiment process.

During this process, the EEG signals were recorded, at a sampling rate of 512 Hz, from
32 electrodes placed on the scalp according to the international 10–20 system [40]. At the
same time, the peripheral physiological signals including skin temperature, blood volume
pressure, electromyogram, and galvanic skin response were recorded from the other 8
channels. Every subject completed 40 trials corresponding to the 40 videos. As a result,
there are 1280 (32 subjects × 40 trials) signal sequences in the DEAP dataset. For each trial,
the first 3 s are used as a baseline because participants did not watch the videos during
this time. Then they watched the one minute video. At the end of each trial, subjects were
asked to perform a self–assessment to evaluate their emotional levels of arousal, valence,
liking, and dominance in the range of 1 to 9. The self–assessment scales are a manikin
designed by Morris, as shown in Figure 4 [41].
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This scale represents from top to bottom, the levels of Valence, Arousal, Dominance,
and Liking, respectively. Furthermore, DEAP provides a preprocessed version of the
recorded EEG signals. In this study, we used the preprocessed version that the EEG signal
is downsampled into 128 Hz. To reduce the noises and cut the EOG artifacts, the EEG
signal was filtered by a band-pass filter with a frequency from 4 Hz to 45 Hz. The size of
the physiological signal matrix for each subject is 40 × 40 × 8064, which corresponds to
40 trials × 40 channels × 8064 (128 Hz × 63 s) sampling points [40].

2.3. Experiment Setting

Valence and Arousal are the most dimensional expression of basic emotions that
researchers usually focus on. Therefore, in this study, we chose Valence and Arousal as the
two scales for emotion recognition. Among the 40 channels of the DEAP dataset, we chose
the first 32 channels that contain the EEG signal as the basis of emotion recognition. The
labels of each data depend on the self-assessment rating values of Arousal and Valence
states. We divide the rating values of 1-9 into two binary classification problems with a
threshold of 5: If the self-assessment is more than 5, the label of this data is 1 (represents high
valence/arousal), otherwise, the label of this data is 0 (represents to low valence/arousal).
The process of recognizing emotions using EEG signals is shown in Figure 5.
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The raw EEG signals from the DEAP original version were preprocessed to reduce
the noise and cut the EOG artifacts. After this, the preprocessed version DEAP dataset
was produced. Then the preprocessed raw EEG signals are extracted for the deep learning
model. Finally, the emotion recognition classification results are obtained after the training
and testing of the model.

2.4. Proposed Method
2.4.1. Deep Learning Framework

To have the full benefit of the preprocessed raw EEG structure, we propose a two-
dimensional (2D) Convolutional Neural Network (CNN) model in this study for emotion
recognition. CNN is a class of deep neural networks widely used in a number of fields [42].

Compared with traditional machine learning methods, 2D CNN models have a better
ability to detect shape-related features and complex edges. In a typical CNN network, there
could be components named convolutional layers, pooling layers, dropout layers, and fully
connected layers. Features from original EEG signals are concatenated into images and
then sent to convolutional layers. After being convolved in convolutional layers, the data is
further subsampled to smaller size images in pooling layers. During the process, network
weights are learned iteratively through the backpropagation algorithm.

The input vector of the CNN structure is the two-dimensional feature, shown below:

a =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 (1)

The shape of the input vector a is m × n. Then the input vector a is convolved with
Wk in the convolution layer, Wk is given by:

ck =


c11
c21
· · ·
ci1

 (2)

In Formula (2), the length of bk is i which must be less than m in Formula (1). The
feature map is finally obtained after the convolution, which is calculated as:

f(α) = f(ck × a + bk) (3)

After the convolutional layer, BatchNorm2d is used to normalize the data. This
would keep the data size from being too large and prevent gradient explosion before the
LeakyReLU layer. BatcgNorm2d is calculated as:

y =
x−mean(x)√
Var(x) + eps

∗ gamma + beta (4)

where x is the value of the input vector, mean(x) is the mean value and the
√

Var(x)
denotes the variance value. Eps is a small floating-point constant to ensure that the
denominator is not zero. Gamma and beta are trainable vector parameters.

In Formula (3), f is the activation function, in this study, we use the leaky rectified
linear unit (LeakyReLU).

LeakyReLU is defined in Formula (5):

yα =

{
xα if xα ≥ 0
xα
aα

if xα < 0 (5)

where α is defined in Formula (3) and ai is a fixed parameter in the range of 1 to +∞.
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ReLU has more advantages in avoiding gradient disappearance than traditional neural
network activation functions, such as sigmoid and tanh. LeakyReLU has the same advantage
in avoiding gradient disappearance as ReLU. Moreover, during backpropagation, the
gradient can also be calculated for the part whose input is less than zero by LeakyReLU
(instead of having a value of zero as in ReLU). Thus, LeakyReLU can avoid the gradient
direction sawtooth problem. The bk is the bias value, k is the filter, and the ck ∈ Ri × 1 is
the weight matrix. The total number of filters in the convolutional layer is denoted by n.

A dropout of 0.25 is used in the Leaky Relu layer for reducing the network complexity
and reducing over-fitting. Thus, enhancing the generalization of the model. As Figure 6
shows, some neural network units are temporarily discarded with a certain probability, in
our model, the probability is 0.25.
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The feature map is then downsampled through the max-pooling layer. Figure 7 shows
the principle of Max pooling.

Bioengineering 2022, 9, x FOR PEER REVIEW 8 of 17 
 

𝒚 = 𝒙 − 𝐦𝐞𝐚𝐧 (𝒙)ඥ𝐕𝐚𝐫 (𝒙) +  eps 
∗ 𝐠𝐚𝐦𝐦𝐚 +  beta (4)

where 𝒙 is the value of the input vector, 𝐦𝐞𝐚𝐧 (𝒙) is the mean value and the ඥ𝐕𝐚𝐫 (𝒙) 
denotes the variance value. Eps is a small floating-point constant to ensure that the de-
nominator is not zero. Gamma and beta are trainable vector parameters. 

In Formula (3), 𝒇 is the activation function, in this study, we use the leaky rectified 
linear unit (LeakyReLU). 

LeakyReLU is defined in Formula (5): 

𝒚𝜶 = ൝𝒙𝜶     if 𝒙𝜶  𝟎𝒙𝜶𝒂𝜶      if 𝒙𝜶 ൏ 𝟎 (5)

where 𝜶 is defined in Formula (3) and 𝒂𝒊 is a fixed parameter in the range of 1 to + ∞. 
ReLU has more advantages in avoiding gradient disappearance than traditional neu-

ral network activation functions, such as sigmoid and tanh. LeakyReLU has the same ad-
vantage in avoiding gradient disappearance as ReLU. Moreover, during backpropagation, 
the gradient can also be calculated for the part whose input is less than zero by LeakyReLU 
(instead of having a value of zero as in ReLU). Thus, LeakyReLU can avoid the gradient 
direction sawtooth problem. The 𝒃𝒌 is the bias value, k is the filter, and the 𝒄𝒌 ∈ Ri × 1 is 
the weight matrix. The total number of filters in the convolutional layer is denoted by n. 

A dropout of 0.25 is used in the Leaky Relu layer for reducing the network complex-
ity and reducing over-fitting. Thus, enhancing the generalization of the model. As Figure 
6 shows, some neural network units are temporarily discarded with a certain probability, 
in our model, the probability is 0.25. 

 
Figure 6. Dropout layer diagram. 

The feature map is then downsampled through the max-pooling layer. Figure 7 
shows the principle of Max pooling. 
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The maximum value from the given feature map is extracted by this function. The
fully connected layer is flattened after the last polling layer. Finally, since the task is a binary
classification task, SoftMax is used in the output layer. Adam is used as the optimizer
and binary CrossEntropy is applied to calculate the model loss because the labels of the
arousal or valence classification are high value and low value. The Cross-Entropy in the
binary-classification task is calculated as below:

L = −[y∗logŷ + (1− y) ∗ log(1− ŷ)] (6)

For the data with N samples, the calculation process is:

L = −
N

∑
n=1

ŷilogyi + (1− ŷi)log(1− ŷi) (7)
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where N is the number of samples, y is the one-hot value, and ŷ is the output.

2.4.2. CNN Model

To better obtain the details of EEG signals associated with emotions, the 2D CNN is
employed to feature extraction and classification in our study. Table 1 shows the major
hyper-parameters and the related information, such as the value or the type of them of the
proposed trained CNN model.

Table 1. The value or types of the proposed model’s hyper-parameters.

Hyper-Parameter of the Proposed Model Value/Type

Batch size 128
Learning rate 0.0001
Momentum 0.9

Dropout 0.25
Number of epochs 200

Pooling layer Max pooling

Activation function
Window size

Optimizer
Loss Function

LeakyReLU
3 S

Adam
Cross Entropy

Our proposed CNN architecture is illustrated in Figure 8.
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The model is designed using Python3.7. As Figure 8 and Table 1 show, the input
size is width × height, where width is 32 (the number of electrode channels), and height
equals 3× 128 = 384 ((window size: 3 s) × (sampling rate 128 Hz)). The batch size of
the model is 128. So, the shape of the input data is (12,838,432). In the proposed model,
Conv2 represents the dimensional (2D) convolutional layer, Pooling2D denotes 2D max
pooling, BatchNorm2d is the 2D batch normalization, and Liner denotes the fully connected
layer. Every convolution layer is followed by an activation layer, in this model we use
the Leaky Relu as the activation function with the alpha = 0.3. The proposed model
contains eight convolution layers, four batch normalizations, four drop-out layers with
the probability of 0.25, three max-pooling layers, and two fully connected layers. All
above layers collectively form the four convolution blocks. One convolution block has two
convolution layers with two different convolution kernels to extract the emotion-relevant
features. The two convolution kernels have distinct kernel sizes, in particular 5 × 1 and
1 × 3. The convolution kernel with size 5 × 1 convolves the data along the time direction
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and the other convolution kernel with size 1× 3 convolves along the spatial direction. Every
single convolution layer uses LeakyReLU as the activation function. Each convolution
block has a normalization layer and a dropout layer (0.25). The first three convolution
blocks are connected with Max pooling layers at the end of them. The last convolution
block is followed by a fully connected layer and it is connected to the last output fully
connected layer after a dropout layer with the probability of 0.5. The final output of this
model is the classification results of the emotion recognition. Table 2 shows the shapes of
the proposed model.

Table 2. The shapes of the proposed model.

Number of Layers Layer Type Numbers of
Input Channels/Output Channels

1 Input (shape:1, 384, 32)
2 conv_1 (Conv2d) 1/25 (kernel size: 5 × 1)
3 droputout1 (Dropout=0.25) 1/25
4 conv_2 (Conv2d) 25/25 (kernel size: 1 × 3, stride = (1,2))
5 bn1 (BatchNorm2d) 25
6 pool1 (MaxPool2d (2,1)) 25/25
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

conv_3 (Conv2d)
droputout2 (Dropout = 0.25)

conv_4 (Conv2d)
bn2 (BatchNorm2d)pool2

(MaxPool2d (2,1))
conv_5 (Conv2d)

droputout3 (Dropout = 0.25)
conv_6 (Conv2d)

bn3 (BatchNorm2d)
pool3 (MaxPool2d (2,1))

conv_7 (Conv2d)
droputout4 (Dropout = 0.25)

conv_8 (Conv2d)
bn4 (BatchNorm2d)
flatten (Flatten layer)

Linear1 (Linear)
Droputout5 (Dropout = 0.5)

Linear2 (Linear)

25/50 (kernel size: 5 × 1)
25/50

50/50 (kernel size: 1 × 3, stride = (1,2))
50
50

50/100 (kernel size: 5 × 1)
50/100

100/100 (kernel size: 1 × 3, stride = (1,2))
100
100

100/200 (kernel size: 5 × 1)
100/200

200/200 (kernel size: 1 × 3)
200

Shape: 128 × 8000
8000/256

256/2 (binary classification task, number
of classes = 2)

3. Results

We use the most popular public emotion dataset DEAP of the EEG signals to evaluate
the proposed model. Seventy percent of the data of the DEAP dataset is randomly divided
into the training set and the other thirty percent is the test set. The classification metric is
the accuracy (ACC) which is the most commonly used evaluated guideline and represents
the proportion of the sample that is classified correctly, given by:

ACC =
TP + TN

TP + TN + FP + FN
× 100% (8)

where TP, TN, FP, and FN were denoted as the number of true positives, true negatives,
false positives, and false negatives, respectively.

Our model achieves the accuracies of 99.99% and 99.98% on Arousal and Valence
binary classification, respectively. The accuracy and loss classification of Valence and
Arousal are shown in Figures 9 and 10.
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As can be seen from Figures 9 and 10, for both Arousal and Valence classification, the
proposed model converged quickly from epoch 0 to epoch 25. Figure 11 shows the Model
accuracy and loss curves during the first 25 epochs. The model accuracies have already
achieved 98.36% and 98.02% on Arousal and Valence after 25 epochs, respectively. Then
from epoch 25 to epoch 50, the model accuracies improved slowly. Until the 50 epochs,
the model accuracies are 99.56% and 99.68% on Arousal and Valence, respectively. Then
the model is stabilizing during 50 to 200 epochs and finally achieves the high accuracies of
99.99% and 99.98% on Arousal and Valence, respectively.

In Table 3, we compare the Arousal and Valence binary classification accuracies to other
studies which used the DEAP dataset. From Table 3 and Figure 12, it can be concluded that
among all the above methods of emotion recognition, our method has the best performance.
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Table 3. Comparison with other studies that used the DEAP dataset.

Author Accuracies (%)

Chao et al. [43] Val:68.28, Aro:66.73 (deep learning)
Pandey and Seeja [44] Val:62.5, Aro:61.25 (deep learning)
Islam and Ahmad [45] Val:81.51, Aro:79.42 (deep learning)

Alazrai et al. [46]
Yang et al. [28]

Val:75.1, Aro:73.8 (traditional machine learn)
Val:90.80, Aro:91.03 (deep learning)

Alhagry et al. [23]
Liu et al. [47]
Cui et al. [48]

Vijiayakumar et al. [49]
Li et al. [50]

Luo [51]
Zhong and Jianhua [52]

Menezes et al. [53]
Zhang et al. [54]
Kumar et al. [55]

Atkinson and Campos [56]
Lan et al. [57]

Mohammadi et al. [58]
Koelstra et al. [39]
Tripathi et al. [21]
Cheng et al. [59]
Wen et al. [60]

Wang et al. [61]
Gupta et al. [62]

Yin et al. [27]
Salama et al. [24]

Our method

Val:85.45, Aro:85.65 (deep learning)
Val:85.2, Aro:80.5 (deep learning)

Val:96.65, Aro:97.11 (deep learning)
Val:70.41, Aro:73.75 (traditional machine learn)
Val:95.70, Aro:95.69 (traditional machine learn)

Val:78.17, Aro:73.79 (deep learning)
Val:78.00, Aro:78.00 (deep learning)
Val:88.00, Aro:69.00 (deep learning)
Val:94.98, Aro:93.20 (deep learning)

Val:61.17, Aro:64.84 (Non—machine learning)
Val:73.06, Aro:73.14 (deep learning)
Val:73.10, Aro:71.75 (deep learning)
Val:86.75, Aro:84.05 (deep learning)

Val:57.60, Aro:62.00 (traditional machine learn)
Val:81.40, Aro:73.40 (deep learning)
Val:97.69, Aro:97.53 (deep learning)
Val:77.98, Aro:72.98 (deep learning)
Val:72.10, Aro:73.10 (deep learning)

Val:79.99, Aro:79.95 (traditional machine learn)
Val:85.27, Aro:84.81 (deep learning)
Val:88.49, Aro:87.44 (deep learning)

Val:99.99, Aro:99.98
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4. Conclusions

In this paper, we proposed the Convolutional Neural Network model with two dif-
ferent sizes of convolution kernels to recognize emotion from EEG signals. This model is
user-independent and has high generalization and universality. It is more applicable to
new users because there is no need to create a new model for every single subject. It also is
an end-to-end model which is time-saving and stable. The effectiveness of our method is
ascertained on the DEAP public dataset and the performance has been proved to be at the
top of the area. Wearable devices have made great progress in people’s daily lives, and they
have been widely used in the application of healthcare [63]. Measuring EEG signals with
miniaturized wearable devices becomes possible. Future works will consider designing
our own emotion experiments and transferring the model to other public emotion datasets
such as the SEED dataset and evaluating the performance.
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