Nisin Variants Generated by Protein Engineering and Their Properties
Abstract
:1. Introduction
2. N-Terminal Domain Variants of Nisin
3. Hinge Region Variants of Nisin
4. C-Terminal Domain Variants of Nisin
5. Nisin Variants Containing Noncanonical Amino Acids
6. Nisin-Derived Hybrid Peptides
7. Production of Nisin Variants
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Hu, S.; Cao, L. Therapeutic effect of nisin Z on subclinical mastitis in lactating cows. Antimicrob. Agents Chemother. 2007, 51, 3131–3135. [Google Scholar] [CrossRef] [PubMed]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis detection: Current trends and future perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, J.R.; Chou, Y.C.; Gillies, K.; Kondo, J.K. Nisin Inhibits Several Gram-Positive, Mastitis-Causing Pathogens. J. Dairy Sci. 1989, 72, 3342–3345. [Google Scholar] [CrossRef]
- Cao, L.T.; Wu, J.Q.; Xie, F.; Hu, S.H.; Mo, Y. Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. J. Dairy Sci. 2007, 90, 3980–3985. [Google Scholar] [CrossRef] [PubMed]
- Szweda, P.; Schielmann, M.; Frankowska, A.; Kot, B.; Zalewska, M. Antibiotic resistance in Staphylococcus aureus strains isolated from cows with mastitis in eastern Poland and analysis of susceptibility of resistant strains to alternative nonantibiotic agents: Lysostaphin, nisin and polymyxin B. J. Vet. Med. Sci. 2014, 76, 355–362. [Google Scholar] [CrossRef]
- Huang, F.; Teng, K.; Liu, Y.; Wang, T.; Xia, T.; Yun, F.; Zhong, J. Nisin Z attenuates lipopolysaccharide-induced mastitis by inhibiting the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways. J. Dairy Sci. 2022, 105, 3530–3543. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Z.; Yu, Z.; Zhu, W. Monensin and Nisin Affect Rumen Fermentation and Microbiota Differently In Vitro. Front. Microbiol. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Wirjantoro, T.I.; Lewis, M.J.; Grandison, A.S.; Williams, G.C.; Delves-Broughton, J. The Effect of Nisin on the Keeping Quality of Reduced Heat-Treated Milks. J. Food Prot. 2001, 64, 213–219. [Google Scholar] [CrossRef]
- Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012, 1, 295–305. [Google Scholar] [CrossRef]
- Khusainov, R.; Kuipers, O.P. The presence of modifiable residues in the core peptide part of precursor nisin is not crucial for precursor nisin interactions with NisB- and NisC. PLoS ONE 2013, 8, e74890. [Google Scholar] [CrossRef]
- Goudarzi, F.; Esmaeilzadeh, M.; Yaghoubi, H. The Mechanisms of Anticancer Activity of Nisin Peptide on Myelogenous Leukemia Cell Line (K562) as a New Treatment: Inducing Apoptosis by Changing in the Expression of Bax and Bcl-2 Genes. Int. J. Pept. Res. Ther. 2021, 27, 2661–2670. [Google Scholar] [CrossRef]
- Ahmadi, S.; Ghollasi, M.; Hosseini, H.M. The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb. Pathogen. 2017, 111, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.S.; Morsy, H.; Abdelgwad, M. The Comparative Effect of Nisin and Thioridazine as Potential Anticancer Agents on Hepatocellular Carcinoma. Rep. Biochem. Mol. Biol. 2021, 9, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Malaczewska, J.; Kaczorek-Lukowska, E. Nisin-A lantibiotic with immunomodulatory properties: A review. Peptides 2021, 137, 170479. [Google Scholar] [CrossRef]
- Chatterjee, C.; Paul, M.; Xie, L.; van der Donk, W.A. Biosynthesis and Mode of Action of Lantibiotics. Chem. Rev. 2005, 105, 633–684. [Google Scholar] [CrossRef]
- Jack, R.; Bierbaum, G.; Heidrich, C.; Sahl, H.G. The genetics of lantibiotic biosynthesis. BioEssays 1995, 17, 793–802. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, X.; Garg, N.; van der Donk, W.A. Production of Lantipeptides in Escherichia coli. J. Am. Chem. Soc. 2011, 133, 2338–2341. [Google Scholar] [CrossRef]
- Valsesia, G.; Medaglia, G.; Held, M.; Minas, W.; Panke, S. Circumventing the Effect of Product Toxicity: Development of a Novel Two-Stage Production Process for the Lantibiotic Gallidermin. Appl. Environ. Microbiol. 2007, 73, 1635–1645. [Google Scholar] [CrossRef]
- Bindman, N.A.; Bobeica, S.C.; Liu, W.R.; van der Donk, W.A. Facile Removal of Leader Peptides from Lanthipeptides by Incorporation of a Hydroxy Acid. J. Am. Chem. Soc. 2015, 137, 6975–6978. [Google Scholar] [CrossRef]
- Si, T.; Tian, Q.; Min, Y.; Zhang, L.; Sweedler, J.V.; van der Donk, W.A.; Zhao, H. Rapid Screening of Lanthipeptide Analogs via In-Colony Removal of Leader Peptides in Escherichia coli. J. Am. Chem. Soc. 2018, 140, 11884–11888. [Google Scholar] [CrossRef]
- Breukink, E.; van Kraaij, C.; Demel, R.A.; Siezen, R.J.; Kuipers, O.P.; de Kruijff, B. The C-Terminal Region of Nisin Is Responsible for the Initial Interaction of Nisin with the Target Membrane. Biochemistry 1997, 36, 6968–6976. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, I.; Breukink, E.; van Kraaij, C.; Kuipers, O.P.; Bierbaum, G.; de Kruijff, B.; Sahl, H.G. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 2001, 276, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Hasper, H.E.; de Kruijff, B.; Breukink, E. Assembly and Stability of Nisin−Lipid II Pores. Biochemistry 2004, 43, 11567–11575. [Google Scholar] [CrossRef] [PubMed]
- Barna, J.C.J.; Williams, D.H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu. Rev. Microbiol. 1984, 38, 339–357. [Google Scholar] [CrossRef]
- Arthur, M.; Reynolds, P.E.; Depardieu, F.; Evers, S.; Dutka-Malen, S.; Quintiliani, R.; Courvalin, P. Mechanisms of glycopeptide resistance in Enterococci. J. Infect. 1996, 32, 11–16. [Google Scholar] [CrossRef]
- De Kruijff, B.; van Dam, V.; Breukink, E. Lipid II: A central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 117–121. [Google Scholar] [CrossRef]
- Severina, E.; Severin, A.; Tomasz, A. Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J. Antimicrob. Chemother. 1998, 41, 341–347. [Google Scholar] [CrossRef]
- Mataraci, E.; Dosler, S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2012, 56, 6366–6371. [Google Scholar] [CrossRef]
- Field, D.; O’Connor, R.; Cotter, P.D.; Ross, R.P.; Hill, C. In Vitro Activities of Nisin and Nisin Derivatives Alone and in Combination with Antibiotics against Staphylococcus Biofilms. Front. Microbiol. 2016, 7, 508. [Google Scholar] [CrossRef]
- Hurst, A. Nisin. Adv. Appl. Microbiol. 1981, 27, 85–123. [Google Scholar]
- Liu, W.; Hansen, J.N. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl. Environ. Microbiol. 1990, 56, 2551–2558. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.-S.; Bodyfelt, F.W.; Daeschel, M.A. Influence of Fat and Emulsifiers on the Efficacy of Nisin in Inhibiting Listeria monocytogenes in Fluid Milk. J. Dairy Sci. 1992, 75, 387–393. [Google Scholar] [CrossRef]
- Ibarra-Sanchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Invited review: Advances in nisin use for preservation of dairy products. J. Dairy Sci. 2020, 103, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- De Kwaadsteniet, M.; Ten Doeschate, K.; Dicks, L.M. Characterization of the structural gene encoding nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Clarias gariepinus). Appl. Environ. Microbiol. 2008, 74, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Zendo, T.; Fukao, M.; Ueda, K.; Higuchi, T.; Nakayama, J.; Sonomoto, K. Identification of the Lantibiotic Nisin Q, a New Natural Nisin Variant Produced by Lactococcus lactis 61-14 Isolated from a River in Japan. Biosci. Biotechnol. Biochem. 2003, 67, 1616–1619. [Google Scholar] [CrossRef]
- O’Connor, P.M.; O’Shea, E.F.; Guinane, C.M.; O’Sullivan, O.; Cotter, P.D.; Ross, R.P.; Hill, C.; Elkins, C.A. Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484. Appl. Environ. Microbiol. 2015, 81, 3953–3960. [Google Scholar] [CrossRef]
- O’Sullivan, J.N.; O’Connor, P.M.; Rea, M.C.; O’Sullivan, O.; Walsh, C.J.; Healy, B.; Mathur, H.; Field, D.; Hill, C.; Ross, R.P. Nisin J, a Novel Natural Nisin Variant, Is Produced by Staphylococcus capitis Sourced from the Human Skin Microbiota. J. Bacteriol. 2020, 202, e00639-19. [Google Scholar] [CrossRef]
- Wirawan, R.E.; Klesse, N.A.; Jack, R.W.; Tagg, J.R. Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Appl. Environ. Microbiol. 2006, 72, 1148–1156. [Google Scholar] [CrossRef]
- Garcia-Gutierrez, E.; O’Connor, P.M.; Saalbach, G.; Walsh, C.J.; Hegarty, J.W.; Guinane, C.M.; Mayer, M.J.; Narbad, A.; Cotter, P.D. First evidence of production of the lantibiotic nisin P. Sci. Rep. 2020, 10, 3738. [Google Scholar] [CrossRef]
- Hsu, S.T.; Breukink, E.; Tischenko, E.; Lutters, M.A.; de Kruijff, B.; Kaptein, R.; Bonvin, A.M.; van Nuland, N.A. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963–967. [Google Scholar] [CrossRef]
- Medeiros-Silva, J.; Jekhmane, S.; Paioni, A.L.; Gawarecka, K.; Baldus, M.; Swiezewska, E.; Breukink, E.; Weingarth, M. High-resolution NMR studies of antibiotics in cellular membranes. Nat. Commun. 2018, 9, 3963. [Google Scholar] [CrossRef] [PubMed]
- Dickman, R.; Danelius, E.; Mitchell, S.A.; Hansen, D.F.; Erdelyi, M.; Tabor, A.B. A Chemical Biology Approach to Understanding Molecular Recognition of Lipid II by Nisin(1-12): Synthesis and NMR Ensemble Analysis of Nisin(1-12) and Analogues. Chemistry 2019, 25, 14572–14582. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.C.; Leyland, M.; Clark, J.; Dodd, H.M.; Lian, L.Y.; Gasson, M.J.; Bycroft, B.W.; Roberts, G.C.K. Structure-activity relationships in the peptide antibiotic nisin: Antibacterial activity of fragments of nisin. FEBS Lett. 1996, 390, 129–132. [Google Scholar] [CrossRef]
- Molloy, E.M.; Field, D.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Saturation mutagenesis of lysine 12 leads to the identification of derivatives of nisin A with enhanced antimicrobial activity. PLoS ONE 2013, 8, e58530. [Google Scholar] [CrossRef] [PubMed]
- Rink, R.; Wierenga, J.; Kuipers, A.; Kluskens, L.D.; Driessen, A.J.; Kuipers, O.P.; Moll, G.N. Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl. Environ. Microbiol. 2007, 73, 5809–5816. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Gaudin, N.; Lyons, F.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS ONE 2015, 10, e0119684. [Google Scholar] [CrossRef]
- Lagedroste, M.; Reiners, J.; Smits, S.H.J.; Schmitt, L. Systematic characterization of position one variants within the lantibiotic nisin. Sci. Rep. 2019, 9, 935. [Google Scholar] [CrossRef]
- Zhou, L.; van Heel, A.J.; Kuipers, O.P. The length of a lantibiotic hinge region has profound influence on antimicrobial activity and host specificity. Front. Microbiol. 2015, 6, 11. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z.Z.; Chen, X.Z.; Yang, W.; Huan, L.D. Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Appl. Microbiol. Biotechnol. 2004, 64, 806–815. [Google Scholar] [CrossRef]
- Field, D.; Connor, P.M.O.; Cotter, P.D.; Hill, C.; Ross, R.P. The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Mol. Microbiol. 2008, 69, 218–230. [Google Scholar] [CrossRef]
- Carroll, J.; Field, D.; O’Connor, P.M.; Cotter, P.D.; Coffey, A.; Hill, C.; Ross, R.P.; O’Mahony, J. Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioeng. Bugs 2010, 1, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Healy, B.; Field, D.; O’Connor, P.M.; Hill, C.; Cotter, P.D.; Ross, R.P. Intensive mutagenesis of the nisin hinge leads to the rational design of enhanced derivatives. PLoS ONE 2013, 8, e79563. [Google Scholar] [CrossRef] [PubMed]
- Prince, A.; Sandhu, P.; Ror, P.; Dash, E.; Sharma, S.; Arakha, M.; Jha, S.; Akhter, Y.; Saleem, M. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends on Its Crowding and Degree of Oligomerization. Sci. Rep. 2016, 6, 37908. [Google Scholar] [CrossRef] [PubMed]
- Zaschke-Kriesche, J.; Reiners, J.; Lagedroste, M.; Smits, S.H.J. Influence of nisin hinge-region variants on lantibiotic immunity and resistance proteins. Bioorg. Med. Chem. 2019, 27, 3947–3953. [Google Scholar] [CrossRef]
- Yeluri Jonnala, B.R.; Feehily, C.; O’Connor, P.M.; Field, D.; Hill, C.; Ross, R.P.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Assessing the ability of nisin A and derivatives thereof to inhibit gram-negative bacteria from the genus Thermus. J. Dairy Sci. 2021, 104, 2632–2640. [Google Scholar] [CrossRef]
- Field, D.; Begley, M.; O’Connor, P.M.; Daly, K.M.; Hugenholtz, F.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS ONE 2012, 7, e46884. [Google Scholar] [CrossRef]
- Khosa, S.; Frieg, B.; Mulnaes, D.; Kleinschrodt, D.; Hoeppner, A.; Gohlke, H.; Smits, S.H. Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae. Sci. Rep. 2016, 6, 18679. [Google Scholar] [CrossRef]
- Liang, X.; Sun, Z.; Zhong, J.; Zhang, Q.; Huan, L. Adverse effect of nisin resistance protein on nisin-induced expression system in Lactococcus lactis. Microbiol. Res. 2010, 165, 458–465. [Google Scholar] [CrossRef]
- Zaschke-Kriesche, J.; Behrmann, L.V.; Reiners, J.; Lagedroste, M.; Groner, Y.; Kalscheuer, R.; Smits, S.H.J. Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg. Med. Chem. 2019, 27, 3454–3462. [Google Scholar] [CrossRef]
- Field, D.; Blake, T.; Mathur, H.; O’Connor, P.M.; Cotter, P.D.; Paul Ross, R.; Hill, C. Bioengineering nisin to overcome the nisin resistance protein. Mol. Microbiol. 2019, 111, 717–731. [Google Scholar] [CrossRef]
- Ros, E.; Torres, A.G.; Ribas de Pouplana, L. Learning from Nature to Expand the Genetic Code. Trends Biotechnol. 2021, 39, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Lu, Y.Y.; Van Deventer, J.A.; Tirrell, D.A. Residue-specific incorporation of non-canonical amino acids into proteins: Recent developments and applications. Curr. Opin. Chem. Biol. 2010, 14, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Nickling, J.H.; Baumann, T.; Schmitt, F.J.; Bartholomae, M.; Kuipers, O.P.; Friedrich, T.; Budisa, N. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids. J. Vis. Exp. 2018, 135, e57551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shao, J.; Li, Q.; van Heel, A.J.; de Vries, M.P.; Broos, J.; Kuipers, O.P. Incorporation of tryptophan analogues into the lantibiotic nisin. Amino Acids 2016, 48, 1309–1318. [Google Scholar] [CrossRef]
- Zambaldo, C.; Luo, X.; Mehta, A.P.; Schultz, P.G. Recombinant Macrocyclic Lanthipeptides Incorporating Non-Canonical Amino Acids. J. Am. Chem. Soc. 2017, 139, 11646–11649. [Google Scholar] [CrossRef]
- Bolt, H.L.; Kleijn, L.H.J.; Martin, N.I.; Cobb, S.L. Synthesis of Antibacterial Nisin–Peptoid Hybrids Using Click Methodology. Molecules 2018, 23, 1566. [Google Scholar] [CrossRef]
- Kakkar, N.; Perez, J.G.; Liu, W.R.; Jewett, M.C.; van der Donk, W.A. Incorporation of Nonproteinogenic Amino Acids in Class I and II Lantibiotics. ACS Chem. Biol. 2018, 13, 951–957. [Google Scholar] [CrossRef]
- Deng, J.; Viel, J.H.; Chen, J.; Kuipers, O.P. Synthesis and Characterization of Heterodimers and Fluorescent Nisin Species by Incorporation of Methionine Analogues and Subsequent Click Chemistry. ACS Synth. Biol. 2020, 9, 2525–2536. [Google Scholar] [CrossRef]
- Zou, H.; Li, L.; Zhang, T.; Shi, M.; Zhang, N.; Huang, J.; Xian, M. Biosynthesis and biotechnological application of non-canonical amino acids: Complex and unclear. Biotechnol. Adv. 2018, 36, 1917–1927. [Google Scholar] [CrossRef]
- Völler, J.-S.; Budisa, N. Coupling genetic code expansion and metabolic engineering for synthetic cells. Curr. Opin. Biotechnol. 2017, 48, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Chen, Y.-C.; Ma, L.; Huang, K. Rational Design of Hybrid Peptides: A Novel Drug Design Approach. Curr. Med. Sci. 2019, 39, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 1992, 89, 9367–9371. [Google Scholar] [CrossRef] [PubMed]
- Arnusch, C.J.; Bonvin, A.M.J.J.; Verel, A.M.; Jansen, W.T.M.; Liskamp, R.M.J.; de Kruijff, B.; Pieters, R.J.; Breukink, E. The Vancomycin−Nisin(1−12) Hybrid Restores Activity against Vancomycin Resistant Enterococci. Biochemistry 2008, 47, 12661–12663. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yin, Z.; Breukink, E.; Moll, G.N.; Kuipers, O.P. An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrob. Agents Chemother. 2020, 64, e02050-19. [Google Scholar] [CrossRef]
- Masip, I.; Perez-Paya, E.; Messeguer, A. Peptoids as Source of Compounds Eliciting Antibacterial Activity. Comb. Chem. High Throughput Screen. 2005, 8, 235–239. [Google Scholar] [CrossRef]
- Rouse, S.; Field, D.; Daly, K.M.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Bioengineered nisin derivatives with enhanced activity in complex matrices. Microb. Biotechnol. 2012, 5, 501–508. [Google Scholar] [CrossRef]
- Ge, X.; Teng, K.; Wang, J.; Zhao, F.; Wang, F.; Zhang, J.; Zhong, J. Ligand determinants of nisin for its induction activity. J. Dairy Sci. 2016, 99, 5022–5031. [Google Scholar] [CrossRef]
- Bartholomae, M.; Baumann, T.; Nickling, J.H.; Peterhoff, D.; Wagner, R.; Budisa, N.; Kuipers, O.P. Expanding the Genetic Code of Lactococcus lactis and Escherichia coli to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics. Front. Microbiol. 2018, 9, 657. [Google Scholar] [CrossRef]
- O’Connor, M.; Field, D.; Grainger, A.; O’Connor, P.M.; Draper, L.; Ross, R.P.; Hill, C. Nisin M: A Bioengineered Nisin A Variant That Retains Full Induction Capacity but Has Significantly Reduced Antimicrobial Activity. Appl. Environ. Microbiol. 2020, 86, e00984-20. [Google Scholar]
- Nyhan, L.; Field, D.; Hill, C.; Callanan, M.; Begley, M. Investigation of combinations of rationally selected bioengineered nisin derivatives for their ability to inhibit Listeria in broth and model food systems. Food Microbiol. 2021, 99, 103835. [Google Scholar] [CrossRef]
- Field, D.; Considine, K.; O’Connor, P.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Bio-Engineered Nisin with Increased Anti-Staphylococcus and Selectively Reduced Anti-Lactococcus Activity for Treatment of Bovine Mastitis. Int. J. Mol. Sci. 2021, 22, 3480. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Montalban-Lopez, M.; Peterhoff, D.; Deng, J.; Wagner, R.; Held, M.; Kuipers, O.P.; Panke, S. Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nat. Chem. Biol. 2019, 15, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.E.; Wangari, R.; Hansen, E.B.; Mijakovic, I.; Jensen, P.R. Engineering of Bacillus subtilis 168 for Increased Nisin Resistance. Appl. Environ. Microbiol. 2009, 75, 6688–6695. [Google Scholar] [CrossRef] [PubMed]
- Slootweg, J.C.; Liskamp, R.M.; Rijkers, D.T. Scalable purification of the lantibiotic nisin and isolation of chemical/enzymatic cleavage fragments suitable for semi-synthesis. J. Pept. Sci. 2013, 19, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Lagedroste, M.; Smits, S.H.J.; Schmitt, L. Substrate Specificity of the Secreted Nisin Leader Peptidase NisP. Biochemistry 2017, 56, 4005–4014. [Google Scholar] [CrossRef]
- Reiners, J.; Lagedroste, M.; Gottstein, J.; Adeniyi, E.T.; Kalscheuer, R.; Poschmann, G.; Stuhler, K.; Smits, S.H.J.; Schmitt, L. Insights in the Antimicrobial Potential of the Natural Nisin Variant Nisin H. Front. Microbiol. 2020, 11, 573614. [Google Scholar] [CrossRef]
- Twomey, E.; Hill, C.; Field, D.; Begley, M. Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. Int. J. Microbiol. 2021, 2021, 9990635. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Bruner, S.D.; Ding, Y. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides. Front. Microbiol. 2018, 9, 1801. [Google Scholar] [CrossRef]
Host | Methods | Prenisin | Activation of Prenisin | Nisin Sensitive Indicator | Variants | Variant Features | References |
---|---|---|---|---|---|---|---|
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | M. flavus, S. thermophilus | ΔN20, ΔM21 | inactive in the pore formation assay | [22] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | M. flavus S. faecalis, L. monocytogenes, S. cerevisiae, G. candidum. | N20K, M21K | higher solubility, displayed antimicrobial activity against some G− strains | [49] |
L. lactis NZ9800 1 | random mutagenesis, saturation mutagenesis | No | N/A | L. lactis ssp. cremoris HP, E. faecium, S. agalactiae, S. aureus, L. monocytogenes. | N20P, M21V, K22S | enhanced antimicrobial activity | [50] |
L. lactis NZ9800 1 | random mutagenesis, saturation mutagenesis, site-directed mutagenesis | No | N/A | A series of G+ positive and G− bacteria 5 | S29A/D/E/Q | enhanced antimicrobial activity against both G+ and G− bacteria | [56] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A | Streptococcus mitis, L. lactis UCC90, L. lactis HP, L. monocytogenes, S. agalactiae | SVA, NAK | enhanced antimicrobial activity against L. monocytogenes in complex matrices | [76] |
L. lactis NZ9800 (L. lactis NZ9700ΔnisA) | saturation mutagenesis, site-directed mutagenesis | No | N/A | Six Gram-positive bacteria | K12A | enhanced antimicrobial activity | [44] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | NisP (expressed by indicator strain) | L. lactis NZ9000 -pNZnisPT | variants of precursor nisin with negatively charged residues 11 | severe decrease in antimicrobial activity | [10] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A | S. agalactiae, L. lactis HP M. smegmatis | AAK, NAI, SLS | enhanced antimicrobial activity | [52] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | trypsin | A series of Gram-positive bacteria 6 | 20NK21, 20NLMK23, 20NVMK23, 20NIMK23 20NIVMK24 | enhanced antimicrobial activity against specific strains at certain temperatures | [48] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A | S. pseudintermedius, S. intermedius, S. aureus, L. lactis HP, S. uberis, B. cereus | I4V | enhanced antimicrobial activity and anti-biofilm activity against S. pseudintermedius and S. intermedius | [46] |
E. coli | ASM 4 | Yes | trypsin | L. lactis NZ9000 NlacZ | L16A, L16H, L16V, M21A, M21D, M21N | increased induction activity and antimicrobial activity | [77] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | S. aureus SA113, S. pseudintermedius DSM21284 | M21V, I4V | The activity of the nisin derivative and antibiotic combination was higher than that of the nisin and antibiotic combination | [29] |
Trp-auxotrophic Lactococcus lactis NZ9000 | SPI 2 | Yes | NisP | L. lactis MG1363 | four different positions of nisin Trp and Trp analogue variants 12 | Nisin variants containing tryptophan analogues | [64] |
E. coli | SCS 3 | Yes | trypsin | M. flavus | Ser3TAG | Nisin variant with novel macrocyclic topologies | [65] |
Pro-auxotrophic E. coli strain | SPI 2 | Yes | NisP (expressed by indicator strain) | L. lactis NZ9000 | P9X 7 | Nisin variant with 6 proline analogues | [63] |
Lactococcus lactis NZ9000, E. coli | SCS 3 | Yes | NisP (expressed by indicator strain) | L. lactis NZ9000 | I4BocK 8, K12BocK 8 | enhanced antimicrobial activity | [78] |
E. coli, C321.ΔprfA-T7RNAPΔrneΔompTΔlon | site-directed mutagenesis | Yes | trypsin | L. lactis HP | Ser5m-BrPhe | Nisin variant with Phe analogues | [67] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | NisP | L. lactis NZ9000Cm/NisI/NisFEG | 20NMKIV24 | decreased recognition of immunity protein | [54] |
L. lactis NZ9000 | saturation mutagenesis | Yes | NisP | L. lactis NZ9000-Cm/NisI/NisFEG/SaNSR /SaNsrFP | I1X 9 | I1X variants influenced antimicrobial activity and the efficiency of the immunity and resistance proteins. | [47] |
L. lactis NZ9800 1 | saturation mutagenesis | No | N/A | L. lactis subsp. diacetylactis DRC3 (expressing the nisin resistance protein (NSR)) | S29P | The variant exhibited a 20-fold increase in specific activity against a strain expressing the nisin resistance protein. | [60] |
L. lactis NZ9000 | site-directed mutagenesis | Yes | NisP | L. lactis NZ9000 pNZ-SV-Erm/SaNSR/SaNSRS236A | C28P | 3 times more efficient against SaNSR-expressing L. lactis cells | [59] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | Lb. plantarum UCC16, Lb. brevis SA-C12, L. lactis ssp. cremoris HP | P9T, P9S | The variants retain induction capacity, while most of the antimicrobial activity is abolished. | [79] |
Met-auxotrophic Lactococcus lactis NZ9000 | SPI 2 | Yes | NisP | L. lactis and six Gram-positive pathogenic strains 10 | M21V-M17Aha + M21VM17Hpg | The variant is the most active dimeric nisin construct | [68] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | L. innocua FH1836lux | M17Q + N20P, M17Q + S29E | The combinations of nisin derivative exhibited enhanced anti-listerial activity when used together compared to when used alone | [80] |
L. lactis NZ9000 | site-saturation mutagenesis | Yes | Not mentioned | S. aureus RF122, S. aureus NCDO1499, S. agalactiae ATCC13813, L. lactis HP, L. lactis MG1363 | M17Q, T2L, HTK | improved specific activity against some Staphylococci but unchanged or reduced activity against dairy Lactococci | [81] |
L. lactis NZ9800 1 | site-directed mutagenesis | No | N/A | T. thermophilus HB27, T. scotoductus Se-1 | M17Q, M21F | enhanced specific activity against Thermus strains | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Du, Y.; Qiu, Z.; Liu, Z.; Qiao, J.; Li, Y.; Caiyin, Q. Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering 2022, 9, 251. https://doi.org/10.3390/bioengineering9060251
Zheng Y, Du Y, Qiu Z, Liu Z, Qiao J, Li Y, Caiyin Q. Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering. 2022; 9(6):251. https://doi.org/10.3390/bioengineering9060251
Chicago/Turabian StyleZheng, Yue, Yuhui Du, Zekai Qiu, Ziming Liu, Jianjun Qiao, Yanni Li, and Qinggele Caiyin. 2022. "Nisin Variants Generated by Protein Engineering and Their Properties" Bioengineering 9, no. 6: 251. https://doi.org/10.3390/bioengineering9060251
APA StyleZheng, Y., Du, Y., Qiu, Z., Liu, Z., Qiao, J., Li, Y., & Caiyin, Q. (2022). Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering, 9(6), 251. https://doi.org/10.3390/bioengineering9060251