Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials
2.3. Time–Intensity Evaluation System
2.4. Procedure
2.5. Analysis
3. Results
3.1. Comparison of Temporal Profiles of Sweetness among Samples in Each Solvent Session
3.1.1. Sweetened Coffee Beverage
3.1.2. Sweetener in Water Solution
3.2. Comparison of Temporal Profiles between Solvent Sessions for Each Sweetener
3.2.1. Sucrose
3.2.2. Sucralose
3.2.3. Acesulfame K
4. Discussion
4.1. Temporal Profiles of Sweetness of Sweetened Coffee Beverages
4.2. Temporal Profiles of Sweetness of Sweeteners in Water Solutions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- White, J.S. Sucrose, HFCS, and fructose: History, manufacture, composition, applications, and production. In Fructose, High Fructose Corn Syrup, Sucrose and Health; Rippe, J.M., Ed.; Humana Press: New York, NY, USA, 2014; pp. 13–33. [Google Scholar]
- Clemens, R.A.; Jones, J.M.; Kern, M.; Lee, S.-Y.; Mayhew, E.J.; Slavin, J.L.; Zivanovic, S. Functionality of sugars in foods and health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 433–470. [Google Scholar] [CrossRef]
- Gardner, C.; Wylie-Rosett, J.; Gidding, S.S.; Steffen, L.M.; Johnson, R.K.; Reader, D.; Lichtenstein, A.H.; on Behalf of the American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular Disease in the Young, & the American Diabetes Association. Nonnutritive sweeteners: Current use and health perspectives: A scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2012, 35, 1798–1808. [Google Scholar] [PubMed]
- Roberts, M.W.; Wright, J.T. Nonnutritive, low caloric substitutes for food sugars: Clinical implications for addressing the incidence of dental caries and overweight/obesity. Int. J. Denti. 2012, 2012, 625701. [Google Scholar] [CrossRef] [PubMed]
- Japan Soft Drink Association. Question and Answer about Soft Drinks: Please Tell me the Difference between “Low Sugar” and “Non-Sugar” Coffee Beverages. Available online: http://www.j-sda.or.jp/ippan/qa_view.php?id=55&cat=1 (accessed on 5 December 2017).
- Ministry of Health, Labor and Welfare. In Nutrition Labelling Standards. Available online: http://www.caa.go.jp/foods/pdf/syokuhin344.pdf (accessed on 5 December 2017).
- European Union. Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 49, L404/9. [Google Scholar]
- Institute of Medicine (US) Committee on Examination of Front-of-Package Nutrition Rating Systems and Symbols. Appendix B FDA regulatory requirements for nutrient content claims. In Front-of-Package Nutrition Rating Systems and Symbols; Wartella, E.A., Lichtenstein, A.H., Caitlin, S., Boon, C.S., Eds.; National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Insel, P.M.; Turner, R.E.; Ross, D. Carbohydrates: Simple sugars and complex chains. In Discovering Nutrition, 3rd ed.; Jones and Bartlett Publishers: Sudbury, MA, USA, 2010; pp. 135–167. [Google Scholar]
- Tharp, B.W.; Young, L.S. High-intensity sweeteners. In Tharp & Young on Ice Cream: An Encyclopedic Guide to Ice Cream Science and Technology; DEStech Publications: Pennsylvania, PA, USA, 2013; pp. 176–177. [Google Scholar]
- DuBois, G.E. Saccharin and cyclamate. In Sweeteners and Sugar Alternatives in Food Technology; Mitchell, H., Ed.; Blackwell Publishing: Oxford, UK, 2006; pp. 103–129. [Google Scholar]
- Di Monaco, R.; Miele, N.A.; Volpe, S.; Picone, D.; Cavella, S. Temporal sweetness profile of MNEI and comparison with commercial sweeteners. J. Sens. Stud. 2014, 29, 385–394. [Google Scholar] [CrossRef]
- Meillon, S.; Urbano, C.; Schlich, P. Contribution of the temporal dominance of sensations (TDS) method to the sensory description of subtle differences in partially dealcoholized red wines. Food Qual. Prefer. 2009, 20, 490–499. [Google Scholar] [CrossRef]
- Pineau, N.; Schlich, P.; Cordelle, S.; Mathonnière, C.; Issanchou, S.; Imbert, A.; Rogeaux, M.; Etiévant, P.; Köster, E. Temporal dominance of sensations: Construction of the TDS curves and comparison with time–intensity. Food Qual. Prefer. 2009, 20, 450–455. [Google Scholar] [CrossRef]
- Lee, W.E., III; Pangborn, M. Time–intensity: The temporal aspects of sensory perception. Food Technol. 1986, 40, 71–78, 82. [Google Scholar]
- Ayya, N.; Lawless, H.T. Potency of sweetness of aspartame, d-tryptophan and thaumatin evaluated by single value and time–intensity measurements. Chem. Senses 1992, 17, 245–259. [Google Scholar] [CrossRef]
- Duizer, L.M.; Bloom, K.; Findlay, C.J. The effect of line orientation on the recording of time–intensity perception of sweetener solutions. Food Qual. Prefer. 1995, 6, 121–126. [Google Scholar] [CrossRef]
- Ketelsen, S.M.; Keay, C.L.; Wiet, S.G. Time–intensity parameters of selected carbohydrate and high potency sweeteners. J. Food Sci. 1993, 58, 1418–1421. [Google Scholar] [CrossRef]
- Ott, D.B.; Ledwards, C.; Palmer, S.J. Perceived taste intensity and duration of nutritive and non-nutritive sweeteners in water using time–intensity (T-I) evaluations. J. Food Sci. 1991, 56, 535–542. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Zamora, M.C.; Chirife, J. Gustatory reaction time and time intensity measurements of trehalose and sucrose solutions and their mixtures. J. Sens. Stud. 2009, 24, 166–181. [Google Scholar] [CrossRef]
- Azevedo, B.M.; Schmidt, F.L.; Bolini, H.M.A. High-intensity sweeteners in espresso coffee: Ideal and equivalent sweetness and time–intensity analysis. Int. J. Food Sci. Technol. 2015, 50, 1374–1381. [Google Scholar] [CrossRef]
- Rodrigues, J.B.; Paixão, J.A.; Cruz, A.G.; Bolini, H.M.A. Chocolate milk with chia oil: Ideal sweetness, sweeteners equivalence, and dynamic sensory evaluation using a time–intensity methodology. J. Food Sci. 2015, 80, S2944–S2949. [Google Scholar] [CrossRef] [PubMed]
- de Souza, V.R.; Pereira, P.A.P.; Pinheiro, A.C.M.; Bolini, H.M.A.; Borges, S.V.; Queiroz, F. Analysis of various sweeteners in low-sugar mixed fruit jam: Equivalent sweetness, time–intensity analysis and acceptance test. Int. J. Food Sci. Technol. 2013, 48, 1541–1548. [Google Scholar] [CrossRef]
- Palazzo, A.B.; Carvalho, M.A.R.; Efraim, P.; Bolini, H.M.A. The determination of isosweetness concentrations of sucralose, rebaudioside and neotame as sucrose substitutes in new diet chocolate formulations using the time–intensity analysis. J. Sens. Stud. 2011, 26, 291–297. [Google Scholar] [CrossRef]
- Patil, S.; Ravi, R.; Saraswathi, G.; Prakash, M. Development of low calorie snack food based on intense sweeteners. J. Food Sci. Technol. 2014, 51, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- de Melo, L.L.M.M.; Bolini, H.M.A.; Efraim, P. Equisweet milk chocolates with intense sweeteners using time–intensity method. J. Food Qual. 2007, 30, 1056–1067. [Google Scholar] [CrossRef]
- Melo, L.; Bolini, H.M.A.; Efraim, P. Low-calorie chocolates and acceptability/sensory properties. In Chocolate in Health and Nutrition; Watson, R., Preedy, V.R., Zibadi, S., Eds.; Humana Press: New York, NY, USA, 2013; pp. 163–176. [Google Scholar]
- Gotow, N.; Moritani, A.; Hayakawa, Y.; Akutagawa, A.; Hashimoto, H.; Kobayakawa, T. Development of a time–intensity evaluation system for consumers: Measuring bitterness and retronasal aroma of coffee beverages in 106 untrained panelists. J. Food Sci. 2015, 80, S1343–S1351. [Google Scholar] [CrossRef] [PubMed]
- Japan Soft Drink Association. Question and Answer about Soft Drinks: Stevia. Available online: http://www.j-sda.or.jp/sp/qa_view.php?id=118&cat=8 (accessed on 5 December 2017).
- Green, B.G.; Lim, J.; Osterhoff, F.; Blacher, K.; Nachtigal, D. Taste mixture interactions: Suppression, additivity, and the predominance of sweetness. Physiol. Behav. 2010, 101, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Schlake, S.; Smythe, J.; Lim, J.; Yang, H.; Chapman, K.; Bolton, B. Metallic taste and retronasal smell. Chem. Senses 2004, 29, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Gotow, N.; Moritani, A.; Hayakawa, Y.; Akutagawa, A.; Hashimoto, H.; Kobayakawa, T. High consumption increases sensitivity to after-flavor of canned coffee beverages. Food Qual. Prefer. 2015, 44, 162–171. [Google Scholar] [CrossRef]
- Lawless, H.L.; Heymann, H. Context effects and biases in sensory judgement. In Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 203–225. [Google Scholar]
- Plemmons, L.E.; Resurreccion, A.V.A. A warm-up sample improves reliability of responses in descriptive analysis. J. Sens. Stud. 1998, 13, 359–376. [Google Scholar] [CrossRef]
- Lim, J.; Johnson, M.B. Potential mechanisms of retronasal odor referral to the mouth. Chem. Senses 2011, 36, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Johnson, M.B. The role of congruency in retronasal odor referral to the mouth. Chem. Senses 2012, 37, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.W.; Lawless, H.T.; Boor, K.J. Quantitative descriptive analysis and principal component analysis for sensory characterization of ultrapasteurized milk. J. Dairy Sci. 2001, 84, 12–20. [Google Scholar] [CrossRef]
- Heymann, H.; Lawless, H.T. Context effects and biases in sensory judgment. In Sensory Evaluation of Food: Principles and Practices; Springer Science+Business Media: New York, NY, USA, 1999; pp. 301–340. [Google Scholar]
- Lee, G.H.; Lee, J.S.; Shin, M.G. Sensory attribute comparison of consumer milk using descriptive analysis. Food Sci. Biotechnol. 2003, 12, 480–484. [Google Scholar]
- Frank, R.A.; Byram, J. Taste–smell interactions are tastant and odorant dependent. Chem. Senses 1988, 13, 445–455. [Google Scholar] [CrossRef]
- Frank, R.A.; Ducheny, K.; Mize, S.J.S. Strawberry odor, but not red color, enhances the sweetness of sucrose solutions. Chem. Senses 1989, 14, 371–377. [Google Scholar] [CrossRef]
- Labbe, D.; Damevin, L.; Vaccher, C.; Morgenegg, C.; Martin, N. Modulation of perceived taste by olfaction in familiar and unfamiliar beverages. Food Qual. Prefer. 2006, 17, 582–589. [Google Scholar] [CrossRef]
- Schifferstein, H.N.; Verlegh, P.W. The role of congruency and pleasantness in odor-induced taste enhancement. Acta Psychol. 1996, 94, 87–105. [Google Scholar] [CrossRef]
- Stevenson, R.J.; Prescott, J.; Boakes, R.A. Confusing tastes and smells: How odours can influence the perception of sweet and sour tastes. Chem. Senses 1999, 24, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Bücking, M.; Steinhart, H. Headspace GC and sensory analysis characterization of the influence of different milk additives on the flavor release of coffee beverages. J. Agric. Food Chem. 2002, 50, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Itobe, T.; Nishimura, O.; Kumazawa, K. Influence of milk on aroma release and aroma perception during consumption of coffee beverages. Food Sci. Technol. Res. 2015, 21, 607–614. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; He, C.; Song, H.; Guo, J.; Wang, Y.; Yang, H.; Su, X. A comparative study of aroma-active compounds between dark and milk chocolate: Relationship to sensory perception. J. Sci. Food Agric. 2015, 95, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.C.; Lawless, H.T. Limiting response alternatives in time–intensity scaling: An examination of the halo-dumping effect. Chem. Senses 1994, 19, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J. Flavour as a psychological construct: Implications for perceiving and measuring the sensory qualities of foods. Food Qual. Prefer. 1999, 10, 349–356. [Google Scholar] [CrossRef]
- Prescott, J.; Johnstone, V.; Francis, J. Odor-taste interactions: Effects of attentional strategies during exposure. Chem. Senses 2004, 29, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Heath, H.B. The Physiology of Flavour: Taste and Aroma Perception. In Coffee: Volume 3, Physiology; Clarke, R.J., Macrae, R., Eds.; Elsevier Applied Science Publisher: Essex, UK, 1988; pp. 141–170. [Google Scholar]
- Bakal, A.I. Mixed Sweetener Functionality. In Alternative Sweeteners, 3rd ed.; Revised and Expand; O’Brien-Nabors, L., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 463–480. [Google Scholar]
- Kemp, S.E.; Lindley, M.G. Developments in sweeteners for functional and speciality beverages. In Functional and Speciality Beverage Technology; Paquin, P., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 39–54. [Google Scholar]
- Kim, P. Sweetness sense. Sweeteners: Customizing Sweetness Profiles. In Food Product Design; Deis, R.C., Ed.; Virgo Publishing: Phoenix, AZ, USA, 2006; Volume 15, Number 11; p. 1. [Google Scholar]
- Karstadt, M.L. Testing needed for acesulfame potassium, an artificial sweetener. Environ. Health Perspect. 2006, 114, A516. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, L.A.; Merkel, C.M. Sucralose. In Alternative Sweeteners, 3rd ed.; Revised and Expand; O’Brien-Nabors, L., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001; pp. 185–207. [Google Scholar]
- Mahindru, S.N. High intensity-low calorie sweeteners. In Food Additives: Characteristics, Detection and Estimation; APH Publishing Corporation: New Delhi, India, 2008; pp. 53–104. [Google Scholar]
- Losó, V.; Gere, A.; Györey, A.; Kókai, Z.; Sipos, L. Comparison of the performance of a trained and an untrained panel on sweetcorn varieties with the panelcheck software. APSTRACT 2012, 1–2, 77–83. [Google Scholar]
- Roberts, A.K.; Vickers, Z.M. A comparison of trained and untrained judges’ evaluation of sensory attribute intensities and liking of cheddar cheeses. J. Sens. Stud. 1994, 9, 1–20. [Google Scholar] [CrossRef]
Time (s) | Sucrose | Sucralose | Acesulfame K | Time (s) | Sucrose | Sucralose | Acesulfame K |
---|---|---|---|---|---|---|---|
3 | 2.78 a | 2.81 a | 2.56 b | 77 | 0.89 a | 1.23 b | 1.06 c |
5 | 3.43 a | 3.44 a | 3.16 b | 79 | 0.86 a | 1.19 b | 1.02 a |
7 | 3.44 a | 3.45 a | 3.16 b | 81 | 0.82 a | 1.15 b | 0.99 c |
9 | 3.28 a | 3.34 a | 3.03 b | 83 | 0.78 a | 1.11 b | 0.97 b |
11 | 3.10 a | 3.21 a | 2.88 b | 85 | 0.75 a | 1.09 b | 0.95 b |
13 | 2.97 a | 3.05 a | 2.76 b | 87 | 0.72 a | 1.06 b | 0.93 b |
15 | 2.85 a | 2.92 a | 2.67 b | 89 | 0.69 a | 1.02 b | 0.90 b |
17 | 2.71 a,b | 2.81 a | 2.56 b | 91 | 0.67 a | 0.99 b | 0.89 b |
19 | 2.60 a,b | 2.71 a | 2.46 b | 93 | 0.64 a | 0.95 b | 0.85 b |
21 | 2.51 a,b | 2.62 a | 2.36 b | 95 | 0.62 a | 0.90 b | 0.81 b |
23 | 2.41 a,b | 2.54 a | 2.30 b | 97 | 0.59 a | 0.87 b | 0.79 b |
25 | 2.30 a | 2.46 b | 2.23 a | 99 | 0.56 a | 0.84 b | 0.76 b |
27 | 2.20 a | 2.41 b | 2.16 a | 101 | 0.53 a | 0.82 b | 0.74 b |
29 | 2.11 a | 2.35 b | 2.11 a | 103 | 0.53 a | 0.79 b | 0.71 b |
31 | 2.04 a | 2.31 b | 2.04 a | 105 | 0.51 a | 0.76 b | 0.68 b |
33 | 1.97 a | 2.25 b | 1.97 a | 107 | 0.49 a | 0.75 b | 0.66 b |
35 | 1.90 a | 2.18 b | 1.91 a | 109 | 0.48 a | 0.73 b | 0.63 a,b |
37 | 1.86 a | 2.12 b | 1.84 a | 111 | 0.47 a | 0.71 b | 0.60 a,b |
39 | 1.77 a | 2.07 b | 1.80 a | 113 | 0.45 a | 0.69 b | 0.58 a,b |
41 | 1.70 a | 2.03 b | 1.73 a | 115 | 0.43 a | 0.67 b | 0.56 a,b |
43 | 1.63 a | 2.00 b | 1.67 a | 117 | 0.42 a | 0.66 b | 0.54 a,b |
45 | 1.59 a | 1.94 b | 1.61 a | 119 | 0.41 a | 0.65 b | 0.53 a,b |
47 | 1.55 a | 1.89 b | 1.57 a | 121 | 0.39 a | 0.63 b | 0.50 a,b |
49 | 1.49 a | 1.84 b | 1.54 a | 123 | 0.36 a | 0.61 b | 0.48 a,b |
51 | 1.45 a | 1.80 b | 1.51 a | 125 | 0.34 a | 0.59 b | 0.47 a,b |
53 | 1.42 a | 1.74 b | 1.46 a | 127 | 0.32 a | 0.57 b | 0.46 a,b |
55 | 1.37 a | 1.68 b | 1.43 a | 129 | 0.30 a | 0.56 b | 0.45 a,b |
57 | 1.33 a | 1.64 b | 1.40 a | 131 | 0.29 a | 0.55 b | 0.44 a,b |
59 | 1.27 a | 1.60 b | 1.36 a | 133 | 0.28 a | 0.52 b | 0.42 a,b |
61 | 1.23 a | 1.56 b | 1.33 a | 135 | 0.28 a | 0.49 b | 0.41 a,b |
63 | 1.17 a | 1.51 b | 1.27 a | 137 | 0.27 a | 0.48 b | 0.41 a,b |
65 | 1.12 a | 1.46 b | 1.23 a | 139 | 0.26 a | 0.47 b | 0.41 a,b |
67 | 1.07 a | 1.42 b | 1.20 a | 141 | 0.26 a | 0.46 b | 0.40 a,b |
69 | 1.03 a | 1.38 b | 1.17 a | 143 | 0.25 a | 0.45 b | 0.40 a,b |
71 | 0.99 a | 1.33 b | 1.15 c | 145 | 0.24 a | 0.44 b | 0.39 a,b |
73 | 0.95 a | 1.29 b | 1.12 c | 147 | 0.24 a | 0.43 b | 0.38 a,b |
75 | 0.92 a | 1.26 b | 1.09 c | 149 | 0.23 a | 0.42 b | 0.37 a,b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotow, N.; Esumi, S.; Kubota, H.; Kobayakawa, T. Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions. Beverages 2018, 4, 28. https://doi.org/10.3390/beverages4020028
Gotow N, Esumi S, Kubota H, Kobayakawa T. Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions. Beverages. 2018; 4(2):28. https://doi.org/10.3390/beverages4020028
Chicago/Turabian StyleGotow, Naomi, Shinji Esumi, Hirofumi Kubota, and Tatsu Kobayakawa. 2018. "Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions" Beverages 4, no. 2: 28. https://doi.org/10.3390/beverages4020028
APA StyleGotow, N., Esumi, S., Kubota, H., & Kobayakawa, T. (2018). Comparison of Temporal Profiles among Sucrose, Sucralose, and Acesulfame Potassium after Swallowing Sweetened Coffee Beverages and Sweetened Water Solutions. Beverages, 4(2), 28. https://doi.org/10.3390/beverages4020028