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Abstract: Background: Midpalatal suture maturation and ossification status is the basis for appraising
maxillary transverse developmental status. Methods: We established a midpalatal suture cone-beam
computed tomography (CBCT) normalized database of the growth population, including 1006 CBCT
files from 690 participants younger than 24 years old. The midpalatal suture region of interest (ROI)
labeling was completed by two experienced clinical experts. The CBCT image fusion algorithm and
image texture feature analysis algorithm were constructed and optimized. The age range prediction
convolutional neural network (CNN) was conducted and tested. Results: The midpalatal suture
fusion images contain complete semantic information for appraising midpalatal suture maturation
and ossification status during the fast growth and development period. Correlation and homogeneity
are the two texture features with the strongest relevance to chronological age. The overall performance
of the age range prediction CNN model is satisfactory, especially in the 4 to 10 years range and the
17 to 23 years range, while for the 13 to 14 years range, the model performance is compromised.
Conclusions: The image fusion algorithm can help show the overall perspective of the midpalatal
suture in one fused image effectively. Furthermore, clinical decisions for maxillary transverse
deficiency should be appraised by midpalatal suture image features directly rather than by age,
especially in the 13 to 14 years range.

Keywords: maxillary transverse deficiency; children and adolescents’ developmental status; midpalatal
suture maturation and ossification status; image fusion; computer-aided diagnosis; deep convolutional
neural network

1. Introduction

Maxillary deficiency is a type of craniofacial malformation with a high population
incidence exceeding 20% of the global population [1]. Maxillary transverse deficiency
plays an important role in maxillary deficiency and results in various malocclusions,
including posterior crossbite, dentition crowding, and can even lead to obstructive sleep
apnea, etc. [1–4]. Moreover, dentofacial deformities, including craniosynostosis and cleft
lip/palate, can also be accompanied by maxillary transverse deficiency [1,5]. Maxillary
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transverse deficiency impairs patients’ oral and maxillofacial development and function,
facial aesthetics, and even long-term health and life quality [1,6].

Rapid maxillary expansion (RME), the routine treatment procedure to correct maxillary
transverse deficiency, was created by Angell and then developed by Haas and others [7–10].
Currently, RME methods consist of tooth-borne expansion, micro-implant-assisted expansion,
and surgically-assisted expansion [1,11]. The timing and treatment-induced trauma of various
RME methods are distinctly different. The treatment timing is vital in determining curative
effects and the severity of side effects for each RME method [12]. Expansion during inappro-
priate timing can cause unnecessary trauma [12], as well as increasing side effects [13–16].
An accurate appraisal of maxillary transverse developmental status is critical to clarify the
appropriate timing for different treatment methods [1].

The midpalatal suture is the main site of maxillary growth and development and also
the main resistance site for RME [17]. The accurate and efficient appraisal of midpalatal
suture maturation and ossification status is the basis for appraisal of maxillary transverse
developmental status.

Midpalatal suture is known for its narrow and complex anatomical morphological
characteristics [1]. Several appraisal methods for midpalatal suture maturation and ossi-
fication status have been reported, such as histological methods and imaging methods,
including occlusal radiography, ultrasonography, and computed tomography (CT), espe-
cially cone-beam CT (CBCT) [18–23]. The histological result is the golden standard but is
not practical for in vivo routine clinical examination. Occlusal radiography was used in
some studies but was gradually replaced by CT due to the superimposition of adjacent
structures [24]. Compared with multislice spiral CT, CBCT also provides accurate three-
dimensional visualization with better skeletal contrast resolution, lower radiation exposure,
and lower cost [24,25].

Up to now, the existing CBCT studies for midpalatal suture maturation and ossification
are mostly based on single-image sections, and their qualitative or quantitive analysis were
carried out by humans [22,26], and therefore face obvious challenges which will lead to the
loss of large amounts of valuable image information, high technical sensitivity as well as
low feasibility and simplicity [22,27–30]. Evidence provided by the current CBCT appraisal
methods is not qualified enough for routine clinical use [28–31]; thus, a methodological
improvement in utilizing comprehensive image information to provide more reliable
evidence is mainly needed [22,26].

To address these present challenges, it is necessary and essential to utilize image
information comprehensively. Image fusion based on computer vision technology will
help extract multi-section images’ information to the maximum extent, reduce interference,
and then synthesize high-quality fusion images so as to improve image data utilization
and reliability [32]. Image fusion is suitable for the comprehensive and high-quality
extraction of image information from complex anatomical structures. It has been applied in
craniocerebral hemorrhage and tumor, liver injury, etc., playing an important role in disease
identification and diagnosis [33–35] and has started to be applied in oral and maxillofacial
diseases, including head and neck tumor and temporal–mandibular joint diseases [36,37].

Intelligent image analysis studies in the field of oral and maxillofacial growth and
development are in the early stage of exploration [38]. Chen Y. et al. carried out preliminary
intelligent image analysis using CBCT axial position images based on small sample data,
and their results showed the application potential of intelligent image analysis in midpalatal
suture maturation and ossification status [39]. However, up to now, the image features
taken from the single-section images of large field CBCT have led to a disturbance of other
anatomic regions and insufficient focus on the midpalatal suture region itself. Moreover,
the sample sizes of previous studies need to be enlarged.

In this study, we will establish a midpalatal suture CBCT normalized database of
the growth population, innovatively extract and screen out key quantitative image char-
acteristics comprehensively by image fusion, and then analyze the correlation between
quantitative image characteristics of the midpalatal suture and chronological age.



Bioengineering 2022, 9, 316 3 of 20

Compared with previous studies that extracted and analyzed midpalatal suture image
characteristics through a single image section, we designed an image fusion algorithm to
utilize multi-slice valuable image information in CBCT. This image fusion algorithm avoids the
influence of CBCT examination orientation and the convex palatal vault, therefore helping to
show the overall perspective of the midpalatal suture in one fused image [40–42]. Furthermore,
structure labeling by clinical experts will improve the proportion of midpalatal sutures in the
final images.

The remainder of this article is organized as follows: the automated processing tech-
niques of CBCT, midpalatal suture region image fusion method, and the chronological
age range prediction model are all covered in Section 2; the performance of the proposed
methods is evaluated in Section 3. Finally, we present some discussions in Section 4 and
conclude this article in Section 5.

2. Materials and Methods
2.1. Midpalatal Suture CBCT Normalized Database of Growth Population
2.1.1. Samples

The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of the Peking University Hospital of
Stomatology Institutional Review Board (PKUSSIRB-202163037).

The sample collection was carried out at the Peking University Hospital of Stomatology.
CBCT from patients younger than 24 years old that undergone single or multiple CBCT
examinations in the Department of oral and maxillofacial radiology according to diagnosis
or treatment needs (1 January 2015 to 31 December 2020) were screened. The examination
field should include the supra-orbital arch (upper boundary) and the lower margin of
the fourth cervical vertebra (lower boundary), and the examination interval for the same
participant should be longer than 1 month. The exclusion criteria are shown in Table 1. The
gender and clinical departments of the participants were not limited.

Table 1. Exclusion criteria for participants.

Exclusion Criteria

(1) History of severe systemic diseases;
(2) History of cranial and maxillofacial bone fracture;
(3) History of cranial and maxillofacial bone tumor;
(4) History of cleft lip and/or palate;
(5) History of syndromes or endocrine diseases affecting cranial and maxillofacial bone

development.

2.1.2. CBCT Examination

CBCT images were taken with NewTom VGi (Quantitative Radiology, Verona, Italy),
at 2.81 mA, 110 kV, 3.6-s exposure, and a 15 × 15 cm field of view, with an axial slice
thickness of 0.3 mm, and isotropic voxels (Figure 1). The participants sat upright with a
natural head position and jaws immobilized using a chin holder, keeping the Frankfort
plane horizontal to the ground. The teeth were occluded at the intercuspal position, with
facial muscles relaxed.

2.2. Region of Interest Labeling in Midpalatal Suture CBCT Images

The region of interest (ROI) labeling was completed by two experienced clinical experts.
The upper and lower boundaries of the CBCT axial sections for each CBCT file were located
by Dolphin Imaging software (11.8, Oakdale, CA, USA) and recorded by Microsoft Excel
software (2203, Redmond, WA, USA). The anterior and posterior boundaries of the CBCT
axial sections for each CBCT file were located by MicroDicom DICOM viewer software
(2022.1, Sofia, Bulgaria) and recorded by Colabeler software (2.0.4, Hangzhou, China)
(Figure 2).
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Figure 2. Labeling sample of the midpalatal suture region.

The upper boundary of the CBCT axial sections is the upper margin of the palatal
vault, the lower boundary is the apical point of the upper central incisors (choose the higher
one when the two apical points are in different sections), the anterior boundary is the most
anterior point of the midpalatal suture on the maxilla, and the posterior boundary is the
most posterior point of the midpalatal suture on the palatine bone.



Bioengineering 2022, 9, 316 5 of 20

2.3. Image Analysis Algorithm

The algorithm in this study consists of two parts: the midpalatal suture CBCT im-
age fusion algorithm (introduced in Section 2.3) and the image texture feature analysis
algorithm (introduced in Section 2.4).

As the midpalatal suture image is complicated, it is difficult to be obtained through
single-section image analysis. In addition, the proportion of midpalatal suture in the
total CBCT field is small; thus, more noises will arise from other regions apart from the
midpalatal suture. Therefore, the raw images cannot be applied to appraise the maturation
and ossification status effectively or be used to train a convolutional neural network
(CNN) [43]. Therefore, we proposed a CBCT image fusion algorithm, which includes three
parts: image processing, image fusion, and fused image optimization.

2.3.1. Image Processing

The CBCT files were read and converted into three-dimensional gray matrixes and
then converted into a series of axial images of 512 × 512 resolution. The midpalatal suture
normalized ROI of 50 × 200 resolution were extracted.

2.3.2. Image Fusion

The fusion weights were calculated and adjusted by combining the existing pixel-level
image fusion algorithm with the characteristics of the midpalatal suture region. Image
fusion was carried out in every two sections of midpalatal suture multi-slice ROI images for
each CBCT file until all of the images were fused into one overall midpalatal suture image.
The pixel value of each point in the fused image was calculated by the following formula:

Pij = Aij ∗
(

1 +
Aij − e
255 + d

)
(1)

Aij refers to the average gray scale value of point (i, j) in each of the two images that
need to be fused, e refers to the total average gray scale of the images that need to be fused,
and d refers to the adjustment factor based on the maximum gray scale difference of the
images that need to be fused.

It can be predicted that if all of the images are fused directly, all of the pixels will ap-
proach the average gray level, resulting in blurred fused images. Therefore, we performed
the weighted fusion of images in pairs and then continued to fuse the fused images in pairs
until all of the images were fused into one. The computational complexity of the image
fusion algorithm is O(n log n), since the structure of the image fusion algorithm is merging.

2.3.3. Fused Image Optimization

During the image fusion process, we used the convolution operator to optimize the
fused image so as to improve the clarity of the midpalatal suture. The operator weight was
adjusted according to the image fusion result to make the image textures clearer.

2.4. Image Texture Feature Analysis Algorithm

The image texture feature analysis was then conducted to find the correlation between
the midpalatal suture CBCT image texture features and chronological age. Compared with
CNN, the image texture features training is more intuitive. The preliminary texture features
analysis can also provide evidence for the effectiveness of CNN training since the CNN
lacks interpretability.

Six typical features, including correlation, contrast, homogeneity, dissimilarity, angular
second moment (ASM), and energy, were analyzed (Table 2).
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Table 2. Description of the texture features.

Texture Feature Description

Correlation
Correlation reflects the consistency of image texture. It is used to
measure the similarity of spatial gray level co-occurrence matrix
elements in row or column direction.

Homogeneity

Homogeneity is used to measure how much the local texture
changes. A large value indicates that there is less change between
different regions of the image texture, and the parts are
more uniform.

Energy

Energy is the sum of the squares for the values of each element in
the gray level co-occurrence matrix. It is a measure of the stability
of the gray level change of the image texture and reflects the
uniformity of the image gray level distribution and the thickness
of the texture. A larger energy value indicates that the current
texture is stable, with regular changes.

Contrast

Contrast reflects the clarity of the image and the depth of the
texture grooves. The deeper the texture grooves, the greater the
contrast is, and the clearer the visual effect will be. On the
contrary, if the contrast is small, the grooves are shallow; thus, the
effect will be fuzzy.

Dissimilarity

The dissimilarity reflects the total amount of local gray changes in
the image. However, different from contrast, the weight of
dissimilarity increases linearly with the distance between matrix
elements and diagonal.

ASM
(Angular Second Moment)

ASM is used to describe the uniformity of gray image distribution
and the thickness of texture. If all values of GLCM are very close,
the ASM value will be smaller. If the values of matrix elements
differ greatly, the ASM value will be larger.

The image texture features were extracted by Scikit-Image. Then, scatter diagrams of
all samples were drawn by pyplot, in which chronological age was taken as an independent
variable and image texture feature value was taken as a dependent variable. Correlations
between image texture features with chronological age were evaluated to find out if they
are suitable to appraise midpalatal suture maturation and ossification status.

2.5. Age Range Prediction of Midpalatal Suture CBCT Image Features

The age range prediction CNN model was carried out to further clear the prediction
efficiency of midpalatal suture maturation status image features for chronological age.

2.5.1. Datasets and Labels

Five age ranges were classified and labeled: 4 to 10 years old labeled as 0, 11 to 12 years
old labeled as 1, 13 to 14 years old labeled as 2, 15 to 16 years old labeled as 3, and 17 to
23 years old labeled as 4. In addition, the data were expanded through random translation,
tilt, contrast and brightness adjustment, clip in small amplitude, and horizontal mirroring.
The finally adjusted images were normalized into 50 × 200 pixels.

(1) Validation set: Out of the total samples, 10 typical samples were selected from each
age range, and these 50 images were used as the validation set.

(2) Test set: Out of the total samples, 20 typical samples were selected from each age
range, and these 100 images were used as the test set.

(3) Training set: Out of the total samples, the remaining 856 samples, apart from those
used in the validation set and test set, were used as the training set.

The optimized deep residual network (ResNet) 50 model CNN was used to conduct
the chronological age range prediction (Figure 3). Age range prediction by midpalatal
suture image is a multi-classification task. The Softmax function was used in the output
layer to make the total probability of five age ranges equal to 1. Then the cross-entropy loss
function was used to quantify the error between the model outputs and labels. Grad-CAM
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was applied to generate heat maps for model prediction. The redder the color is, the more
dependent the model is on the image features of this region.
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2.5.2. CNN

As the most widely used deep learning method, CNN was used in age range prediction
tasks by using midpalatal suture fused images [44].

The CNN in our study mainly consisted of an input layer, a convolutional layer, a
pooling layer, a full connected layer, and an output layer. The input was the raw image X.
Xi refers to the feature map of layer i (X0 = X). As the convolution layer, Xi was generated
by the following formula:

Xi = f (Xi−1 ⊗ Wi + bi) (2)

Wi represents the weight vector for the convolution kernel of i, the ⊗ symbol represents
the convolution operation between the convolution kernel and the (i − 1) layer image. The
output of the convolution was added to bi (offset vector of layer i). Finally, Xi (feature
image of layer i) was obtained through the nonlinear excitation function f (X).

The convolutional layer was followed by the pooling layer. The pooling layer com-
pressed the input feature image to reduce feature dimensions, thus simplifying the com-
plexity of the CNN calculation, while maintaining certain invariance of the feature (rotation,
translation, expansion-retraction, etc.).

Essentially, the CNN was a mathematical model of mapping the original matrix to a
new probability expression through data transformation or dimensionality reduction at
multiple levels. After the alternating transmission of multiple convolutional layers and
pooling layers, we classified the extracted image features and obtained the input-based
probability distribution by the CNN relied on a fully connected network.

2.5.3. Deep Residual Learning

ResNet solves the problem of difficulty in CNN model training [45] and shows ex-
cellent performance in CNN [46–48]. Compared with other network structures, ResNet’s
learning results are more sensitive to the fluctuations of network weights and data, and
it is one of the best model choices at present. The network structure in this study is the
optimized ResNet50 network.
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Residual blocks in ResNet are designed to learn the residuals of underlying features
rather than the underlying features. In a residual block, if the learned features for input
X is recorded as H(X), the expected residual F(X) = H(X) − X. In this way, the original
learning feature is F(X) + X.

Deep residual learning is easier than directly learning original features. When the
residual is 0, there is only identity mapping in the accumulation layer, and at least the
network performance will not decline. In fact, the residual will not be 0; thus, deep residual
learning will enable the accumulation layer to learn new features based on input features
so as to improve performance. The residual learning process is a shortcut connection
(Figure 4), which is similar to a short circuit in the electric circuit.
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Intuitively, the learning content reduces residual learning. The residual is relatively small,
making the learning process easy. The residual unit is expressed as the following formulas:

yl = xl + F(xl, Wl) (3)

xl+1 = f (yl) (4)

xl and xl+1 represent the input and output of residual unit of l, respectively. Each
residual unit is a multi-layer structure. F, as the residual function, represents the learned
residual. The h(xl) = xl represents the identity mapping, and f is the ReLU activation
function. Based on Formulas (3) and (4), the learning features from shallower layer l to
deeper layer L is:

xL = xl + ∑L−1
i=l F(xi, Wi) (5)

The gradient of the reverse process can be obtained by the chain rule:

∂loss
∂xl

=
∂loss
∂xL

· ∂xL
∂xl

=
∂loss
∂xL

·
(

1 +
∂

∂xl
∑L−1

i=l F(xi, Wi)

)
(6)

The first factor ∂loss
∂xl

represents the gradient of the loss function to L. The “1” in the
parentheses represents that the short-circuit mechanism can spread the gradient nonde-
structively, while the other residual gradient needs to pass through layers with weights.
The gradient is not directly transmitted.

2.5.4. ResNet Structure

As shown in Figure 3, ResNet was divided into 5 stages, wherein stage 0 contains one
convolution layer and one pooling layer, and stages 1 to stage 4 contain 3, 4, 6, and 3 con-
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volution accumulation structures, respectively. Finally, the output results were converted
from the average pooling layer.

2.5.5. Hyperparameters Selection

In terms of hyperparameter selection, we firstly used the recognized parameters with
excellent performance for model training. Then, within the specified parameter range, we
used the grid search method to adjust the parameters by step. According to the performance
of the saved model on the test set, the best set of hyperparameters was selected from all of
the hyperparameters. The final selected hyperparameters are shown in Table 3.

Table 3. Values of hyperparameters.

Hyperparameter Value Hyperparameter Value

Learning Rate 0.0001 Decay Rate 0.9000
Decay Steps 4000 Weight Decay 0.0001

End Learning Rate 0.0000 Batch Size 50

2.5.6. Feature-Based Visualization

The training process of CNN is generally considered a “black box”, and the model
lacks intuitive interpretability [49]. Therefore, the Grad-CAM [50] method was adopted to
generate heat maps according to the dependence degree of the midpalatal suture image
feature region. The redder color of the region, the stronger the dependence of the model on
the image feature of that region in the prediction process.

In Grad-CAM, the gradient of network back propagation was used to calculate the
weight of each channel in the heat map. For the category c, the weight α of each channel
was first obtained. Then the weighted sum of data from all of the channels in the feature
layer A was calculated. Finally, the heat map was obtained by the ReLU activation function.
The formulas are as follows:

αc
k =

1
Z ∑i ∑j

∂yc

∂Ak
ij

(7)

Lc
Grad−CAM = ReLU

(
∑k αc

k Ak
)

(8)

In Formulas (7) and (8), c refers to category, yc refers to the score that has been
forecasted by the neural network but without softmax processing. A represents the feature
value of the last convolution output layer, k refers to the k-th channel of feature layer A,
Ak refers to the calculation value of the k-th channel in feature layer A, Ak

ij refers to the
calculation value of coordinate point (i, j) in the k-th channel of feature layer A. Z refers to
the size of the feature layer (e.g., width × height).

Each Grad-CAM heat map was superposed with the fused image for age range
prediction so as to intuitively show the dependence degree of the model on that image
region in the prediction process and help further evaluate the rationality of the model.

3. Results
3.1. Demographic Characteristic

The midpalatal suture CBCT normalized database with a total of 1006 CBCT files
(CBCT files of females: 610, CBCT files of males: 396) was obtained from 690 participants of
the growth population (female: 403, male: 287). In the database, there are 414 participants
with single-time CBCT, 245 participants with two-times CBCT, 23 participants with three-
times CBCT, seven participants with four-times CBCT, and one participant with five-
times CBCT.

The demographic characteristics of the total 1006 CBCT files are shown in Table 4.
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Table 4. Demographic characteristics.

Age Range F M Age Range F M

[4, 5) 0 1 [14, 15) 56 38
[5, 6) 5 1 [15, 16) 52 29
[6, 7) 2 1 [16, 17) 57 28
[7, 8) 7 2 [17, 18) 68 26
[8, 9) 11 10 [18, 19) 65 21
[9, 10) 22 32 [19, 20) 17 6

[10, 11) 50 51 [20, 21) 9 0
[11, 12) 61 48 [21, 22) 1 2
[12, 13) 61 51 [22, 23) 1 0
[13, 14) 65 48 [23, 24) 0 1

Units for age range: years old; F: numbers of CBCT files of females; M: numbers of CBCT files of males.

3.2. Midpalatal Suture ROI Extraction and Image Fusion Algorithm

Figures 5 and 6 show the image processing results of the midpalatal suture region.
After reading, the sagittal, coronal, and axial views of each selected CBCT file contain
hundreds of sections. After labeling by clinical experts, the midpalatal suture ROI images
were extracted from the multi-slice axial images (Figure 6).
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Then, the direct image fusion, weighted optimization, and convolution operator opti-
mization were carried out (Figures 7 and 8). The direct fusion shows poorer performance,
in which the image is blurred, and the morphological characteristics of the midpalatal
suture region are not clear. By adjusting the fusion weight, the image contrast increases,
and the midpalatal suture structure is clearer. Furthermore, after convolution operator
optimization, the fused images show clear and distinct texture, which is more conducive
for clinical evaluation and subsequent model training process.
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3.3. Image Feature Analysis

The image texture feature scatter diagrams show obvious positive correlations be-
tween the correlation feature with chronological age and the homogeneity feature with
chronological age, respectively (Figures 9–12). The positive correlation trends are similar
among females and males.
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Homogeneity is used to measure how much the local texture changes. A large value
indicates that there is less change between different regions of the image texture, and the
parts are more uniform. Correlation reflects the consistency of image texture. It is used
to measure the similarity of spatial gray level co-occurrence matrix elements in a row or
column direction. The homogeneity feature and the correlation feature both tend to increase
with chronological age, which may be due to the increased maturation and ossification
degree of the midpalatal suture region.

3.4. Age Range Prediction Model by Midpalatal Suture CBCT Image Features
3.4.1. Model Evaluation

The evaluation parameters for the age range prediction model using the midpalatal
suture image features include precision ratio P, recall ratio R, and the test set classification
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F1-score. P refers to the proportion of correctly classified positive samples in the positive
samples determined by a classifier, and R refers to the proportion of correctly classified
positive samples in the true positive samples. F1-score is the harmonic average of P and
R, and Acc refers to the proportion of correctly identified samples in all samples. The
calculation formulas are as follows:

PX =
TPX

TPX + FPX
(9)

RX =
TPX

TPX + FNX
(10)

F1scoreX =
2 × PX × RX

PX + RX
(11)

Acc =
4

∑
X=0

TPX + TNX

TPX + TNX + FPX + FNX
(12)

For each age range X, TPX refers to the number of correctly predicted samples which
predicted the certain age range; FPX refers to the number of wrongly predicted samples
which predicted the certain age range; FNX refers to the number of wrongly predicted
samples which predicted to other age ranges; TNX refers to the number of correctly predicted
samples which predicted to other age ranges.

The accuracy of test set verification results of models with different f training times
are shown in Figure 13, in which model accuracy reaches the maximum value in the
2000th round of training. This model was saved for further testing and analysis.
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The confusion matrix of the age range prediction model by midpalatal suture image
features verified in the test set is shown in Figure 14. The sum of each row represents the
number of actual samples of a certain label, and the sum of each column represents the
number of samples predicted as this label. P, R, F1-score, and area under curve (AUC)
values of the prediction model can be calculated by the confusion matrix, and the results
are shown in Table 5.
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Table 5. Evaluation of age range prediction model by midpalatal suture image features.

Evaluation Parameters

Label (Age Range) AUC Precision Recall F1-Score Test Sample

0 (4–10 years old) 0.9106 0.5926 0.8000 0.6809 20
1 (11–12 years old) 0.6825 0.4348 0.5000 0.4651 20
2 (13–14 years old) 0.6581 0.6923 0.4500 0.5455 20
3 (15–16 years old) 0.7262 0.6000 0.6000 0.6000 20
4 (17–23 years old) 0.7887 0.5882 0.5000 0.5405 20

Total test sample 100

Average AUC 0.7532

The CBCT data set in this study is self-constructed, including a total of 1006 subjects
from 4 to 23 years old, while most of the subjects belong to the middle age range. For this
five-category classification task, clinicians paid more attention to sensitivity, specificity,
and especially the AUC value, which is 0.7532, indicating that this model has reached the
clinical auxiliary level. At present, the compromised classification accuracy is limited by
the data set imbalance on the one hand and optimization of the sequence fusion algorithm
on the other hand. The image fusion algorithm is very important in reflecting the image
characteristics of midpalatal suture maturation status for subjects of different chronological
age groups. Our future work will focus on optimizing and adjusting the image fusion
algorithm to further support and improve classification accuracy.

3.4.2. Evaluation of Model Performance

Receiver operating characteristic (ROC) curves and area under curve (AUC) values
are taken to evaluate the age range prediction model (Figure 15). The true positive rate
refers to the number of correctly predicted samples that are predicted to a certain age range;
the false positive rate refers to the number of wrongly predicted samples that are predicted
to a certain age range.
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different age ranges in the age range prediction model.

The AUC values for predicting all age ranges are above 65%, in which the AUC values
of the 4 to 10 years range (0.9106) and the 17 to 23 years range (0.7887) are the two best
age ranges.

3.4.3. Feature-Based Visualization

The image feature heat maps of the midpalatal suture region show that the redder areas
are all located in the midpalatal suture (Figure 16), indicating that the image features of the
midpalatal suture region have satisfactory performance in its maturation and ossification
status appraisal, as well as chronological age range prediction.
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4. Discussion

Clinical effectiveness and treatment-induced trauma of various kinds of RME methods
are distinctly different. Treatment timing is vital in determining the clinical effectiveness
and severity of side effects for each RME method [12]. Expansion during inappropriate tim-
ing can cause unnecessary trauma, as well as increased side effects, including periodontal
attachment level loss, buccal cortical bone fenestrations, and dental root resorption [13–16].
Therefore, accurate appraisal of maxillary transverse developmental status is critical to
provide evidence for the appropriate timing of different methods in maxillary transverse
deficiency treatment so as to optimize the treatment strategies.

The research conception of this study is to prove the correlation between chronological
age and maturation status of midpalatal suture and to provide evidence and theoretical
support for our following study of establishing the staging standard of the midpalatal



Bioengineering 2022, 9, 316 16 of 20

suture fused images. Therefore, it is necessary to prove the relationship between chrono-
logical age and maturation status of midpalatal suture through image characteristics from
multiple perspectives.

4.1. Innovative Midpalatal Suture Image Fusion Algorithm

Ossification and maturation status of midpalatal suture is complicated. Age-related
morphological changes in the midpalatal suture of human and animal specimen samples
indicate that midpalatal suture can remain unfused for many years postnatal, even whole-
life long period [51–56].

Given the histomorphological conclusions, the appraisal of midpalatal suture matu-
ration and ossification status by “if it’s fused/obliterated” is not reliable. However, the
current imaging appraisal methods, especially the CBCT appraisal methods, are mainly
based on “if midpalatal suture is fused/obliterated” in a single image section and mainly
through human-eye qualitative appraisal, which leads to the loss of a large amount of
valuable image information, high technical sensitivity, as well as low feasibility and sim-
plicity [22,27–30].

Therefore, quantitative imaging analysis not entirely reliant on the human eye is
necessary to find more valuable information related to midpalatal suture growth and
development more than its obliteration and absolute width. Image fusion has been used
in this study to extract multi-section image information and then synthesize high-quality
fused images. While as a widely used medical image analysis method in studies of several
diseases [33–35], image fusion has not been applied in craniofacial growth and development
studies. The combination of image fusion and craniofacial growth analysis, especially
skeletal growth analysis, can help us utilize comprehensive image information of the
complicated structures effectively and reliably.

4.2. Clinical Implications of Midpalatal Suture Image Texture Features

The correlation feature and the homogeneity feature are the two texture features with
strongest relevance with chronological age for midpalatal suture fused images.

Belonging to gray-level co-occurrence matrix (GLCM) texture, the correlation fea-
ture and the homogeneity feature basically reflect the uniformity of the image texture.
Higher values of correlation and homogeneity indicate that each midpalatal suture fu-
sion image has more uniform textures [57,58]. During growth and development, the gray
level of the midpalatal suture and its adjacent regions grow closer, and the image tex-
ture is more consistent, referring to the increasing maturation and ossification process.
Midpalatal suture, yet not obliterated, will change a lot in morphological characteristics
during this process [1,18,52,54,55]. However, much valuable image information was lost in
previous studies since the image texture features are difficult to be directly recognized by
human eyes.

The positive relevance between the midpalatal suture maturation process and the over-
all growth status represented by chronological age indicates that even though midpalatal
suture may not fuse or obliterate for many years or even during a life-long period, its
maturation and ossification status experiences significant changes during the fast growth
and development period, for both females and males.

4.3. Clinical Significance of Age Range Prediction Model by Midpalatal Suture Image Features

As mentioned above, the maturation and ossification status of a midpalatal suture
experience significant changes during the fast growth and development period [1,18,52,54,55].
Our age range prediction model using the midpalatal suture image features proves that the
overall prediction efficiency is satisfactory, especially for the youngest 4 to 10 years range
(0.9106) and the oldest 17 to 23 years range (0.7887) (Figure 15).

Meanwhile, the prediction efficiency for the 11 to 12 years range (0.6825), the 13
to 14 years range (0.6581), and the 15 to 16 years range (0.7262) are relatively lower,
especially the 13 to 14 years range (0.6581). It is in correspondence with the clinical
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dilemma when predicting the skeletal effectiveness of RME treatment for patients of this
age range [1]. The midpalatal suture maturation and ossification process are sensitive
in this age range, and individual differences are more obvious in this period than in
other age ranges. If chronological age is not an efficient indicator for midpalatal suture
maturation and ossification status for these patients, RME clinical effectiveness should then
be appraised by midpalatal suture image features directly. Further studies should focus on
identifying optimized image characteristics to appraise midpalatal suture maturation and
ossification status more satisfactory than chronological age, especially for RME treatment
clinical sensitive period of the 13 to 14 years range.

Compared with the previous methods that extract and analyze midpalatal suture
image characteristics through a single image section, the image fusion algorithm in this
study helps utilize multi-slice valuable image information to show the overall perspective
of the midpalatal suture in one fused image [40–42]. Furthermore, structure labeling by
clinical experts helps improve the proportion of midpalatal sutures in the final images. The
chronological age prediction model in this study thus provides obvious indicative evidence
for midpalatal suture maturation and ossification appraisal.

5. Conclusions

(1) We designed a midpalatal suture CBCT image fusion algorithm to utilize multi-slice
valuable image information to improve the appraisal accuracy of midpalatal suture
maturation and ossification status. This algorithm avoids the influence of CBCT
examination orientation and the convex palatal vault, thus helping to show the overall
perspective of midpalatal suture in one fused image.

(2) The correlation feature and the homogeneity feature are the two texture features with
the strongest relevance to chronological age. The midpalatal suture maturation and
ossification status experience significant changes during the fast growth and develop-
ment period. Furthermore, the overall performance of the age range prediction CNN
model by midpalatal suture image features is satisfactory, especially in the youngest
4 to 10 years range and the oldest 17 to 23 years range. While for adolescents of 13
to 14 years range, the prediction performance is compromised, indicating that RME
clinical effectiveness should be appraised by midpalatal suture image features directly
rather than by chronological age for this age range.

(3) There are some limitations to this study. Sample representativeness and sample size
should be further improved and expanded by the addition of multicenter samples.
Furthermore, the relationship between the midpalatal suture fused image features
and maxillary transverse developmental status need to be further clarified to provide
evidence for appraising suitable RME treatment timing.
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