Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. PEF Apparatus
2.3. Extraction Procedures
2.3.1. PEF Extraction
2.3.2. Extraction with Boiling Water
2.3.3. Microwave Extraction
2.3.4. Ultrasound Extraction
2.3.5. Control Sample
2.4. Determination of the Total Phenol Content
2.5. Determination of Antioxidant Activity
2.5.1. DPPH• Assay
2.5.2. Ferric Reducing Ability (FRAP Assay)
2.5.3. Rancimat Method
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenol Content of the Extracts
3.2. Antioxidant Activity of the Extracts
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luque de Castro, M.D.; Garcia-Ayuso, L.E. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Anal. Chim. Acta 1998, 369, 1–10. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.; Mittal, G.S. High voltage pulsed electrical field for liquid food pasteurization. Food Rev. Int. 2000, 16, 395–434. [Google Scholar] [CrossRef]
- Wouters, P.C.; Alvarez, I.; Angersbach, A.; Knorr, D. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 2001, 12, 112–121. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N.I. Electrotechnologies for Extraction from Food Plants and Biomaterials, 1st ed.; Springer: New York, NY, USA, 2008; pp. 39–82. [Google Scholar]
- Barba, J.F.; Parniakov, O.; Pereira, A.S.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, G.; Raso, J.; Martin-Belloso, O.; et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Puertolas, E.; Luengo, E.; Alvarez, I.; Raso, J. Improving mass transfer to soften tissues by pulsed electric fields: Fundamentals and applications. Annu. Rev. Food Sci. Technol. 2012, 3, 263–282. [Google Scholar] [CrossRef] [PubMed]
- El-Belghiti, K.; Vorobiev, E. Modelling of solute aqueous extraction from carrots subjected to a pulsed electric field pre-treatment. Biosyst. Eng. 2005, 90, 289–294. [Google Scholar] [CrossRef]
- Lebovka, N.I.; Shynkaryk, M.V.; El-Belghiti, K.; Benjelloun, H.; Vorobiev, E. Plasmolysis of sugarbeet: Pulsed electric fields and thermal treatment. J. Food Eng. 2007, 80, 639–644. [Google Scholar] [CrossRef]
- Loginova, K.; Shynkaryk, M.V.; Lebovka, N.I.; Vorobiev, E. Acceleration of soluble matter extraction from chicory with pulsed electric fields. J. Food Eng. 2010, 96, 374–379. [Google Scholar] [CrossRef]
- Gachovska, T.K.; Cassada, D.; Subbiah, J.; Hanna, M.; Thippareddi, H.; Snow, D. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. J. Food Sci. 2010, 75, E323–E329. [Google Scholar] [CrossRef]
- Abdullah, S.H.; Zhao, S.; Mittal, G.S.; Baik, O.-D. Extraction of podophyllotoxin from Podophyllum peltatum using pulsed electric field treatment. Sep. Purif. Technol. 2012, 93, 92–97. [Google Scholar] [CrossRef]
- Zderic, A.; Zondervan, E.; Meuldijk, J. Breakage of cellular tissue by pulsed electric field: Extraction of polyphenols from fresh tea leaves. Chem. Eng. Trans. 2013, 32, 1795–1800. [Google Scholar]
- He, G.; Yin, Y.; Yan, L.; Yu, Q. Fast extraction of chitosan from shrimp shell by high intensity pulsed electric fields. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2011, 27, 344–348. [Google Scholar]
- Zhou, Y.; Sui, S.; Huang, H.; He, G.; Wang, S.; Yin, Y.; Ma, Z. Process optimization for extraction of fishbone calcium assisted by high intensity pulsed electric fields. Nongye Gongcheng Xuebao/ Trans. Chin. Soc. Agric. Eng. 2012, 28, 265–270. [Google Scholar]
- Pourzaki, A.; Mirzaee, H.; Hemmati Kakhki, A. Using pulsed electric field for improvement of components extraction of saffron (Crocus sativus) stigma and its pomace. J. Food Process. Preserv. 2013, 37, 1008–1013. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.I.O.; Angersbach, A.; Taiwo, K.A.; Knorr, D. The use of pulsed electric fields in producing juice from paprika (Capsicum annuum L.). J. Food Process. Preserv. 2001, 25, 353–365. [Google Scholar] [CrossRef]
- Drosou, F.; Yang, E.; Marinea, M.; Dourtoglou, E.G.; Chatzilazarou, A.; Dourtoglou, V.G. An assessment of potential applications with pulsed electric field in wines. In Proceeding of the 40th World Congress of Vine and Wine, Sofia, Bulgaria, 29 May–2 June 2017. [Google Scholar] [CrossRef]
- Tiwary, K.B. Ultrasound: A clean, green extraction technology. Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996, 3, 253–260. [Google Scholar] [CrossRef]
- Chemat, F.; Tomao, V.; Virot, M. Ultrasound-Assisted Extraction in Food Analysis. In Handbook of Food Analysis Instruments; Otles, S., Ed.; CRC Press: New York, NY, USA, 2008; pp. 85–94. [Google Scholar]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of soy isoflavones. J. Chromatogr. A 2003, 1012, 119–128. [Google Scholar] [CrossRef]
- Herrera, M.C.; Luque de Castro, M.D. Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Anal. Bioanal. Chem. 2004, 379, 1106–1112. [Google Scholar] [CrossRef]
- Li, H.; Chen, B.; Yao, S. Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmodies Oliv. (E. ulmodies). Ultrason. Sonochem. 2005, 12, 295–300. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, F. Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrason. Sonochem. 2008, 15, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Zu, Y-G.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J. 2011, 172, 705–712. [Google Scholar] [CrossRef]
- Ghafoor, K.; Hui, T.; Choi, Y.H. Optimization of ultrasound-assisted extraction of total anthocyanins from grape peel. J. Food Biochem. 2011, 35, 735–746. [Google Scholar] [CrossRef]
- Zu, G.; Zhang, R.; Yang, L.; Ma, C.; Zu, Y.; Wang, W.; Zhao, C. Ultrasound assisted extraction of carnosic acid and rosmarinic acid using ionic liquid solution from Rosmarinus officinalis. Int. J. Mol. Sci. 2012, 13, 11027–11043. [Google Scholar] [CrossRef] [PubMed]
- Pare, J.J.R.; Belanger, J.M.R.; Stafford, S.S. Microwave-assisted process (MAP™): A new tool for the analytical laboratory. Trends Anal. Chem. 1994, 13, 176–184. [Google Scholar] [CrossRef]
- Chemat, F.; Fabiano-Tixier, A.S.; Abert Vian, M.; Allaf, T.; Vorobiev, E. Solvent-free extraction of food and natural products. Trends Anal. Chem. 2015, 71, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Chung-Hun, C.; Yusoff, R.; Gek-Cheng, N.; Kung, W.L.F. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Shu, Y.Y.; Ko, M.Y.; Chang, Y.S. Microwave-assisted extraction of ginsenosides from ginseng root. Microchem. J. 2003, 74, 131–139. [Google Scholar] [CrossRef]
- Dhobi, M.; Mandal, V.; Hemalatha, S. Optimization of microwave assisted extraction of bioactive flavolignan–silybinin. J. Chem. Metrol. 2009, 3, 13–23. [Google Scholar]
- Asghari, J.; Ondruschka, B.; Mazaheritehrani, M. Extraction of bioactive chemical compounds from the medicinal Asian plants by microwave irradiation. J. Med. Plants Res. 2011, 5, 495–506. [Google Scholar]
- Chiremba, C.; Rooney, L.W.; Trust, B.J. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. J. Chromatogr. A 2012, 1012, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.; Ghafoor, K.; Choi, Y.H. Optimization of microwave-assisted extraction of active components from Chinese quince using response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 694–701. [Google Scholar]
- Lalas, S.; Athanasiadis, V.; Karageorgou, I.; Batra, G.; Nanos, D.G.; Makris, P.D. Nutritional characterization of leaves and herbal tea of Moringa oleifera cultivated in Greece. J. Herbs Spices Med. Plants 2017, 23, 320–333. [Google Scholar] [CrossRef]
- Padayachee, Β.; Baijnath, H. An overview of the medicinal importance of Moringaceae. J. Med. Plants Res. 2012, 6, 5831–5839. [Google Scholar]
- Saini, R.K.; Sivanesan, I.; Keum, Y.S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016, 6, 203. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J. Appl. Res. Med. Aromat. Plants 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Karvela, E.; Makris, D.P.; Karathanos, V.T. Implementation of response surface methodology to assess the antiradical behaviour in mixtures of ascorbic acid and α-tocopherol with grape (Vitis vinifera) stem extracts. Food Chem. 2012, 132, 351–359. [Google Scholar] [CrossRef]
- Fuster, M.D.; Lampi, A.M.; Hopia, A.; Kamal-Eldin, A. Effects of α- and γ- tocopherols on the autoxidation of purified sunflower triacylglycerols. Lipids 1998, 33, 715–722. [Google Scholar] [CrossRef]
- Lalas, S.; Dourtoglou, V. Use of rosemary extract in preventing oxidation during deep fat frying of potato chips. J. Am. Oil Chem. Soc. 2003, 80, 579–583. [Google Scholar] [CrossRef]
- Brodelius, P.E.; Funk, C.; Shillito, R.D. Permeabilization of cultivated plant cells by electroporation for release of intracellularly stored secondary products. Plant Cell Rep. 1988, 7, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Delsart, C. Champs Electriques Pulses et Decharges Electriques de Haute Tension Pour l’ Extraction et la Stabilisation en Oenologie. Ph.D. Thesis, Doctorat de l’ Université Bordeaux 2, Centre de Recherche de Bordeaux Aquitaine, Villenave D’Ornon, France, 13 December 2012. [Google Scholar]
- Doenenburg, H.; Knorr, D. Cellular permeabilisation of cultured plant tissue by high electric field pulses or ultra high pressure for the recovery of secondary metabolites. Food Biotechnol. 1993, 7, 35–48. [Google Scholar] [CrossRef]
- Fincan, M.; De Vito, F.; Dejmek, P. Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment. J. Food Eng. 2004, 64, 381–388. [Google Scholar] [CrossRef]
- Tedjo, W.; Eshtiaghi, M.N.; Knorr, D. Einsatz, nicht thermischer verfahren zur zell-permeabilisierung von weintrauben und gewinnung von inhaltsstoffen. Flüssiges Obst. 2002, 9, 578–583. [Google Scholar]
- Boussetta, N.; Vorobiev, E.; Le, L.H.; Cordin-Falcimaigne, A.; Lanoisellé, J.-L. Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT Food Sci. Technol. 2012, 46, 127–134. [Google Scholar] [CrossRef]
- Eshtiaghi, M.N.; Knorr, D. High electric field pulse pretreatment: Potential for sugar beet processing. J. Food Eng. 2002, 53, 265–272. [Google Scholar] [CrossRef]
- Ade-Omowaye, B.I.O.; Angersbach, A.; Taiwo, K.A.; Knorr, D. Use of pulsed electric field pretreatment to improve dehydration characteristics of plant based foods. Trends Food Sci. Technol. 2001, 12, 285–295. [Google Scholar] [CrossRef]
- Koehler, E.; Toepfl, S.; Knorr, D.; Pulz, O. Unconventional procedures for the production and stabilization of extracts with active agents. In Proceedings of the 6th European Workshop of European Society of Microalgal Biotechnology, Potsdam, Germany, 23 May 2005. [Google Scholar]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem. 2011, 1, 106. [Google Scholar] [CrossRef]
- Lalas, S.; Tsaknis, J. Extraction and identification of natural antioxidant from the seeds of Moringa oleifera tree variety of Malawi. J. Am. Oil Chem. Soc. 2002, 79, 677–683. [Google Scholar] [CrossRef]
- Tekle, E.W.; Sahu, N.P.; Makesh, M. Antioxidative and antimicrobial activities of different solvent extracts of Moringa oleifera: An in vitro evaluation. Int. J. Sci. Res. 2015, 5, 1–4. [Google Scholar]
- Luqman, S.; Srivastava, S.; Kumar, R.; Kumar Maurya, A.; Chanda, D. Experimental assessment of Moringa oleifera leaf and fruit for its antistress, antioxidant, and scavenging potential using in vitro and in vivo assays. Evid. Based Complement. Altern. Med. 2012, 2012, 519084. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Extraction Conditions | |||
---|---|---|---|---|
Time (min) | Temperature (°C) | Pulse Duration (PD) (msec) | Pulse Interval (PI) (μsec) | |
PEF 1 | 40 | Ambient | 10 | 100 |
PEF 2 | 40 | Ambient | 10 | 75 |
PEF 3 | 40 | Ambient | 10 | 50 |
PEF 4 | 40 | Ambient | 10 | 25 |
PEF 5 | 40 | Ambient | 20 | 100 |
PEF 6 | 40 | Ambient | 50 | 100 |
PEF 7 | 40 | Ambient | 70 | 100 |
PEF 8 | 40 | Ambient | 100 | 100 |
Microwave (350 W) | 2 | 80 | - | - |
Ultrasound | 15 | 36 | - | - |
Boiling water | 2 | 100–88 | - | - |
Control | 40 | Ambient | - | - |
Sample Name | Total Polyphenol Content (mg GAE/g of Dry Matter) |
---|---|
PEF 1 | 24.72 (0.22) a * |
PEF 2 | 27.04 (0.39) b |
PEF 3 | 33.12 (0.38) c |
PEF 4 | 38.24 (0.42) d |
PEF 5 | 40.24 (0.81) e |
PEF 6 | 34.96 (0.95) f |
PEF 7 | 32.90 (0.48) c |
PEF 8 | 31.60 (0.56) g |
Microwave (350 W) | 36.59 (0.33) h |
Ultrasound | 29.04 (0.21) i |
Boiling water | 31.56 (0.71) g |
Control | 27.76 (0.34) b |
Sample Name | % Inhibition of DPPH• Radical |
---|---|
PEF 1 | 54.92 (0.33) a * |
PEF 2 | 60.83 (0.24) b |
PEF 3 | 74.77 (0.50) c |
PEF 4 | 85.32 (0.61) d |
PEF 5 | 98.31 (0.67) e |
PEF 6 | 77.03 (0.32) f |
PEF 7 | 73.91 (0.49) c |
PEF 8 | 70.19 (0.29) g |
Microwave (350 W) | 82.61 (0.51) h |
Ultrasound | 64.82 (0.28) i |
Boiling water | 70.72 (0.37) g |
Control | 42.94 (0.12) k |
Sample Name | Ferric Reducing Antioxidant Power (μmoL AAE/g Dry Matter) |
---|---|
PEF 1 | 60.50 (0.27) a * |
PEF 2 | 66.16 (0.39) b |
PEF 3 | 81.40 (0.27) c |
PEF 4 | 94.08 (0.59) d |
PEF 5 | 108.22 (0.77) e |
PEF 6 | 86.08 (0.29) f |
PEF 7 | 81.48 (0.31) c |
PEF 8 | 77.70 (0.24) g |
Microwave (350 W) | 90.04 (0.51) h |
Ultrasound | 71.68 (0.35) i |
Boiling water | 78.12 (0.30) g |
Control | 47.78 (0.14) k |
Sample Name | Protection Factor |
---|---|
PEF 1 | 1.5 (0.1) a * |
PEF 2 | 1.8 (0.2) a |
PEF 3 | 2.5 (0.2) b |
PEF 4 | 3.0 (0.2) c |
PEF 5 | 3.7 (0.3) d |
PEF 6 | 2.7 (0.1) b |
PEF 7 | 2.5 (0.1) b |
PEF 8 | 2.3 (0.1) b |
Microwave (350 W) | 2.9 (0.2) c |
Ultrasound | 2.0 (0.1) a |
Boiling water | 2.3 (0.1) b |
Control | 1.0 (0.1) d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozinou, E.; Karageorgou, I.; Batra, G.; G. Dourtoglou, V.; I. Lalas, S. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5, 8. https://doi.org/10.3390/beverages5010008
Bozinou E, Karageorgou I, Batra G, G. Dourtoglou V, I. Lalas S. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages. 2019; 5(1):8. https://doi.org/10.3390/beverages5010008
Chicago/Turabian StyleBozinou, Eleni, Ioanna Karageorgou, Georgia Batra, Vassilis G. Dourtoglou, and Stavros I. Lalas. 2019. "Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques" Beverages 5, no. 1: 8. https://doi.org/10.3390/beverages5010008
APA StyleBozinou, E., Karageorgou, I., Batra, G., G. Dourtoglou, V., & I. Lalas, S. (2019). Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages, 5(1), 8. https://doi.org/10.3390/beverages5010008