Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Characterization and Design
2.2. System Modeling
2.3. Design and CAD Simulation of the System
2.4. Sizing of the System Actuators
2.5. Graphical Interface for the Proposed System
2.6. Calibration of the System Actuators
3. Results and Discussion
Execution and Analysis of the Case Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
CAD | Computer-Aided Design |
AO | Association for the Study of Osteosynthesis |
AAOS | American Academy of Orthopaedic Surgeons |
CNC | Computer Numerical Control |
References
- Pagani, R.; Nuzzi, C.; Ghidelli, M.; Borboni, A.; Lancini, M.; Legnani, G. Cobot User Frame Calibration: Evaluation and Comparison between Positioning Repeatability Performances Achieved by Traditional and Vision-Based Methods. Robotics 2021, 10, 45. [Google Scholar] [CrossRef]
- Aquilina, A.L.; Grazette, A.J. Clinical Anatomy and Assessment of the Elbow. Open Orthop. J. 2017, 11, 1347–1352. [Google Scholar] [CrossRef]
- Sampath, S.C.; Sampath, S.C.; Bredella, M.A. Magnetic Resonance Imaging of the Elbow: A Structured Approach. Sport. Health Multidiscip. Approach 2013, 5, 34–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, R.J.; Thigpen, C.A. Selection, implementation, and interpretation of patient-centered shoulder and elbow outcomes. J. Shoulder Elb. Surg. 2018, 27, 357–362. [Google Scholar] [CrossRef]
- Sugiyama, T.; Davies, H.M.S.; Beck, Y.C. Case 7.2–Incomplete Ossification of the Humeral Condyle. In Comparative Veterinary Anatomy; Orsini, J.A., Grenager, N.S., de Lahunta, Y.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 400–415. [Google Scholar] [CrossRef]
- Shim, B.J.; Seo, E.M.; Hwang, J.T.; Kim, D.Y.; Yang, J.S.; Seo, S.J.; Hong, M.S. Comparison of the effectiveness of extensor muscle strengthening exercise by itself, exercise with polydeoxyribonucleotide injection, and exercise with extracorporeal shockwave therapy in lateral epicondylitis: A randomized controlled trial. Clin. Shoulder Elb. 2021, 24, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Anitha, A.; Prachi, G. Effectiveness of Eccentric Strengthening of Wrist Extensors along with Conventional Therapy in Patients with Lateral Epicondylitis. Res. J. Pharm. Technol. 2018, 11, 5340–5344. [Google Scholar] [CrossRef]
- Vellios, E.E.; Pinnamaneni, S.; Camp, C.L.; Dines, J.S. Technology Used in the Prevention and Treatment of Shoulder and Elbow Injuries in the Overhead Athlete. Curr. Rev. Musculoskelet. Med. 2020, 13, 472–478. [Google Scholar] [CrossRef]
- Herrnstadt, G.; Alavi, N.; Randhawa, B.K.; Boyd, L.A.; Menon, C. Bimanual Elbow Robotic Orthoses: Preliminary Investigations on an Impairment Force-Feedback Rehabilitation Method. Front. Hum. Neurosci. 2015, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Flores-Hernández, D.A.; Palomino-Resendiz, S.; Lozada-Castillo, N.; Luviano-Juárez, A.; Chairez, I. Mechatronic design and implementation of a two axes sun tracking photovoltaic system driven by a robotic sensor. Mechatronics 2017, 47, 148–159. [Google Scholar] [CrossRef]
- Solis, A.; Hurtado, J. Reutilización de software en la robótica industrial: Un mapeo sistemático. Rev. Iberoam. Autom. Inform. Ind. 2020, 17, 354–367. [Google Scholar] [CrossRef]
- Ji, J.; Qi, Y.; Liu, J.; Lee, K.-M. Reconfigurable Impedance Sensing System for Early Rehabilitation following Stroke Recovery. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, 6–9 July 2020; pp. 1131–1136. [Google Scholar] [CrossRef]
- Cruz-Martínez, G.M.; Vilchis-González, A.H.; Zúñiga-Avilés, L.A.; Ávila-Vilchis, J.C.; Hernández-Sánchez, A.I. Diseño de Exoesqueleto con base en Cuatro Casos de Estudio de Rehabilitación de Miembro Superior. Mex. J. Biomed. Eng. 2018, 39, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, S.; Hirata, H.; Ishihara, H.; Tamiya, T. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Biomed. Microdevices 2018, 20, 64. [Google Scholar] [CrossRef] [PubMed]
- Dindorf, R.; Wos, P. Using the Bioelectric Signals to Control of Wearable Orthosis of the Elbow Joint with Bi-Muscular Pneumatic Servo-Drive. Robotica 2020, 38, 804–818. [Google Scholar] [CrossRef]
- Herrnstadt, G.; Menon, C. Voluntary-Driven Elbow Orthosis with Speed-Controlled Tremor Suppression. Front. Bioeng. Biotechnol. 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, C.M.; Egginton, J.S.; Shin, A.Y.; Kaufman, K.R. Application of a myoelectric elbow flexion assist orthosis in adult traumatic brachial plexus injury: Patient perspectives. Prosthet. Orthot. Int. 2021, 45, 526–531. [Google Scholar] [CrossRef]
- Manocha, R.H.K.; Johnson, J.A.; King, G.J.W. The Effectiveness of a Hinged Elbow Orthosis in Medial Collateral Ligament Injuries: An In Vitro Biomechanical Study. Am. J. Sport. Med. 2019, 47, 2827–2835. [Google Scholar] [CrossRef]
- Ferreira, F.M.R.M.; Rúbio, G.d.P.; Brandão, F.H.d.L.; Mata, A.M.d.; Avellar, N.B.C.d.; Bonfim, J.P.F.; Tonelli, L.G.; Silva, T.G.; Dutra, R.M.A.; Petten, A.M.V.N.V.; et al. Robotic Orthosis for Upper Limb Rehabilitation. Proceedings 2020, 64, 10. [Google Scholar] [CrossRef]
- Waseem, M.; Nuhmani, S.; Ram, C.S.; Sachin, Y. Lateral epicondylitis: A review of the literature. J. Back Musculoskelet. Rehabil. 2012, 25, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Xing, L.; Zhang, Q.; Jia, X. An analytical method for reliability analysis of hardware-software co-design system. Qual. Reliab. Eng. Int. 2019, 35, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Razak, A.H.A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot Plantar Pressure Measurement System: A Review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, A.F.; Luna, D.A.R.; Ceballos, D.A.C.; López, C.A.G. Correlación del contenido de clorofila foliar de la especie Coffea arabica con índices espectrales en imágenes. Biotecnol. Sect. Agropecu. Agroind. 2021, 19, 51–68. [Google Scholar] [CrossRef]
- Nef, T.; Mihelj, M.; Riener, R. ARMin: A robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 2007, 45, 887–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijink, A.; Morrey, B.F.; Eygendaal, D. Radiocapitellar prosthetic arthroplasty: A report of 6 cases and review of the literature. J. Shoulder Elb. Surg. 2014, 23, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Moya, G.; Vásquez, S. Diseño y Construcción de un Prototipo Funcional Controlado por Computadora Para la Rehabilitación de Codo y Muñeca. Ph.D. Thesis, Universidad de las Fuerzas Armadas, Sangolqui, Ecuador, 2014. [Google Scholar]
- Fedorova, N.V.; Shaforost, D.A.; Bundikova, V.R.; Denisova, I.A. Some Aspects of Functional Modeling in the IDEF0 Standard as the Initial Stage of TPPs Design; AIP Publishing LLC: Erode, India, 2019; p. 050010. [Google Scholar] [CrossRef]
- Ferroudji, F.; Ouattas, T.; Khélifi, C. Design, Modeling and Finite Element Static Analysis of a New Two Axis Solar Tracker Using SolidWorks/COSMOSWorks. Appl. Mech. Mater. 2013, 446, 738–743. [Google Scholar] [CrossRef]
- Rodríguez, M.J.B. Prototipo de un Sistema de Control de Parqueaderos con Monitoreo y Notificaciones para Celulares, Controlado Mediante Dispositivos con Sistema Android Desarrollado con Tecnología Arduino y Software Open Source. Ph.D. Thesis, Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, Guayaquil, Ecuador, 2018. [Google Scholar]
- Orozco, P.S.P.; Haro, F.B.; Quintana, P.C.; Pedro, A.B.S.; D’Amato, R.; Juanes, J.A. Aesthetics in Orthopedic Products: Applications of the Advanced Manufacture (AM) to the Industrial Design of Orthoses. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, León, Spain, 16–18 October 2019; ACM: León, Spain, 2019; pp. 372–379. [Google Scholar] [CrossRef]
- Ochi, K.; Horiuchi, Y.; Tanabe, A.; Morita, K.; Takeda, K.; Ninomiya, K. Comparison of Shoulder Internal Rotation Test With the Elbow Flexion Test in the Diagnosis of Cubital Tunnel Syndrome. J. Hand Surg. 2011, 36, 782–787. [Google Scholar] [CrossRef] [PubMed]
Motion | AO | AAOS |
---|---|---|
Flexion | 0–150 | 0–150 |
Extension | 0–10 | 0 |
Supination | 0–90 | 0–80 |
Pronation | 0–90 | 0–80 |
Range | Minimun [cm] | Maximun [cm] |
---|---|---|
Hand length | 15.24 | 21.34 |
Hand width | 6.86 | 9.91 |
Hand thickness | 2.36 | 3.81 |
Handle diameter | 3.18 | 3.81 |
Handgrip width | 7.62 | 10.41 |
Fist length | 9.65 | 14.22 |
Forearm length | 21.08 | 27.43 |
Forearm diameter | 6.1 | 8.13 |
Mechanism | Tension of Von Mises [N/m] | Displacement [mm] |
---|---|---|
Prone-supination of the wrist | Elastic limit: 7.300 × 10 Value obtained: 7.697 × 10 | Minimum: 1 × 10 Maximum: 3.843 × 10 |
Prone-supination of the wrist | Elastic limit: 2.400 × 10 Value obtained: 1.630 × 10 | Minimum: 1 × 10 Maximum: 7.130 |
Movement | Measured Value | Actual Value |
---|---|---|
Flexo-extension | 70 | 69 |
Flexo-extension | 135 | 134 |
Flexo-extension | 20 | 19 |
pronation-supination | 90 | 90 |
pronation-supination | 120 | 120 |
Activities | Planned Duration | Support Tools |
---|---|---|
Socialization and contextualization of the research project | 30 min | Presentation of the introduction to the case study and the conceptual elements of the proposal. |
Presentation and introduction of the orthosis prototype | 30 min | Document with the description of the prototype and presentation of the tool. |
Implementation of the orthosis on the study subjects | 45 min | Requirements document, orthosis guidance document, scenarios, and results templates for execution. |
Evaluation of the implementation | 20 min | Perception survey |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arcos Rosero, J.D.; Bolaños Rosero, D.C.; Alape Realpe, L.F.; Solis Pino, A.F.; Roldán González, E. Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation. Bioengineering 2022, 9, 287. https://doi.org/10.3390/bioengineering9070287
Arcos Rosero JD, Bolaños Rosero DC, Alape Realpe LF, Solis Pino AF, Roldán González E. Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation. Bioengineering. 2022; 9(7):287. https://doi.org/10.3390/bioengineering9070287
Chicago/Turabian StyleArcos Rosero, Jhoan Danilo, Daniel Camilo Bolaños Rosero, Luis Fernando Alape Realpe, Andrés Felipe Solis Pino, and Elizabeth Roldán González. 2022. "Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation" Bioengineering 9, no. 7: 287. https://doi.org/10.3390/bioengineering9070287
APA StyleArcos Rosero, J. D., Bolaños Rosero, D. C., Alape Realpe, L. F., Solis Pino, A. F., & Roldán González, E. (2022). Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation. Bioengineering, 9(7), 287. https://doi.org/10.3390/bioengineering9070287