Development and Quality Evaluation of Ready to Serve (RTS) Beverage from Cape Gooseberry (Physalis peruviana L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Sample Collection
2.2. Methods
2.2.1. Pulp Homogenization and Enzyme Liquefaction
2.2.2. Preparation of RTS Beverage Formulation
2.3. Storage Stability and Shelf-Life Extension Studies
2.3.1. Physicochemical Analysis
Color
Viscosity
Total Soluble Solids
pH
Titratable Acidity
Ascorbic Acid
Sugars
β-Carotene
Total Phenolic Content
2.4. Microbiological Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties
3.1.1. Changes in Color
3.1.2. Changes in Viscosity
3.1.3. Changes in Total Soluble Solids
3.1.4. Changes in pH
3.1.5. Changes in Acidity
3.1.6. Changes in Ascorbic Acid
3.1.7. Changes in Sugar Content
3.1.8. Changes in β-Carotene and Total Carotenes
3.1.9. Total Phenolic Content
3.2. Microbiological Evaluation
3.3. Sensory Evaluation
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- National Horticulture Board of India. Solvent and enzyme-aided aqueous extraction of golden berry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. In Horticultural Statistics at a Glance 2015; Oxford University Press: New Delhi, India, 2016; pp. 1–14. [Google Scholar]
- Ramadan, M.F.; Sitohy, M.Z.; Mörsel, J.T. Solvent and enzyme-aided aqueous extraction of golden berry (Physalis peruviana L.) pomace oil: Impact of processing on composition and quality of oil and meal. Eur. Food Res. Technol. 2008, 226, 1445–1458. [Google Scholar] [CrossRef]
- Puente, L.A.; Muñoz, C.A.P.; Castro, E.S.; Cortes, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 2011, 44, 1733–1740. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of golden berry (Physalis peruviana L.) juice. J. Sci. Food Agric. 2007, 87, 452–460. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Oil extractability from enzymatically-treated golden berry (Physalis peruviana L.) pomace: Range of operational variables. Int. J. Food Sci. Technol. 2009, 44, 435–444. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Rev. Int. 2011, 27, 259–273. [Google Scholar]
- Directions Under Section 16(5) of the Food Safety and Standards Act, 2006 Regarding Operationalization of Food Safety and Standards (Food Products Standards and Food Additives) Amendment Regulations, 2017 Relating to Standards for Non-Carbonatedwaterbasedbeverages (NonAlcoholic). (Ref.No:Stds/SP(WaterandBeverages)Notif(1)/ FSSAI-2016(PartII), FSSAI, FDA Bhawan, Kotla Road, New Delhi, 2017. Available online: https://www.google.co.in/search?q=7.+FSSAI,+Directions+Direction_Non_Carbonated_Water_Standard_07_07_2017 (3).pdf (accessed on 5 June 2018).
- Zhao, Y. Berry Fruit: Value-Added Products for Health Promotion; Zhao, Y., Ed.; CRC Press: Boca Raton, NY, USA, 2007; Volume 168, pp. 101–206. [Google Scholar]
- Motooka, P.; Castro, L.; Nelson, D.; Nagai, G.; Ching, L. Weeds of Hawaii’s Pastures and Natural Areas: An Identification and Management Guide; College of Tropical Agriculture and Human Resources, University of Hawaii, Manoa, HI, USA, 2003. Available online: https://www.ctahr.hawaii.edu/invweed/weedsHi.html (accessed on 2 May 2018).
- Novoa, H.R.; Bojaca, M.; Galvis, J.A.; Fischer, G. Fruit maturity and calyx drying influence post-harvest behavior of Cape gooseberry (Physalis peruviana L.) stored at 12 °C. Agron. Colomb. 2006, 24, 77–86. [Google Scholar]
- Ramadan, M.F.; Mörsel, J.T. Golden berry: A novel fruit source of fat-soluble bioactive. Inform 2004, 15, 130–131. [Google Scholar]
- Mayorga, H.; Knapp, H.; Winter halter, P.; Duque, C. Glycosidically bound flavor compounds of Cape gooseberry (Physalis peruviana L.). J. Agric. Food Chem. 2001, 49, 1904–1908. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.; Fries, A. Guía de Campo de los Cultivos and Inos; FAO y ANPE: Lima, Peru, 2007. [Google Scholar]
- Erkaya, T.; Dağdemir, E.; Şengül, M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res. Int. 2012, 45, 331–335. [Google Scholar] [CrossRef]
- Deb, B. Solanaceae in India: The Biology and Taxonomy of Solanaceae; Hawkes, J., Lester, R., Skelding, A., Eds.; Academic Press: London, UK, 1979; pp. 3–48. [Google Scholar]
- Rodrigues, E.; Rockenbach, I.I.; Cataneo, C.; Gonzaga, L.V.; Chaves, E.S.; Fett, R. Minerals and essential fatty acids of the exotic fruit Physalis peruviana L. Food Sci. Technol. 2009, 29, 642–645. [Google Scholar] [CrossRef]
- Valdenegro, M.; Henriquez, C.; Lutz, M.; Almonacid, S.; Simpson, R. Drum dried, lyophilized dried and traditional drying of golden berry (Physalis peruviana L.): Effects in nutritional and healthy quality. In Proceedings of International Conference on Food Innovation, Universidad Politècnica de valència, Valencia, Spain, 25–29 October 2010. [Google Scholar]
- Ramadan, M.F. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 2011, 44, 1830–1836. [Google Scholar] [CrossRef]
- Yen, C.Y.; Chiu, C.C.; Chang, F.R. 4-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits the growth of human lung cancer cells through DNA damage, apoptosis, and G2/M arrest. BMC Cancer 2010, 10, 46. [Google Scholar]
- Arun, M.; Asha, V.V. Preliminary studies on antihepatotoxic effect of Physalis peruviana (Solanaceae) against carbon tetrachloride-induced acute liver injury in rats. J. Ethnopharmacol. 2007, 111, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Chang, S.P.; Lin, D.L.; Wang, S.S.; Hou, F.F.; Ng, L.T. Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells. Food Chem. Toxicol. 2009, 47, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.V.K.; Sreeramulu, D.; Raghunath, M. Antioxidant activity of fresh and dry fruit commonly consumed in India. Food Res. Int. 2010, 43, 285–288. [Google Scholar] [CrossRef]
- Franco, L.A.; Matiz, G.E.; Calle, J.; Pinzón, R.; Ospina, L.F. Anti-inflammatory activity of extracts and fractions obtained from Physalis peruviana L. calyces. Biomedical 2007, 27, 110–115. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Sadia, G.A.; Ramesh, M.N.; Avula, R.Y.; Rekha, M.N.; Ramteke, R.S. Optimization of enzymatic liquefaction of Papaya (Carica papaya L.) and Jackfruit (Artocarpus heterophyllus Lam.) Pulp Using Response Surface Methodology. J. Food Agric. Environ. 2004, 2, 108–113. [Google Scholar]
- Hunter, S. The Measurement of Appearance; John Wiley and Sons: New York, NY, USA, 1975; pp. 304–305. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arungton, VA, USA, 1990. [Google Scholar]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruits and Vegetable Products, 3rd ed.; Tata McGraw-Hill Publishing Co. Ltd.: New Delhi, India, 1999; pp. 270–352. [Google Scholar]
- Srivastava, R.P.; Kumar, S. Fruits and Vegetable Preservation, 2nd ed.; International Book Distributing Corporation: Lucknow, India, 1998; pp. 211–224. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J Enol. Viticult. 1956, 16, 144–158. [Google Scholar]
- APHA. Technical Committee on Microbiological Methods for Foods. In Compendium of Methods for the Microbiological Examination of Foods, 2nd ed.; Speck, M.L., Ed.; American Public Health Association: Washington, DC, USA, 1984; pp. 30–31. [Google Scholar]
- Sindhumati, G.; Premalatha, M. Development and Storage Studies of Naturally Flavored Papaya-Pineapple Blended Ready-to-Serve (RTS) Beverages. Int. J. Sci. Res. 2013, 4, 856–860. [Google Scholar]
- Maria, R.A.P.; Vivian, S.O.; Tatiana, C.P.; Sandra, H.P. Physicochemical stability, antioxidant activity and acceptance of beet and orange mixed juice during refrigerated storage. Beverages 2017, 3, 1–12. [Google Scholar]
- Costa, G.M.; Silva, J.V.C.; Mingotti, J.D.; Barão, C.E.; Klososki, S.J.; Pimentel, T.C. Effect of ascorbic acid or oligofructose supplementation on L. paracasei viability, physicochemical characteristics and acceptance of probiotic orange juice. LWT Food Sci. Technol. 2017, 75, 195–201. [Google Scholar] [CrossRef]
- Lalit, M.B.; Ahmad, T.; Senapati, A.K.; Pandit, P.S. Evaluation of Quality Attributes During Storage of Guava Nectar Cv. Lalit from Different Pulp and TSS Ratio. J. Process. Technol. 2014, 5, 1–5. [Google Scholar]
- Pranjal, S.D.; Manjunatha, S.S.; Raju, P.S. Rheological behavior enzyme clarified sapota (Achras sapota L) juice at different concentration and temperatures. J. Food Sci. Technol. 2015, 52, 1896–1910. [Google Scholar]
- Koffi, E.K.; Sims, C.A.; Bates, R.P. Viscosity reduction and prevention of browning in the preparation of clarified banana juice. J. Food Qual. 1991, 14, 209–218. [Google Scholar] [CrossRef]
- Girard, B.; Fukumoto, L.R. Apple juice clarification using microfiltration and ultrafiltration polymeric membranes. Food Sci. Technol. 1999, 32, 290–298. [Google Scholar] [CrossRef]
- Saxena, D.; Chakraborty, S.K.; Sabikhi, L.; Singh, D. Process optimization for a nutritious low-calorie high-fiber whey-based ready-to-serve watermelon beverage. J. Food Sci. Technol. 2015, 52, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Kaul, R.K.; Gupta, N.; Sharma, I.; Gupta, V. Dietary fibers: A review. Beverage Food World 2009, 36, 23–27. [Google Scholar]
- Bhardwaj, R.L.; Mukherjee, S. Effects of fruit juice blending ratios on Kinnow juice preservation at ambient storage condition. Afr. J. Food Sci. 2011, 5, 281–286. [Google Scholar]
- Yadav, R.; Tripathi, A.D.; Jha, A. Effect of storage time on the physicochemical properties and sensory attributes of Aloe vera ready-toserve (RTS) beverage. Int. J. Food Nutr. Public Health 2013, 6, 173–192. [Google Scholar]
- Selvi, J.; Banumathi, P.; Kanchana, S.; Llama ran, M. Formulation of therapeutic drinks to boom human health (guava–lime–ginger RTS beverages). Food Sci. Res. J. 2013, 4, 141–146. [Google Scholar]
- Ramachandran, P.; Nagarajan, S. Quality characteristics, nutraceutical profile, and storage stability of aloe gel-papaya functional beverage blend. Int. J. Food Sci. 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jakhar, M.S.; Pathak, S. Studies on the preparation and storage stability of blended ready-to-serve from ber (Zizyphus mauritiana lamk.) and Jamun (Syzygium cumini Skeels.) pulp. Plant Arch. 2012, 12, 533–536. [Google Scholar]
- Lokesh, K.; Mishra, D.S. Quality attributes, phytochemical profile and storage stability studies of functional ready to serve (RTS) drink made from blend of Aloe vera, sweet lime, amla and ginger. J. Food Sci. Technol. 2017, 54, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.B.; Yadav, B.S.; Kalia, N. Development and storage studies on whey-based banana herbal (Mentha arvensis) Beverage. Am. J. Food Technol. 2010, 5, 121–129. [Google Scholar] [CrossRef]
- Bhardwaj, R.L.; Pandey, S. Juice blends- A way of utilization of under-utilized fruits, vegetables, and spices. Food Sci. Nutr. 2011, 51, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Pawar, V.N.; Kardile, W.G.; Hashmi, S.I. Effect of heat processing on the discoloration of custard apple (Annona squamosa L.) fruit pulp and changes in quality characteristics during storage. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2098–2113. [Google Scholar]
- Nisar, R.; Baba, W.N.; Masoodi, F.A. Effect of chemical and thermal treatments on quality parameters and antioxidant activity of apple (pulp) grown in high Himalayan regions. Cogent Food Agric. 2015, 1, 1063797. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Joshi, S.D.; Garande, V.K. Studies on preparation and storage of raw and ripe kokum fruit products. J. Asian Hortic. 2006, 2, 205–207. [Google Scholar]
- Nidhi, G.R.; Singh, R.; Rana, M.K. Changes in chemical composition of ready to serve bael guava blended beverages during storage. J. Food Sci. Technol. 2008, 45, 249–254. [Google Scholar]
- Waskar, D.P.; Garande, V.K. Studies on blending of pomegranate and kokum juices. Beverages Food World 2003, 30, 27–28. [Google Scholar]
- Gopalan, C.; Sastri, B.V.R.; Balasubramanian, S.C. Nutritive value of Indian Foods; National Institute of Nutrition, Council of Medical Research, Hyderabad, Indian Council of Medical Research: New Delhi, India, 1982; p. 204. [Google Scholar]
- Kannan, S.; Thirumaran, A.S. Studies on the storage life of Jamun products. Indian Food Packer 2001, 55, 125–127. [Google Scholar]
- Sharma, M.; Gehlot, R.; Singh, R.; Siddiqui, S. Changes in chemical constituents and overall acceptability of guava jamun blend RTS drink and squash during storage. Beverage Food World 2012, 39, 39–42. [Google Scholar]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Cantwell, M.; Yang, S.F.; Rubatzky, V.; Lafuente, M.T. Isocoumarin content of carrots as influenced by ethylene concentration, storage temperature, and stress conditions. Acta Hortic. 1989, 258, 523–534. [Google Scholar]
- Castro-López, C.; Sánchez-Alejo, E.J.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz, J.; Martínez-Avila, G.C.G. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage. Heliyon 2016, 2, e00152. [Google Scholar] [CrossRef] [PubMed]
- Polshettiwar, S.A.; Ganjiwale, R.O.; Yeole, P.G.; Zamwar, S.P.; Wani, M.S. Studies on pesticide residue, heavy metal content and microbial count of some popular brands ofchywanprashsamples. Bioscan 2008, 3, 75–78. [Google Scholar]
Parameters | Storage Duration (in Days) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 90 | ||||||||
RT | LT | RT | LT | RT | LT | RT | LT | RT | LT | RT | LT | ||
Color Values | L* | 31.05 ± 0.03 a | 32.76 ± 0.01 a | 29.39 ± 0.26 b | 32.39 ± 0.06 a | 28.06 ± 0.34 c | 31.09 ± 0.58 b | 28.22 ± 0.26 c | 28.81 ± 0.09 c | 28.22 ± 0.26 c | 28.38 ± 0.81 c | 26.86 ± 0.03 d | 26.33 ± 0.03 d |
a* | 2.99 ± 0.03 a | 2.74 ± 0.01 a | 2.03 ± 0.03 b | 2.17 ± 0.07 b | 1.66 ± 0.06 b | 1.74 ± 0.01 c | 0.99 ± 0.09 c | 1.43 ± 0.12 d | −0.08 ± 0.35 d | 0.76 ± 0.09 e | −0.69 ± 0.51 e | −0.57 ± 0.01 f | |
b* | 22.93 ± 0.12 a | 22.66 ± 0.01 d | 22.17 ± 0.05 b | 22.67 ± 0.02 d | 20.87 ± 0.08 c | 22.76 ± 0.02 cd | 19.17 ± 0.15 d | 22.86 ± 0.09 c | 15.17 ± 0.15 e | 23.22 ± 0.08 b | 9.17 ± 0.15 f | 23.80 ± 0.09 a | |
Viscosity (cp) | 28.73 ± 0.25 a | 28.74 ± 0.01 a | 28.74 ± 0.01 a | 28.76 ± 0.02 a | 28.55 ± 0.04 a | 28.82 ± 0.02 a | 28.36 ± 0.01 b | 28.88 ± 0.07 a | 28.07 ± 0.05 c | 29.36 ± 0.11 b | 27.79 ± 0.01 d | 30.29 ± 0.04 c | |
TSS (°Brix) | 14.17 ± 0.21 d | 14.13 ± 0.05 e | 14.13 ± 0.05 e | 14.17 ± 0.06 de | 14.37 ± 0.06 cd | 14.27 ± 0.06 d | 14.50 ± 0.17 bc | 14.47 ± 0.06 c | 15.20 ± 0.10 a | 14.75 ± 0.01 b | 14.63 ± 0.06 b | 15.03 ± 0.06 a | |
pH | 3.41 ± 0.01 a | 3.35 ± 0.02 a | 3.35 ± 0.02 a | 3.32 ± 0.01 b | 3.30 ± 0.01 c | 3.26 ± 0.01 c | 3.25 ± 0.02 d | 3.21 ± 0.01 d | 3.19 ± 0.01 e | 3.11 ± 0.00 e | 2.85 ± 0.01 f | 2.99 ± 0.00 f | |
Titratable Acidity (%) | 0.58 ± 0.00 a | 0.51 ± 0.00 a | 0.51 ± 0.00 a | 0.50 ± 0.11 b | 0.45 ± 0.01 c | 0.46 ± 0.01 c | 0.39 ± 0.00 d | 0.39 ± 0.01 d | 0.32 ± 0.01 e | 0.35 ± 0.01 e | 0.34 ± 0.01 f | 0.30 ± 0.01 f | |
Ascorbic acid (mg/100 mL) | 26.64 ± 0.06 a | 26.64 ± 0.05 a | 26.64 ± 0.05 a | 26.05 ± 0.40 b | 19.35 ± 0.02 c | 24.54 ± 0.23 c | 16.35 ± 0.02 d | 22.17 ± 0.52 d | 12.47 ± 0.00 e | 18.64 ± 0.06 e | 8.23 ± 0.03 e | 15.44 ± 0.09 f | |
Reducing Sugar (%) | 3.23 ± 0.00 f | 3.23 ± 0.00 f | 3.23 ± 0.00 f | 3.33 ± 0.11 e | 4.02 ± 0.01 d | 3.58 ± 0.02 d | 4.64 ± 0.01 c | 3.95 ± 0.02 c | 5.57 ± 0.01 b | 4.55 ± 0.03 b | 6.59 ± 0.01 a | 5.93 ± 0.11 a | |
Non-reducing sugar (%) | 9.88 ± 0.05 a | 9.88 ± 0.05 a | 9.88 ± 0.05 a | 9.79 ± 0.04 b | 9.31 ± 0.02 c | 9.64 ± 0.01 c | 8.79 ± 0.01 d | 9.43 ± 0.01 d | 8.26 ± 0.01 e | 9.11 ± 0.02 e | 7.13 ± 0.02 f | 8.12 ± 0.00 f | |
Total sugars (%) | 13.10 ± 0.05 f | 13.10 ± 0.05 e | 13.10 ± 0.05 e | 13.12 ± 0.12 e | 13.29 ± 0.02 d | 13.22 ± 0.02 d | 13.43 ± 0.00 c | 13.37 ± 0.35 c | 13.83 ± 0.01 a | 13.66 ± 0.03 b | 13.72 ± 0.01 b | 14.05 ± 0.02 a | |
β-carotene (mg/100 mL) | 0.98 ± 0.01 a | 0.98 ± 0.01 a | 0.98 ± 0.01 a | 0.98 ± 0.00 a | 0.86 ± 0.00 c | 0.96 ± 0.01 a | 0.78 ± 0.00 d | 0.90 ± 0.01 b | 0.66 ± 0.02 e | 0.88 ± 0.01 c | 0.37 ± 0.01 f | 0.78 ± 0.02 d | |
Total carotene (mg/100 mL) | 1.61 ± 0.02 a | 1.61 ± 0.02 a | 1.61 ± 0.02 a | 1.60 ± 0.02 a | 1.33 ± 0.00 c | 1.58 ± 0.01 b | 1.11 ± 0.00 d | 1.47 ± 0.01 c | 0.68 ± 0.02 e | 1.29 ± 0.01 d | 0.50 ± 0.00 f | 1.07 ± 0.01 e | |
Total phenolic (mg GAE/100 mL) | 21.83 ± 0.12 a | 21.83 ± 0.12 a | 21.83 ± 0.12 a | 21.78 ± 0.03 a | 19.13 ± 0.03 c | 19.78 ± 0.03 b | 17.67 ± 0.03 d | 18.17 ± 0.03 c | 15.03 ± 0.05 e | 17.17 ± 0.03 d | 8.00 ± 0.03 f | 15.56 ± 0.00 e |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hemalatha, R.; Kumar, A.; Prakash, O.; Supriya, A.; Chauhan, A.S.; Kudachikar, V.B. Development and Quality Evaluation of Ready to Serve (RTS) Beverage from Cape Gooseberry (Physalis peruviana L.). Beverages 2018, 4, 42. https://doi.org/10.3390/beverages4020042
Hemalatha R, Kumar A, Prakash O, Supriya A, Chauhan AS, Kudachikar VB. Development and Quality Evaluation of Ready to Serve (RTS) Beverage from Cape Gooseberry (Physalis peruviana L.). Beverages. 2018; 4(2):42. https://doi.org/10.3390/beverages4020042
Chicago/Turabian StyleHemalatha, R., Amarjeet Kumar, Om Prakash, A. Supriya, A. S. Chauhan, and V. B. Kudachikar. 2018. "Development and Quality Evaluation of Ready to Serve (RTS) Beverage from Cape Gooseberry (Physalis peruviana L.)" Beverages 4, no. 2: 42. https://doi.org/10.3390/beverages4020042
APA StyleHemalatha, R., Kumar, A., Prakash, O., Supriya, A., Chauhan, A. S., & Kudachikar, V. B. (2018). Development and Quality Evaluation of Ready to Serve (RTS) Beverage from Cape Gooseberry (Physalis peruviana L.). Beverages, 4(2), 42. https://doi.org/10.3390/beverages4020042