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Abstract: Growing consumer demand for environmentally conscious, sustainable, and helpful prod-
ucts has prompted scientists and industry experts worldwide to look for inventive approaches to
mitigate the environmental impact, particularly concerning agricultural and industrial waste. Among
the by-products of winemaking, grape pomace (skins, seeds, stems) has the potential to be economi-
cally valuable as it is rich in value-added compounds (e.g., phenolic compounds, fibers, flavonoids,
anthocyanins, terpenoids) related to health (e.g., antioxidant, antimicrobial, anti-inflammatory, car-
dioprotective effects) and technological issues (e.g., extraction of value-added compounds). These
value-added compounds can be extracted using emerging green extraction techniques and then used
in the food industry as preservatives, colorants, and for the formulation of functional foods, as well as
in the development of smart food packaging. This review provides an overview of the value-added
compounds identified in grape pomace, the emerging green extraction, and integrated approaches to
extract value-added compounds based on the literature published in the last five years. The potential
applications of these value-added compounds have been extensively researched for the food industry.

Keywords: grape pomace; value-added compounds; advanced and emerging extraction techniques;
valorization; food industrial applications

1. Introduction

According to the United Nations Organization (UNO) estimates, the world popula-
tion will reach around 10 billion people in 2050. This fact, associated with constant and
increasing climate changes and the decline in agricultural production areas due essentially
to desertification, constitutes a problem on a global scale that challenges the food sector.
In this context, and to minimize and prevent these outcomes and restrict the depletion
of resources, the European Union (EU) plans to attain climate neutrality by 2050. The
implementation of the circular economy’s doctrines is vital to achieving this goal, since
the reuse, recycle, and reduce concepts are adopted to create a closed-loop ecosystem for
efficient resource consumption and usage [1,2]. The wine industry is one of the agri-food
sectors responsible for the elevated expenditure of natural resources (e.g., water) and for
the generation of substantial volumes of residues (solid or liquid) around the world [3,4].

According to Oliveira et al. [5], 1000 kg of processed grapes results in approximately
750 L of wine, 130 kg of grape pomace, 60 kg of lees, and 1650 L of wastewater (Figure 1).
Grape pomace, also known as grape marc, is degradable biomass that represents around
20–25% of the total mass of grapes [6] and thus comes out to around 8.49 million tons a year
worldwide [7]. This winemaking by-product includes a mixture of peels (representing 43%
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of total grape pomace residue), seeds (23%), and stalks (25%) [8,9]. The management of this
by-product is one of the main concerns of the wine industry, as the discard of grape pomace
directly into landfills causes serious environmental issues, such as soil and groundwater
contamination, the generation of unpleasant odors, the attraction of plant disease vectors
(insects and flies), microbial contamination, and severe health risks to the aquatic and
human populations due to its high chemical oxygen demand and biodegradable organic
contents (e.g., tannins), among other parameters [9].
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The chemical oxygen demand of nine different varieties of deseeded grape pomace was
determined by El Achkar et al. [10], and the values ranged from 268 g to 591 g of O2/kg. In
this sense, several studies have been carried out in the last decade to valorize grape pomace
as a sustainable approach, which includes the extraction of value-added compounds
(since only 30% to 40% of phenolic compounds from grapes were transferred to wine),
energy production, animal feed, cosmetics, organic building components by destroying
the biological substances in a rather severe way, among others [2,6,11]. It is an economical
raw material that represents a rich source of bioactive compounds (Figure 1) such as
phenolic compounds, anthocyanins, volatile organic compounds, fibers, proteins, minerals
(e.g., potassium, iron), vitamins, tannins, lipids, lignocellulosic compounds, among others,
suitable for human health-promoting effects as well as for industrial applications (e.g.,
pharmaceutical, cosmetic, food) [12].
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Several studies have shown that these value-added compounds have antioxidant,
antibacterial, anti-inflammatory, antifungal, antimicrobial, and anti-aging activities and can
be used as potential candidates for the prevention of cardiovascular diseases and cancer, as
well as the regulation of bile acid and lipid homeostasis [6,13]. The concentration of these
phytochemicals is significantly influenced by the ripening stage, cultivation procedures,
genetic factors, grape varieties, and climatic and geographical conditions [14,15]. However,
grape pomace may also contain mycotoxins (e.g., ochratoxin A) and other health-damaging
substances in addition to health-beneficial molecules [14]. For this reason, suitable, more
environmentally friendly, and efficient extraction procedures can be optimized and devel-
oped to recover the maximum yield of value-added compounds without compromising
the biological and physicochemical characteristics of the exhausted grape pomace [16].

This comprehensive literature review intends to explore recent achievements related
to efficient and suitable approaches for the valorization of grape pomace and to report
on its volatile and phenolic compounds with potential added value. The diversity of
potential industrial applications to minimize waste and enhance the valorization of this
by-product of the wine industry will be discussed. Although numerous reviews have been
published related to the valorization of grape pomace, the current review distinguishes
itself by providing a comprehensive review of value-added compounds identified in grape
pomace, emerging green extraction technologies used in their extraction, and integrated
valorization approaches, with a specific focus on potential food industrial applications.
Unlike previous reviews that may have focused narrowly on either the extraction methods
or the end products, this manuscript integrates these aspects to present a holistic view of
the entire valorization process. Furthermore, this review highlights integrated strategies
like cascade biorefineries and zero-waste processes, providing practical case studies such
as the approaches proposed by Farru et al. [17] and Monari et al. [16]. By addressing gaps
in the existing literature and offering a comprehensive framework for the valorization
of grape pomace, this manuscript aims to provide valuable insights for researchers and
industry professionals looking to implement sustainable and economically viable practices
in the food industry.

2. Review Design

The design employed in this scientific study is based on a retrospective examination
of research publications published between 2020 and 2024 that explored efficient suitable
approaches for grape pomace valorization and prospective uses of value-added compounds
in the food industry. For this purpose, the bibliographic databases Scopus, PubMed, and
ScienceDirect were used to identify and select publications. These platforms were chosen
because of their extensive coverage of journals. The criteria used to select the articles
were the title, abstract, keywords, and the year of publication reflecting the most recent
advancements in the industrial application of grape pomace. The following keywords were
considered in the current research: “grape pomace”, “grape marc”, “grape byproduct”,
“added-value compounds”, “phenolic compounds”, “Volatiles”, “emerging extraction
techniques”, “food industrial applications”. Wildcards (*, $, among others), operators, and
Boolean (OR, AND) were also applied to obtain more exact results.

3. Efficient and Sustainable Approaches for Grape Pomace Valorization
3.1. Biological Conversion

In the case of grape pomace, biological conversions such as enzymatic hydrolysis,
fermentation, and anaerobic digestion appear to be suitable approaches for the production
of biofertilizers and/or bioenergy (Figure 2). Enzymatic hydrolysis is the breakdown of
macromolecules (e.g., carbohydrates, proteins, lipids) of grape pomace in the presence
of enzymes (e.g., cellulase, pectinase, tanninase, glucoamylase, protease) that promote
their cleavage of bonds following its reaction with water to generate reducing sugar
hydrolysate, which can be used as a substrate by fermentation organisms or converted
into biofuels by microorganisms [3]. Filippi et al. [18] proposed a new process to convert
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grape pomace and stalks into a highly antioxidant extract and bio-based succinic acid. The
substrates were enzymatically hydrolyzed to a high-sugar hydrolysate after pre-treatment
with acidic and alkaline solutions. Actinobacillus succinogenes can effectively utilize the
free sugars in the hydrolysate as a substrate for the synthesis of succinic acid, which
has various applications in the food, pharmaceutical, and agricultural industries. On
the other hand, the highest carbohydrate content in grape pomace represents a suitable
renewable lignocellulosic biomass source for biofuel production [2]. A new and integrated
process to fully explore grape pomace for biochemical production and recovery of oil
and phenolic compounds using pressurized liquid extraction (PLE) has been proposed
by Jin et al. [19]. In the context of biochemical production, the reducing sugars obtained
from the enzymatic hydrolysis of cellulose and hemicellulose were fermented to acetone,
butanol, and ethanol by Clostridium beijerinckii after pre-treatment with an alkaline solution.
Martínez-Avila et al. [20] proposed an integrated enzymatic hydrolysis and fermentation
for polyhydroxyalkanoates from agro-industrial residues, including grape pomace. The
findings demonstrated that the use of hydrolyzed residues in fermentation significantly
increases the production of polyhydroxyalkanoates compared to the residues alone.
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On the other hand, to operate in an ecologically favorable and economical manner,
lignocellulosic wastes, such as those found in grape pomace, appear to be important
feedstocks for methane (CH4) generation through anaerobic digestion, supporting the
transition to renewable green energy sources [21]. Nevertheless, this biological conversion
represents the worst environmental outline in terms of carbon footprint (450 kg CO2 eq per
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ton of biowaste) due to CH4 emissions. On the other hand, considering the advantages of
biogas (around 70% CH4 and 30% CO2), the carbon footprint of this alternative is almost
equal to that of incineration [22]. At the laboratory scale, the anaerobic digestion of grape
pomace from the Pedro Ximénez variety was evaluated under mesophilic conditions by
Javier et al. [23]. The result showed that the maximum yield of the CH4 coefficient obtained
was 65.55 L of CH4 per ton of grape pomace (tongp), with a biodegradability of 51%.
Burning the biogas produced can provide 3.63 kW/tongp of electricity, which, depending
on the price of energy, can be converted into EUR 0.43/tongp.

3.2. Thermochemical Conversion

Through a sequence of physicochemical reactions in a controlled environment, ther-
mochemical conversion employs heat to break down biomass into low molecular weight
molecules to produce desired outputs [24]. Thermochemical conversion, in contrast to
biochemical conversion, utilizes whole biomass to generate value-added compounds with
high energy efficiency, high yields, and shorter processing times. In this sense, grape
pomace represents a suitable source for thermochemical conversions, namely, pyrolysis,
torrefaction, hydrothermal carbonization, and combustion.

Pyrolysis is the process of the thermal decomposition of biomass at high temperatures
(300 and 800 ◦C) in an inert environment to prevent combustion. It is the most frequent
process for the production of biochar, the most common carbonaceous substance obtained
from biomass, and it allows the production of exceptional structures with detailed surfaces
and high porosity [2,25]. On the other hand, torrefaction, also known as mild pyrolysis,
takes place at 200–300 ◦C and produces a primary solid fraction and, to a lesser extent,
a torrefaction liquid mainly composed of hemicellulose degradation products [26]. A
comparative study between the efficiency of pyrolysis and torrefaction to convert grape
pomace into a source of value-added compound source (e.g., oils, acetic acid, phenols) was
conducted by del Pozo et al. [26]. The data demonstrated that with pyrolysis the phenolic
compounds were separated in the bio-oil, resulting from lignin degradation, whereas with
torrefaction most of the phenolic compounds were not volatilized and remained in the
biochar. On the other hand, Yoon et al. [27] used pyrolysis at different temperatures to
produce biochar from grape pomace as an adsorbent for cymoxanil pesticide removal.
The data obtained showed that the biochar obtained at 350 ◦C had the highest cymoxanil
pesticide adsorption capacity (161 mg cymozanil/g biochar) and the lowest surface area
(0.25 m2/g) at pH 7. Zabaniotou et al. [28] investigated the efficiency of the pyrolysis
of grape pomace and observed the production of 0.52 t of biochar, 0.80 t of bio-oil, and
0.630 MWh of energy. The energy produced can replace 1t of lignite, resulting in an
additional economic value of EUR 4470/ha and avoiding 355 kg CO2/t on a dry pomace
basis. In this sense, hydrothermal carbonization appeared as a sustainable approach for
the valorization of grape pomace since it requires water, lower temperatures (150–350 ◦C),
and can be directly applied in residues characterized by high water levels, leading to the
production of gases and carbonaceous materials, called hydrochar. Salaudeen et al. [29]
evaluated the influence of hydrothermal carbonization on the steam gasification of grape
pomace, which can theoretically reduce tar formation by eliminating minimum quality
volatiles with the process water, although further research is required.

3.3. Extraction of Value-Added Compounds

Extraction is considered the most important step in the recovery, isolation, and subse-
quent identification of compounds present in extracts, and there is no standard method [30].
Conventional techniques such as solid–liquid, maceration, and Soxhlet extractions, have
been used for many years; however, they require large quantities of solvent, are time-
consuming, and can result in losses of value-added compounds due to the numerous
steps in the process (Figure 3). In addition, the choice of extraction solvent and even the
sample/solvent ratio are important in achieving good recovery of the compounds.
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Several researchers have reported the design and optimization of emerging extraction
procedures, such as supercritical fluid extraction (SFE) [31,32], microwave-assisted extrac-
tion (MAE) [33–35], PLE [16,36], ultrasound-assisted extraction (UAE) [35,37], enzymatic
extraction [38], among others, to maximize the yield of value-added compounds (e.g.,
phenolic compounds, anthocyanins, fibers, proteins) from grape pomace for various appli-
cations in food, agriculture, pharmaceuticals, and cosmetics [12,39–42]. These emerging
extraction techniques have been proposed for the recovery of phenolic compounds from
grape pomace with the main objective of reducing extraction time, solvent volume, and
cost, as well as increasing sustainability [30,43]. Solid–liquid extractions (e.g., PLE) use
high temperatures and pressures and are considered a more efficient extraction procedure
compared to solvent extraction and SFE, which use high solvent power and the distinctive
physicochemical properties of supercritical fluids [16,30,44]. Aresta et al. [31] compared
the extraction efficiency of traditional solid–liquid extraction (SLE) and SFE, in terms of
extraction yield, total phenolic content (TPC), and antioxidant activity from Merlot grape
pomace. The data obtained showed that SLE allowed to obtain higher extraction yield,
TPC, and antioxidant activity compared to SFE, as can be observed in Table 1.
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Table 1. Phenolic compounds identified in grape pomace from different grape varieties.

Grape Pomace Extraction Procedure Analytical Approach Outcome Ref

Cabernet Sauvignon

PLE: 40% (v/v) ethanol,
9 min, 5 cycles, 130 ◦C

Sonification:
acetone/H2O/acetic
acid 70/28/2%v/v

HPLC

EY: 0.11 (sonification), 0.32 (PLE) g/g dw
TPC: 10.4–72.6 mg(GAE)/g dw
TA: 0.80–0.90 mg(C3GE)/g dw

TPCA: 7.68–11.30 mg(PB2E/g dw
TF: 10.5–50.3 mg(CAE)/g dw
DPPH: 36.2–76.1 mg(TE)g dw
ABTS: 66.9–109.3 mg(TE)g dw

[19]

Merlot

LLE: S/L 1:50, 100:0,
80:20, 60:40, 40:60,

20:80, and 0:100% of
ethanol: H2O v/v)

HPLC-DAD

The best TPC, TFC, and TA were attained
with ethanol: H2O (40:60 v/v).

TPC: 649–2915 mg(GAE)/100 g dw
TFC: 254–1793 mg(CAE)/100 g dw
TA: 7.24–66.2 mg(C3GE)/100 g dw

PC: syringic acid (46.1 mg/100 g dw),
quercetin (31.2), vanillic acid (35.4), gallic

acid (36.0)

[45]

Garganega

SE: 75% acetone, S/L
1:5, 50 ◦C, 2 h

PLE: 10.6 g GP, 100 bar,
1 h, 80 ◦C, 75%

(ethanol:H2O 50:50
v/v), 25% CO2,

8 g/min

HPLC-DAD

EY: 51.1 (SE), 60.8 (PLE) g/kg
TPC: 60.8–77.9 g(GAE)/kg dw

PC: catechin, epicatechin gallate, epicatechin,
epigallocatechin, rutin

[16]

Feteasca Neagra,
Merlot, Burgundy,

Cabernet Sauvignon,
Pinot Noir

MAE: ethanol:H2O 50%
g/g, S/S 1:3 g/g,

100 ◦C, 5 min, 13 psi
UHPLC–ESI/HRMS

TPC: 17.1–25.6 mg(GAE)/g dw
CAT: 17.7–20.7 mg(CAE)/g dw

TAN: 179–448 mg/g dw
TA: 26.8–156.6 mg(C3GE)/g dw
DPPH: 41.7–85.1 µM(TE)/g dw

PC: Quercetin (355–1445.7 mg/100 g dw),
catechin (79.2–185.7), epicatechin (79.9–142.8),

syringic acid (18.3–94.3), gallic acid
(6.44–14.1), pinocembrin (0.81–45.4)

[34]

White

MAE: 10% (m/m) of
GP, 10 min, 100 ◦C,
2.7 g of ChCl:LacA:

H2O (36:39:25% v/v)

HPLC-ESI-MS/MS

EY: 135 mg proanthocyanidins/g dw (MAE),
126 mg/g dw (conventional maceration)

The extraction time was reduced from 1 h to
3.56 min.

[33]

Grape pomace

NADES-UMAE:
ChCl:citric acid (2:1)
with 30% H2O/DES

(v/v) 50 ◦C, 2 h, 300 W
(MAE), 50 W (US)

HPLC

EY: 1.77 mg/g dw
TPC: 2892 mg(GAE)/kg dw
ORAC: 2190 mM(TE)/g dw

PC: Malvidin-3-(6-O-p-coumaroyl)
monoglucosides (1116 mg/kg dw),

Malvidin-3-O-monoglucoside (556.8),
catehin (266.6)

[46]

Tannat UAE: 3 g of GP, 60 mL
ethanol/H2O 1:1 v/v HPLC

UAE extracts were 50% richer in TPC and
TMAC than conventional extractions.

TPC: 7.8–77.6 mg(GAE)/g dw
TMAC:1.29–5.46 mg(C3GE)/g dw

TAC: 32.4–200.7 mg(TE)/g dw

[44]

Lacrima Di Morro
d’Alba and
Verdicchio

UAE: 1 g of GP, 15 mL
ethanol:H2O 70:30, v/v

acidified HCl (0.1%),
40 KHz, 60 min, 25 ◦C

HPLC-ESI-MS/MS

TPC: 41.2–106.5 mg(GAE)/g dw
TFC: 27.7–38.2 mg(RE)/g dw

TA: 0.38–8.02 mg(C3GE)/g dw
DPPH: 82.9–303.4 mg(TRE)/g dw

PC: gallic acid (117.3–605.2 mg/kg dw),
vanillic acid (200.4–713.6), quercetin (6–262.0),

rutin (3.4–46.1), kaempferol (1.9–9),
isorhamnetin (0.1–0.8)

[37]
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Table 1. Cont.

Grape Pomace Extraction Procedure Analytical Approach Outcome Ref

Monastrell

UAE: 100 mg of GP,
1 mL of

methanol/formic
acid/H2O (50:2:48,

v/v/v), 60 min

HPLC-DAD-ESI-
MS/MS

PC: Catechin (96.15 mg/kg dw),
proanthocyanidin dimer (B-type) (84.60),

proanthocyanidin dimer monogallate (45.04),
epicatechin (42.0), proanthocyanidin dimer

digallate (8.61), gallocatechin (7.99),
catechin-gallocatechin (7.83)

[47]

Red and white
SE: 150 g of GP, 300 mL
of ethanol/H2O 50:50

v/v, 40 ◦C, 15 min

HPLC-DAD-ESI-
MS/MS

Σflavonols: nd–204.5 µM/g dw
Σanthocyanins: nd–57.7 µM/g dw
Σflavan-3-ols: 245–826 µM/g dw

Σ stilbenes: nd–1.06 µM/g dw

[48]

Aresta White
SFE: 0.1 kg GP, 8 MPa,

40 ◦C, 10% (w/w)
ethanol/240 min

HPLC-DAD-MS

EY: 2.3 g/100 g dw
TPC: 2245 mg(GAE)/100 g dw

DPPH: 5154 mg(α-tocopherol)/100 g dw
TPCA: 0.994 g (CAE)/100 g dw

PC: cis-resveratrol glucoside (2297 µg/100 g
dw), cis-coutaric acid (1841), trans-p-coumaric

acid (897), and quercetin (659)

[32]

Merlot

SFE: 3 g GP, 60◦C
250 bar, flow rate

2 mL/min.
SLE: 5 g GP, 5 mL of
70% ethanol, 20 min

-

SFE obtains a higher EY of all analytes
compared to SLE, except for β-sitosterol and

α-tocopherol
TPC: 570 µg(GAE)/g dw SFE, 650 µg(GAE)/g

dw (SLE)
DPPH: 0.118 mM (TE)/g dw (SFE), 0.141 mM

(TE)/g dw (SLE)

[31]

Syrah, Cabernet
Sauvignon, Malbec

Pinot-Noir and
Marselan

Enzymatic extraction:
pectinase, cellulase,

tannase, 50 mM acetate
buffer at S/L 1:10 (w/v)

HPLC-DAD

Both fungi increased the antioxidant activity
of the extracts, reaching maximum values of

73.7 (A. niger) and 109 (A. oryzae) mM
(TE)/100 g dw

TPC: 0.49 to 0.81 g (GAE)/100 g dw
TAC: 3.1 to 5.6 mM (TE)/100 g dw

PC: syringic acid (0.13–0.17 g/100 g dw, gallic
acid (0.03–0.16), (+)-catechin (0.018–0.028)

[38]

Abbreviations: ABTS: 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid assay; C3GE: cyanidin-3-glucoside
equivalent; CAE: catechin equivalent; CAT: catechins; ChCl: choline chloride; LacA: lactic acid; NADES: natural
deep eutectic solvents; DPPH: 2,2-diphenyl-1-picrylhydrazyl assay; dw: dry weight; EY: extraction yield; GAE:
gallic acid equivalent; GP: grape pomace; HPLC: high-performance liquid chromatography; HPLC-DAD-ESI-
MS/MS: high-performance liquid chromatography equipped with photodiode array detection-electrospray
ionization tandem mass spectrometry; HPLC-ESI-MS/MS: high-performance liquid chromatography-electrospray
ionization tandem mass spectrometry; LLE: liquid–liquid extraction; MAE: microwave-assisted extraction; nd:
not detected; PB2E: procyanidin B2 equivalent; PC: main phenolic compounds identified; PLE: pressurized liquid
extraction; RE: rutin equivalent; ORAC: oxygen radical absorbance capacity; S/L: ratio solid/liquid (g/mL); SLE:
solid–liquid extraction; S/S: ratio solid/solid (g/g); SE—solid-based extraction; TA: total anthocyanins; TAC: total
antioxidant capacity; TAN: tannins; TE: trolox equivalent; TFC: total flavonoid content; TMAC: total monomeric
anthocyanin content; TPC: total phenolic content; UAE: ultrasound-assisted extraction; UHPLC–ESI/HRMS:
ultra-high-performance liquid chromatography–electrospray ionization high-resolution mass spectrometry.

Another extraction procedure for recovering value-added compounds from grape
pomace is MAE, which promotes the separation by using a heated solvent and microwave
radiation. This extraction process has many advantages, including high efficiency, low
energy consumption, fast processing times, economical, clean, easy to control, and lower
solvent volumes [34,49]. Spinei and Oroian [49] optimized MAE in terms of microwave
power, irradiation time, and pH to obtain pectin from grape pomace, and this wine by-
product represents a suitable source of pectin with high galacturonic acid content, degree
of esterification, and molecular weight. More recently, Spinei and Oroian [50] compared the
properties of pectin extracted using conventional and emerging techniques (MAE, UAE),
including emulsifying activity and emulsion stability, among others, from grape pomace.
The data obtained showed that MAE had the highest yield, and the extracted pectin showed
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potential for various applications such as emulsification, thickening, and stabilization in
food products.

The combination of eutectic solvents (ESs) with MAE to extract proanthocyanidins
from white grape pomace with a higher extraction yield (EY) and mean degree of poly-
merization (mDP) was studied by Neto et al. [33]. The best ES (36% of choline chloride,
39% of lactic acid, 25% of water) in combination with MAE at 100 ◦C allowed to reduce
the extraction time from 1 h to 3.56 min, with slightly higher EY (135 vs. 126 mg proantho-
cyanidins/g of grape pomace) and mDP (7.2 vs. 6.5). UAE using high-frequency sound
waves has also been used [30,44]. This technique is an efficient extraction method for the
isolation of phenolic compounds from grape pomace, especially when applied to grape
seed oil, allowing a reduction in extraction time with relevant results in the recovery of
phenolic compounds. However, caution should be exercised with the UAE as may lead
to the degradation of the phenolic compounds of interest [30]. González et al. [44] con-
firmed that UAE produced extracts that were, on average, 50% richer in TPC and total
monomeric anthocyanins compared to traditional extractions. Recently, natural deep eu-
tectic solvents (NADESs) combined with simultaneous ultrasound/microwave-assisted
extraction (UMAE) have emerged as suitable green solvents for the recovery of value-added
compounds from grape pomace. Hydrogen bond acceptors (e.g., quaternary ammonium,
phosphonium salts), hydrogen bond donors (e.g., sugars, alcohols, amino acids, organic
acids), and occasionally up to 50% (v/v) of water are the two or three components that
constitute NADESs, a combination that forms intramolecular hydrogen bonds [46,51]. Re-
garding the importance of an integrated approach to the valorization of grape pomace,
there have been few studies related to this topic available in the literature. For example,
Farru et al. [17] proposed a cascade biorefinery for grape pomace starting with the recovery
of the phenolic compound using an eco-friendly and economical SLE, followed by the
production of value-added products and energy through thermochemical conversion, and
the production of CH4-rich biogas through anaerobic digestion. Monari et al. [16] also
proposed a two-step cascading process aiming at a complete zero waste valorization of
grape pomace, starting with the recovery of phenolic compounds through two extraction
procedures, SLE and PLE, then using the solid fiber extraction residue to produce fully
bio-based composite formulations by melt blending with the renewable and biodegradable
poly(hydroxybutyrate-co-hydroxyvalerate) matrix.

4. Potential Food Industrial Applications

The growing attention to grape pomace, the most important by-product of wineries,
is mainly due to the bioactivity of the high-value-added compounds, including pheno-
lic compounds, flavonoids, anthocyanins, volatile organic compounds (VOCs), minerals,
fibers, hemicellulose, as well as their potential application various industrial sectors, such
as pharmaceuticals, cosmetics, nutraceuticals, agriculture, livestock, and in energy recov-
ery systems, Figure 4 [12,39–42]. However, in the current review, only industrial food
applications will be discussed.

The nutritional content of a product, food quality, and consumer acceptance of the food
are gradually reduced by this process in combination with auto-oxidation and microbial
contamination [12]. In this context, the use of grape pomace as a source of new foods or
components/ingredients with nutritional and functional properties is a growing trend due
to its phenolic content (70% phenolic compounds), which persists after the vinification
process. Together with dietary fiber, these beneficial substances offer health advantages
including the prevention of cancer or chronic diseases [52], and they can be used for food
preservation by preventing lipid oxidation and through their antimicrobial effects [15].

Grape pomace can serve as a source of natural food additives due to its rich content
of bioactive compounds, including phenolic compounds, anthocyanins, dietary fibers,
terpenoids, among others [47,53–56]. These additives can be used for various purposes
in food formulations, such as antioxidants, dietary fibers, flavor enhancers, and natural
colorants, among others. By incorporating grape pomace-derived additives into food
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formulations, manufacturers can meet consumer demand for clean-label products while
benefiting from the functional properties and health-promoting effects of these natural
ingredients.
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4.1. Antioxidant and Antimicrobial Agents

Phenolic compounds extracted from grape pomace can act as natural antioxidants
and antimicrobial agents, preventing lipid oxidation and extending the shelf life of food
products (e.g., meat, dairy products, and baked products), thereby preserving their quality
and nutritional value [57,58]. Some studies show that grape pomace contains high levels of
phenolic compounds, with different qualitative and quantitative distributions, depending
on different factors such as the type of grape variety, the location, and the wine-making
process used [16,45,46]. Table 1 shows the main phenolic compounds that have already
been identified in grape pomace from different grape varieties using different extraction
processes and analytical methods, as well as TPC, total anthocyanins (TA), total flavonoid
content (TFC), and antioxidant activity (DPPH, ABTS).

Antioxidant packaging is a sort of active packaging created by incorporating antioxi-
dants into the packaging material to enhance food preservation and shelf life [59]. Although
synthetic antioxidants (e.g., butylated hydroxyanisole, butylated hydroxytoluene) and/or
natural antioxidants from food waste and by-products have been used to develop more
sustainable and environmentally friendly packaging solutions [60]. In a study conducted
by Cejudo-Bastante et al. [61], a new active food packaging material was developed using
natural jute fibers impregnated with grape pomace extract (90 mg/mL) at 50 MPa and
55 ◦C. The results showed that the antioxidant and antibacterial (against Escherichia coli,
Staphylococcus aureus, and Pseudomonas aeruginosa) properties of grape pomace extract were
successfully transferred to jute natural fibers. Mugnaini et al. [59] also evaluated the in-
corporation of natural phenolic compounds found in grape pomace into biopolymer films
intended for food preservation. The active edible biopolymeric films showed improved
mechanical, antioxidant, and antibacterial properties, demonstrating their potential for
significant effects under real conditions. Silva et al. [62] observed that the addition of grape
pomace extract increased the relaxation time of the polypropylene film melt and reduced
the initial thermal decomposition temperature of the film. The antimicrobial polypropylene
film prepared with grape pomace extract showed significant antibacterial activity, making
it suitable for food packaging applications. In a published study, different amounts of grape
pomace were incorporated to enhance the preservation of pork burgers [63]. This incorpora-
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tion significantly inhibited coliform growth during storage and prevented the development
of protein and lipid oxidation during storage. Interestingly, grape pomace extract has been
touted as a replacement for sulfite; however, the effectiveness of this approach appears to
depend on the assay used, as the formation of complexes between phenols and proteins can
interfere with some protein assays. However, the promising outlook for the development
of active food packaging using grape pomace as an active agent provides opportunities
for the valorization of these by-products. Incorporating bioactive compounds from grape
pomace into packaging materials can not only improve food quality and safety through
antioxidant and antimicrobial properties but also promote economic and environmental
sustainability through the use of agricultural residues.

4.2. Dietary Fibers

Grape pomace contains insoluble (e.g., cellulose, hemicellulose, lignin) and soluble
(e.g., pectin) dietary fibers that can improve the texture, stability, and nutritional profile
of foods, such as baked products, cereals, and meat products. Insoluble fibers have high
porosity and low density, which helps the digestive tract function more efficiently. Some
dietary fiber components in grape pomace form chemical bonds with phenolic chemicals,
resulting in antioxidant dietary fibers, giving grape pomace a higher radical scavenging
capacity. This gives them a better nutritional value than the dietary fiber found in cereals.
Studies have shown that these complex chemicals combined with dietary fibers have a
greater impact on human health [14,64].

As has been extensively researched, grape pomace can be used to increase the fiber
content of foods. Recently, leavened bakery products with high nutritional value, such
as pizza bases, have been produced using grape pomace flour. In the study conducted
by Difonzo et al. [52], grape pomace flour was used in proportions of 15%, 20%, and 25%
in place of wheat flour. Experimental products with the addition of grape pomace flour
showed a higher phenolic content and antioxidant activity and high dietary fiber content
(6 g/100 g) already with 15% flour substitution, allowing the nutritional claim “enriched
in fiber”. An equivalent technological application was the use of grape pomace flour
to produce muffins with higher fiber and lower fat content. The muffins produced had
suitable properties in terms of phenolic content, fiber content, and antioxidant activity [65].
The use of grape pomace flour in unleavened bakery products, such as breadsticks has
been the subject of scientific research [66]. In this study, technical methods were used
to produce fortified breadsticks by substituting 0.5 g and 10 g of grape pomace flour
per 100 g of wheat flour. Nutritionally, the fortified breadsticks contained more dietary
fiber and phenolic compounds. The outcomes of these studies indicated the potential
of grape pomace flour for the production of fiber-rich and bioactive breadsticks, with
reasonable sensory acceptance [67]. In this sense, food enriched in fiber can aid in digestive
health, promote regular bowel movements, and potentially reduce the risk of chronic
diseases such as heart disease and diabetes by helping to maintain healthy blood sugar and
cholesterol levels.

4.3. Flavor Enhancers

Grape pomace extracts are recognized for their ability to impart distinctive flavors
and aromas to food products, enriching their sensory attributes and increasing consumer
acceptance. This potential is attributed to the presence of various VOCs within the po-
mace in grape pomace, which contribute to its flavor profile; moreover, due to their low
odor threshold, they may offer new opportunities for flavor modulation in the food in-
dustry, thus contributing to the sustainable use of resource utilization [50,68]. Table 2
summarizes the VOCs identified in grape pomace obtained from different Vitis vinifera L.
grapes using headspace solid-phase microextraction combined with gas chromatography
(HS-SPME/GC-MS).

For instance, the VOCs identified in wine by-products by Câmara et al. [68] can be
used as additives to enhance the organoleptic characteristics of fish feed. In addition,
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specific VOMs such as benzyl alcohol and 2-phenyl ethanol are often utilized as flavoring
agents in different beverages and food products (e.g., bakery products and sweets) [50],
due to their low odor threshold.

Table 2. Volatile organic compounds (VOCs) identified in grape pomace using headspace solid-phase
microextraction combined with gas chromatography (HS-SPME/GC-MS).

Grape Pomace HS-SPME Extraction Analytical
Approach Main VOCs Ref.

Tinta negra, Complexa,
Verdelho, Malvasia
roxa, Boal, Malvasia,

Sercial, Terrantez,

2 g GP, 0.5 g NaCl, 5 mL of
H2O, 40 ◦C, 45 min,

DVB/CAR/PDMS fiber
GC-MS

Ethyl acetate (0.23–47.3 µg/L)
Hexan-1-ol (1.33–25.5 µg/L)

(E)-2-hexenal (n.d.–8.60 µg/L)
3-Methyl butan-2-ol (0.02–8.18 µg/L)

Isoamyl acetate (0.02–6.32 µg/L)
Hexanal (0.64–6.16 µg/L)
Menthol (n.d.–3.64 µg/L)

[50]

Tinta Negra
4 g GP, 2 g NaCl, 5 mL of

H2O, 40 ◦C, 45 min,
DVB/CAR/PDMS fiber

GC-MS

Methyl acetate (8.03 µg/L)
3-Hydroxy-2-butanone (5.97 µg/L)

Acetic acid (4.48 µg/L)
Methyl hexanoate (3.09 µg/L)

[68]

Chardonnay
1 mL GP extract, 9 mL H2O,

2 g NaCl, 35 ◦C, 30 min,
PDMS/DVB fiber

GC-MS

1-Butanol (0.81–0.96 µg/L)
1-Hexanol (1.58–9.25 µg/L)

(E)-2-hexen-1-ol (0.38–2.01 µg/L)
(E)-2-octen-1-ol (2.14–5.15 µg/L)
Benzyl alcohol (0.17–0.92 µg/L)

2-Phenyl ethanol (0.16–0.76 µg/L)
Geraniol (0.21–0.22 µg/L)

[69]

Abbreviations: HS-SPME—headspace-solid phase microextraction; GC-MS—gas chromatography-mass spectrom-
etry; GP—grape pomace.

4.4. Natural Colorants

Anthocyanins, tocopherols, carotenoids, and other pigments present in grape pomace
can be used as natural colorants in food and beverage applications, replacing synthetic
additives, and their color can change depending on the pH of the medium. Nevertheless,
the main studies reported in the literature have focused on the extraction of anthocyanins
from grape pomace (84.4–131 mg anthocyanins/100 g) [4]. The use of anthocyanins as
food colors in beverages, jams, sweets, ice creams, and medicines is now permitted by
the European Food Safety Authority (EFSA) [12]. Because of this characteristic, several
food manufacturers have started to use natural anthocyanins instead of synthetic dyes
to color food ingredients [53]. It is known that the color of anthocyanins can change
depending on the pH of the medium and that their colors can remain stable after acetylation,
polymerization, and condensation processes [70]. Nogueira et al. [71] proposed arrowroot
starch films containing anthocyanin-rich grape pomace extract for several applications,
including color migration for food simulants and fish meat freshness testing. The developed
film changes color in different pH buffer solutions, from pink at pH 2 to light blue at pH 7
and slightly yellowish green at pH 10. After 96 h of storage at 25 ◦C, the composite films
changed color from reddish pink to slightly green, indicating fish meat freshness. Moreover,
Souza Mesquita et al. [72] used eutectic solvents with potential health benefits, such as
those based on vitamins, to recover anthocyanins from grape pomace, and the extracted
anthocyanins were loaded onto silicon dioxide (SiO2) and tested for thermal stability at
different temperatures. The data showed that this strategy also enhanced the stability of
the pigments at high temperatures, thus contributing to the valorization of grape pomace
by extracting natural pigments. On the other hand, Romanini et al. [73] microencapsulate
anthocyanins from grape pomace extract in a combination of maltodextrin and xanthan
gum and use gelatin to assess the effect of this process on color stability. The results showed
that encapsulation maintained the stability of anthocyanins in grape pomace extract under
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different conditions (e.g., temperature, absence, presence of light), resulting in a longer
half-life compared to the control (isolated extract). In this sense, EFSA’s approval of
anthocyanins as food colors has significant implications for the wider use of encapsulated
natural colors across the food industry and the promotion of innovation.

4.5. Functional Ingredients in Foods

In addition to its nutritional importance, grape pomace extract can certainly be utilized
as a functional component in foods and beverages to provide health benefits [65,74–76],
as can be observed in Table 3. The influence of grape pomace powder on the chemical,
technological, and sensory characteristics of muffins was assessed by Troilo et al. [65],
Baldán et al. [74], and Antoniolli et al. [77]. These studies concluded that grape pomace
powder added to muffins can enhance their nutritional value by increasing the content
of bioactive compounds (e.g., phenolic compounds, anthocyanins), as evidenced by the
positive results obtained in the analysis of muffins and the acceptance of products contain-
ing grape pomace by consumers [65,74,77]. Milinčić et al. [76] investigated the physical
and functional qualities of goat milk powders enhanced with grape pomace seed extract,
and the results demonstrated that thermally treated enriched goat milk powders exhibited
improved emulsifying properties and stability, making them promising ingredients for the
formulation of functional food that require good emulsifying activity and stability. This
research also revealed phenolic–protein interactions and changes in the secondary structure
of milk proteins due to the presence of phenolic compounds and thermal treatment. On
the other hand, Difonzo et al. [52] evaluated the influence of the addition of three different
percentages of grape pomace in the formulation of pizza bases. These authors found that
the addition of grape skins and seed flours to pizza bases resulted in increased fiber content
and antioxidant activity, as well as significant differences were found in texture and volatile
compounds depending on the type and percentage of grape flour added. For instance, Tolve
et al. [78] fortified wheat bread with grape pomace powder, and the results demonstrated
that this incorporation improved water absorption and quality score, reduced the softening
degree of doughs, and modified the chemical composition and sensory attributes of the
bread. In addition, the potential of grape pomace for the development of functional biscuits
is demonstrated in another study by Olt et al. [79], in which the level of grape pomace
powder was varied (10–20% w/w total wet dough). The data showed that this incorporation
potentially improved oxidative stress, glucose, and fatty acid levels while maintaining
good sensory quality. Nevertheless, most of them try to increase the antioxidant activity
of the system or the total dietary fiber content, which will strengthen the protection of the
different forms of fat that may be present in the food matrix from oxidation [8].

Table 3. Grape pomace as a valuable resource in the development of functional foods.

Food Product Amount of Grape Pomace Main Outcome Ref

Biscuits 10% to 20% (w/w) grape
pomace powder (GPP)

The integration of GPP on biscuits appeared to be an
encouraging functional meal with the facility to alleviate
oxidative stress and hyperglycemia.

[79]

Bread 5% (w/w) of GPP The incorporation of GPP indicated a decrease in moisture
content and a rise in anthocyanin levels. [80]

Bread 2% (w/w) of GPP
Bread formulation with the incorporation of GPP produces
the greatest results, as it allows for a product with a
homogenous structure and improved volume.

[81]

Bread 5% and 10% (w/w) GPP
Fortification with GPP resulted in a significant increase in
anthocyanins, lower starch hydrolysis, and predicted
glycemic index.

[82]

Breadsticks 5 g and 10 g/100 g
of GPP

Fortification of breadsticks with GPP improved TPC and
antioxidant activity, as well as affected the rheological
properties of doughs.

[66]
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Table 3. Cont.

Food Product Amount of Grape Pomace Main Outcome Ref

Breadsticks 5 g and 10 g/100 g of GPP
Antioxidant capacity within breadsticks declined over time,
revealing that oxidation initiated and decreased
antioxidant activities.

[67]

Cereal bars 10 g and 20 g of GPP The fortified bars demonstrated alterations in properties,
namely increased moisture, and soluble dietary fiber level. [83]

Gluten-free muffins 108 g to 180 g
The addition of GPP improved the nutritional composition
of the muffins as their content increased, emphasizing
protein and crude fiber levels.

[74]

Goat milk powders
0.2 mg to 0.6 mg grape
pomace seed
extract (GPSE)

Functionally enhanced GPSE powders, exhibited
remarkable emulsifying properties, positioning them as
promising candidates for formulating new food products
that need ideal emulsifying activity and stability.

[76]

Jelly candy 1 g of grape pomace
The incorporation of grape pomace enhanced phenolic
content, oil-binding capacity, antioxidant activity, color, and
textural parameters.

[84]

Muffins 15 g of GPP
The particle size of the GPP was found to affect the texture,
color, antioxidant activity, and sensory properties of
the muffins.

[65]

Pasta 25% and 50% of GPP
The pasta with 50% GPF demonstrated an excellent mix of
antioxidant activity, nutritional value, consumer appeal,
and promise as a new functional food.

[85]

Pasta 25% of GPP The addition of GPP raised the amount of dietary fiber in
the finished product by nearly 45 times. [86]

Pasta 5% and 10% (w/w) GPP

Polyphenol concentration varied amongst GP-fresh pasta
samples and rose proportionately with the quantity of GPP
applied. The antioxidant activity of raw GP-fresh pasta
samples did not differ but increased during cooking due to
interactions between polyphenols in GPP and
gluten proteins.

[87]

Pasta 3, 6 and 9% (w/w) GPP

The inclusion of GPS into pasta formulations of up to 6%
resulted in products with better organoleptic and functional
qualities. A 9% GPS level is not suggested in the pasta
recipe because of the challenges that might develop in the
pasta processing, in the reduction of the dough elasticity.

[88]

Pizza bases

Grape pomace (mix of
skin/seed flour 70:30
(w/w)) to replace 15–25%
of wheat flour

The addition of grape pomace to pizza bases enhanced fiber
content and antioxidant activity. Significant differences
were observed in texture based on the type and percentage
of grape pomace added.

[52]

Savory crackers 5%, 10% and 15%
(w/w) GPP

The incorporation of GPP in savory crackers showed
potential as a functional food, with novel colors and
enhanced fiber amount.

[75]

Wheat bread 5 g and 10 g/100 g GPP The incorporation of GPP in wheat bread changed the taste,
color, and flavor of the bread. [78]

Wheat pasta 4% (w/w) GPP
The incorporation of GPP improved phenolic content,
antioxidant activity, carotenoids, tocochromanols, and
fiber content.

[89]

Wheat pasta 5 g and 10 g grape
pomace/100 g

Pasta fortified with grape pomace increased TPC,
antioxidant activity, and fiber content in cooked products. [90]
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4.6. Prebiotic Potential

Numerous studies on the use of grape pomace in functional foods have led researchers
to focus on the prebiotic potential of grape pomace and its components [8,91]. It is
known that the encapsulation of phenolic compounds is a practical alternative to in-
crease their bioaccessibility and bioavailability. A recent study evaluated the effects of a
micro-encapsulated pomace extract added to coconut water on the growth of probiotic bac-
teria [92]. At a concentration of 2% (w/v), the extract appeared to have prebiotic potential,
acting as both an antioxidant and an antibacterial agent. The findings showed a beneficial
effect on the development of bifidobacteria and lactobacilli, with no adverse effects on the
sensory aspect in terms of aroma and flavor. In another investigation, maltodextrin and a
grape pomace extract rich in value-added compounds were combined to form vesicles for
intestinal transport [1]. The ability of these vesicles to produce Lactobacillus reuteri biofilm
in vitro was demonstrated by their apparent ability to reduce hydrogen peroxide-induced
damage to intestinal epithelial cells. Anghel et al. [93] investigated the effects of different
drying methods on grape pomace and evaluated the potential antidiabetic effect of the
extracts obtained. The data obtained demonstrated that anthocyanins from grape pomace
have the potential to act as antidiabetic molecules and that the infrared drying method can
be employed to protect the quality of GP puree inoculated with probiotic (Lactobacillus casei
ssp. paracasei (L. casei 431®). Bordiga et al. [94] also showed the in vitro prebiotic potential of
grape seed extracts; however, the results of the study showed that Lactobacillus acidophilus
P18806 displayed different sensitivity to phenolic compounds; therefore, the purification of
such extracts is considered crucial. However, the extraction of these bioactive compounds
could also be valuable as they can be utilized to enhance the quality of food items or to
replace synthetic commercial additives. A step in the right direction was taken when Meini
et al. [38] investigated the solid-state fermentation of grape pomace using filamentous fungi,
such as Aspergillus niger and Aspergillus oryzae, and, in particular, the effect of the process
on the antioxidant and prebiotic activities of the extracts produced. The idea was based
on the discovery that filamentous fungi can secrete hydrolytic enzymes that facilitate the
release and extraction of phenolic compounds. The extracts obtained appeared to promote
the development of probiotic Lactobacillus casei species. The simultaneous synthesis of
enzymes such as cellulase, pectinase, and tannase, which may be recovered and used in
industrial applications, is another benefit of this system, in addition to the production of
grape pomace extracts with prebiotic and antioxidant activity.

5. Conclusions and Future Trends

The disposal or management of winemaking by-products (e.g., grape pomace, lees)
is a serious concern for the wine industry. To overcome and/or mitigate environmental
concerns, academics and industry experts worldwide have been investigating sustain-
able approaches to valorize this by-product by employing emerging techniques to isolate
value-added phytochemicals and/or by applying biotechnological, mechanical, and chemi-
cal conversion.

Regarding the isolation and recovery of value-added compounds, emerging extrac-
tion procedures, such as SFE and ASE, appear to be sustainable approaches to reducing
processing time, reducing environmental damage caused by toxic solvents and energy con-
sumption, and increasing extraction yields compared to conventional techniques (Soxhlet,
SLE). Nevertheless, these approaches to grape pomace management have generally been
carried out individually, and, in this context, future investigations should be performed to
integrate strategies to valorize the bulk organic matter after the extraction of valuable phyto-
chemicals with promising benefits in the food, cosmetic, and pharmaceutical industries. To
the best of our knowledge, there are few studies in the literature on integrated strategies for
the valorization of grape pomace, but this represents an important approach for enhancing
environmental sustainability, economic viability, and resource efficiency. They support
the transition towards a circular economy by turning waste into valuable products and
energy, fostering innovation, and creating new economic opportunities. Nevertheless, to
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fully implement these integrated approaches and enhance the economic competitiveness
and resilience of the winemaking sector, it is important to enhance our understanding of
each process, maybe by implementing them at a pilot scale.
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