Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection
2.3. Sample Treatment
2.4. ICP-OES Analysis
2.5. ICP-MS Analysis
2.6. Analysis of Certified Samples
2.7. Data Analysis
3. Results and Discussion
3.1. Lanthanides
3.2. Comparison between Wines and Soils
- (a)
- comparison between one Barbera d’Asti and one Nizza wine produced from the same vineyard: apparently, they show the same distribution, different from that of the corresponding soil;
- (b)
- comparison between one Barbera d’Asti, one Barbera d’Asti superiore and one Nizza wine produced from the same vineyard: again, the three wines have the same distribution, different from that of soil;
- (c)
- comparison between three Nizza wines obtained by a producer from grapes cultivated in three different but very close vineyards inside a small area: the three wines are more similar among themselves than to each respective soil;
- (d)
- comparison between three Barbera d’Asti superiore wines and one Nizza wine obtained by a producer from grapes cultivated in the same vineyards: the four wines are more similar among themselves than to soil.
3.3. Other Trace- and Ultra-Trace Elements
- pH of soil;
- type of rootstock;
- vine growing system;
- type of cultivar;
- time of harvest (it can change from one zone to another and from a farm to another, even at short distances)
- type of collection (manual and/or mechanical)
- Transfer time (from vineyard to cellar) and temperature conditions
- Different types of processing that the product can undergo depending on the objectives of the company grape pressing (time, duration, temperature)
- use of yeasts (usually different from a farm to another)
- duration of maceration and therefore of extraction from skins;
- further processing steps (ageing in steel, barrique—type of wood and provenance—or bottles);
- conservation conditions (temperature, relative humidity, etc.).
- The alcoholic content: Catarino et al. [32] showed that the concentration of Rb is inversely proportional to alcohol %, which is in agreement with our data if we consider that the average alcohol % is 14.2 for Barbera d’Asti wines and 14.7 for Barbera d’Asti superiore/Nizza wines.
- The widespread use of bentonites by producers of these wines: Catarino et al. [30] showed that this treatment causes a strong fractionation of the original elemental distribution in musts; in particular Li, Sr and Tl were found to increase after bentonites treatment, while B and Rb decreased. However, bentonites are widely used in the production of all Barbera designations.
- The main difference between Barbera d’Asti and Barbera d’Asti superiore/Nizza is ageing, which involves a more or less prolonged contact with barriques. Kaya et al. [33] studied the effect of wood aging on the mineral composition of wine; Sr was found to increase significantly in wines aged in wood, while for Li, Rb, and Tl no significant effect was registered. These results partially confirm the differences found in our study with concern to Sr, which is higher in Barbera d’Asti superiore/Nizza than in Barbera d’Asti.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AA. VV. Repubblica Italiana Riconoscimento della denominazione di origine controllata del vino “Barbera d’Asti” ed approvazione del relativo disciplinare di produzione. Gazz. Uff. Ser. Gen. 1970, 73, 1836–1839. [Google Scholar]
- AA. VV. Repubblica Italiana Riconoscimento della denominazione di origine controllata e garantita “Barbera d’Asti.”. Gazz. Uff. Ser. Gen. 2008, 169, 21–33. [Google Scholar]
- AA. VV. European Union Commission implementing regulation (EU) 2019/953 of 22 May 2019, conferring protection under Article 99 of Regulation (EU) No 1308/2013 of the European Parliament and of the Council on the name ‘Nizza’ (PDO). Off. J. Eur. Union 2019, 154, 33. [Google Scholar]
- Álvarez, M.; Moreno, I.M.; Jos, Á.; Cameán, A.M.; Gustavo González, A. Differentiation of ‘two Andalusian DO ‘fino’ wines according to their metal content from ICP-OES by using supervised pattern recognition methods. Microchem. J. 2007, 87, 72–76. [Google Scholar] [CrossRef]
- Martin, A.E.; Watling, R.J.; Lee, G.S. The multi-element determination and regional discrimination of Australian wines. Food Chem. 2012, 133, 1081–1089. [Google Scholar] [CrossRef]
- Ražić, S.; Onjia, A. Trace Element Analysis and Pattern Recognition Techniques in Classification of Wine from Central Balkan Countries. Am. J. Enol. Vitic. 2010, 61, 506–511. [Google Scholar] [CrossRef]
- Griboff, J.; Baroni, M.V.; Horacek, M.; Wunderlin, D.A.; Monferran, M.V. Multielemental + isotopic fingerprint enables linking soil, water, forage and milk composition, assessing the geographical origin of Argentinean milk. Food Chem. 2019, 283, 549–558. [Google Scholar] [CrossRef]
- Worku, M.; Upadhayay, H.R.; Latruwe, K.; Taylor, A.; Blake, W.; Vanhaecke, F.; Duchateau, L.; Boeckx, P. Differentiating the geographical origin of Ethiopian coffee using XRF- and ICP-based multi-element and stable isotope profiling. Food Chem. 2019, 290, 295–307. [Google Scholar] [CrossRef]
- Bronzi, B.; Brilli, C.; Beone, G.M.; Fontanella, M.C.; Ballabio, D.; Todeschini, R.; Consonni, V.; Grisoni, F.; Parri, F.; Buscema, M. Geographical identification of Chianti red wine based on ICP-MS element composition. Food Chem. 2020, 315, 126248. [Google Scholar] [CrossRef]
- Aceto, M. The Use of ICP-MS in Food Traceability. In Advances in Food Traceability Techniques and Technologies; Espiñeira, M., Santaclara, F.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 137–164. [Google Scholar]
- Oddone, M.; Aceto, M.; Baldizzone, M.; Musso, D.; Osella, D. Authentication and traceability study of hazelnuts from piedmont, Italy. J. Agric. Food Chem. 2009, 57, 3404–3408. [Google Scholar] [CrossRef]
- Aceto, M.; Calà, E.; Musso, D.; Regalli, N.; Oddone, M. A preliminary study on the authentication and traceability of extra virgin olive oil made from Taggiasca olives by means of trace and ultra-trace elements distribution. Food Chem. 2019, 298, 125047. [Google Scholar] [CrossRef] [PubMed]
- Aceto, M.; Musso, D.; Calà, E.; Arieri, F.; Oddone, M. Role of Lanthanides in the Traceability of the Milk Production Chain. J. Agric. Food Chem. 2017, 65, 4200–4208. [Google Scholar] [CrossRef]
- Aceto, M.; Bonello, F.; Musso, D.; Tsolakis, C.; Cassino, C.; Osella, D. Wine Traceability with Rare Earth Elements. Beverages 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- AA. VV. ISO 12914. Soil Quality—Microwave-Assisted Extraction of the Aqua Regia Soluble Fraction for the Determination of Elements; International Organization for Standardization (ISO): Geneva, Switzerland, 2012. [Google Scholar]
- AA. VV. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Magnusson, B., Örnemark, U., Eds.; Eurachem: London, UK, 2014; ISBN 9789187461590. [Google Scholar]
- Pohl, P. What do metals tell us about wine? TrAC Trends Anal. Chem. 2007, 26, 941–949. [Google Scholar] [CrossRef]
- Jakubowski, N.; Brandt, R.; Stuewer, D.; Eschnauer, H.R.; Görtges, S. Analysis of wines by ICP-MS: Is the pattern of the rare earth elements a reliable fingerprint for the provenance? Fresenius. J. Anal. Chem. 1999, 364, 424–428. [Google Scholar] [CrossRef]
- Nicolini, G.; Larcher, R.; Pangrazzi, P.; Bontempo, L. Changes in the contents of micro- and trace-elements in wine due to winemaking treatments. Vitis 2004, 43, 41–45. [Google Scholar] [CrossRef]
- Castiñeira Gómez, M.D.M.; Brandt, R.; Jakubowski, N.; Andersson, J.T. Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. [Google Scholar] [CrossRef]
- Rossano, E.C.; Szilágyi, Z.; Malorni, A.; Pocsfalvi, G. Influence of Winemaking Practices on the Concentration of Rare Earth Elements in White Wines Studied by Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food Chem. 2007, 55, 311–317. [Google Scholar] [CrossRef]
- Mihucz, V.G.; Done, C.J.; Tatár, E.; Virág, I.; Záray, G.; Baiulescu, E.G. Influence of different bentonites on the rare earth element concentrations of clarified Romanian wines. Talanta 2006, 70, 984–990. [Google Scholar] [CrossRef]
- Tatár, E.; Mihucz, V.G.; Virág, I.; Rácz, L.; Záray, G. Effect of four bentonite samples on the rare earth element concentrations of selected Hungarian wine samples. Microchem. J. 2007, 85, 132–135. [Google Scholar] [CrossRef]
- May, T.W.; Wiedmeyer, R.H. A Table of Polyatomic Interferences in ICP-MS. At. Spectrosc. 1998, 19, 150–155. [Google Scholar]
- Aceto, M.; Robotti, E.; Oddone, M.; Baldizzone, M.; Bonifacino, G.; Bezzo, G.; Di Stefano, R.; Gosetti, F.; Mazzucco, E.; Manfredi, M.; et al. A traceability study on the Moscato wine chain. Food Chem. 2013, 138, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Gonzálvez, A.; de la Guardia, M. Mineral Profile. In Food Protected Designation of Origin: Methodologies and Applications; de la Guardia, M., Gonzálvez, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 51–76. [Google Scholar]
- Ebeler, S.E. Analysis of Grapes and Wines: An Overview of New Approaches and Analytical Tools. In ACS Symposium Series; ACS Publications: Washington, DC, USA, 2015; pp. 3–12. ISBN 9780841230101. [Google Scholar]
- Hopfer, H.; Nelson, J.; Collins, T.S.; Heymann, H.; Ebeler, S.E. The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chem. 2015, 172, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Catarino, S.; Madeira, M.; Monteiro, F.; Rocha, F.; Curvelo-Garcia, A.S.; de Sousa, R.B. Effect of Bentonite Characteristics on the Elemental Composition of Wine. J. Agric. Food Chem. 2008, 56, 158–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolini, G.; Larcher, R. Evidence of changes in the micro-element composition of wine due to the yeast strain. La Riv. di Vitic. e di Enol. 2003, 56, 45–48. [Google Scholar]
- Catarino, S.; Madeira, M.; Monteiro, F.; Caldeira, I.; Bruno de Sousa, R.; Curvelo-Garcia, A. Mineral Composition through Soil-Wine System of Portuguese Vineyards and Its Potential for Wine Traceability. Beverages 2018, 4, 85. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.D.; Bruno de Sousa, R.; Curvelo-Garcia, A.S.; Ricardo-da-Silva, J.M.; Catarino, S. Effect of Wood Aging on Wine Mineral Composition and 87 Sr/86 Sr Isotopic Ratio. J. Agric. Food Chem. 2017, 65, 4766–4776. [Google Scholar] [CrossRef] [Green Version]
- Catarino, S.; Curvelo-Garcia, A.S.; Bruno de Sousa, R. Contaminant elements in wines: A review. Ciência e Técnica Vitivinícola 2008, 23, 3–19. [Google Scholar]
Parameter | Barbera d’Asti | Barbera d’Asti Superiore | Nizza |
---|---|---|---|
Production zones | 116 communes in the Asti province and 51 communes in the Alessandria province | 116 communes in the Asti province and 51 communes in the Alessandria province | 18 Communes in the Asti province |
Altitude | not above 650 m a.s.l. | not above 650 m a.s.l. | between 150 and 350 m a.s.l. |
Exposure | suitable for ensuring suitable ripening of the grapes. North exposure is excluded for new plants | suitable for ensuring suitable ripening of the grapes. North exposure is excluded for new plants | exclusively hilly with exposure from south to south west—south east |
Alcohol content | 12.00% vol. minimum | 12.50% vol. minimum | 13.00% vol. minimum |
Ageing | 4 months minimum | 14 months minimum, 6 of whom in wood | 18 months minimum, 6 of whom in wood |
Minimum total acidity | 4.5 g/L | 4.5 g/L | 5.0 g/L |
Minimum non-reducing extract | 24.0 g/L | 25.0 g/L | 26.0 g/L |
Ampelographic composition | Barbera (85% minimum), Freisa, Grignolino and Dolcetto, alone or jointly (15% maximum). | Barbera (85% minimum), Freisa, Grignolino and Dolcetto, alone or jointly (15% maximum). | Barbera 100% |
Element | LOD | LOQ | Element | LOD | LOQ | Element | LOD | LOQ |
---|---|---|---|---|---|---|---|---|
K 1 | 0.001 mg/L | 0.005 mg/L | Pb 2 | 0.015 µg/L | 0.048 µg/L | Y 2 | 0.3 ng/L | 1.0 ng/L |
P 1 | 0.062 mg/L | 0.206 mg/L | Ni 2 | 0.060 µg/L | 0.199 µg/L | U 2 | 0.3 ng/L | 1.1 ng/L |
S 1 | 0.133 mg/L | 0.444 mg/L | Ti 2 | 0.071 µg/L | 0.236 µg/L | Pd 2 | 1.4 ng/L | 4.6 ng/L |
Mg 1 | 0.004 mg/L | 0.015 mg/L | Cr 2 | 0.061 µg/L | 0.203 µg/L | Cd 2 | 1.4 ng/L | 4.5 ng/L |
Ca 1 | 0.002 mg/L | 0.007 mg/L | Sc 2 | 6.9 ng/L | 23.0 ng/L | Tl 2 | 0.2 ng/L | 0.5 ng/L |
Na 1 | 0.007 mg/L | 0.022 mg/L | Li 2 | 5.2 ng/L | 17.2 ng/L | Hg 2 | 8.6 ng/L | 28.5 ng/L |
Fe 2 | 0.052 µg/L | 0.173 µg/L | Mo 2 | 7.8 ng/L | 26.0 ng/L | Gd 2 | 0.8 ng/L | 2.6 ng/L |
B 1 | 0.043 mg/L | 0.144 mg/L | Sn 2 | 10.2 ng/L | 34.1 ng/L | Pr 2 | 0.1 ng/L | 0.2 ng/L |
Si 1 | 0.245 mg/L | 0.816 mg/L | As 2 | 23.5 ng/L | 78.2 ng/L | Sm 2 | 1.2 ng/L | 4.1 ng/L |
Sr 2 | 0.004 µg/L | 0.014 µg/L | Cs 2 | 0.8 ng/L | 2.8 ng/L | Dy 2 | 0.5 ng/L | 1.6 ng/L |
Rb 2 | 0.022 µg/L | 0.075 µg/L | Co 2 | 1.3 ng/L | 4.4 ng/L | Th 2 | 0.1 ng/L | 0.2 ng/L |
Al 1 | 0.006 mg/L | 0.019 mg/L | Zr 2 | 3.3 ng/L | 11.1 ng/L | Yb 2 | 0.3 ng/L | 1.1 ng/L |
Br 2 | 0.495 µg/L | 1.649 µg/L | Nb 2 | 0.7 ng/L | 2.4 ng/L | Er 2 | 0.4 ng/L | 1.3 ng/L |
Zn 2 | 0.189 µg/L | 0.630 µg/L | Ce 2 | 3.4 ng/L | 11.5 ng/L | Eu 2 | 0.9 ng/L | 2.9 ng/L |
Cu 2 | 0.045 µg/L | 0.150 µg/L | Se 2 | 23.7 ng/L | 79.0 ng/L | Bi 2 | 1.4 ng/L | 4.8 ng/L |
Mn 2 | 0.021 µg/L | 0.070 µg/L | Au 2 | 3.1 ng/L | 10.2 ng/L | Tb 2 | 0.4 ng/L | 1.5 ng/L |
I 2 | 0.346 µg/L | 1.152 µg/L | Sb 2 | 4.2 ng/L | 13.9 ng/L | Ho 2 | 0.1 ng/L | 0.3 ng/L |
Ba 2 | 0.072 µg/L | 0.241 µg/L | La 2 | 0.7 ng/L | 2.3 ng/L | Lu 2 | 0.2 ng/L | 0.7 ng/L |
V 2 | 0.005 µg/L | 0.016 µg/L | Nd 2 | 1.1 ng/L | 3.6 ng/L | Tm 2 | 0.1 ng/L | 0.4 ng/L |
Element | Certified Values (mg/kg) | Uncertainty | Found (mg/kg) | s.d. |
---|---|---|---|---|
Li | 25 1 | 74 | 0.60 | |
Sc | 24 1 | 11 | 0.04 | |
Ti | 6050 | 660 | 2310 | |
V | 160 1 | 128 | 0.40 | |
Cr | 301 | 45 | 226 | 1.79 |
Mn | 1000 | 18 | 937 | |
Fe | 51,610 | 890 | 48,837 | |
Co | 35 1 | 24 | 0.21 | |
Ni | 75 1 | 150 | 6.21 | |
Cu | 81 1 | 85 | 1.04 | |
Zn | 352 | 16 | 369 | |
As | 8.7 | 1.5 | 3 | |
Se | 0.6 1 | 3 | ||
Sr | 84.1 | 8.0 | 131.2 | 1.71 |
Y | 21 1 | 19 | 0.16 | |
Nb | 6 1 | 3 | ||
Ba | 413 | 18 | 218 | 2.64 |
La | 29.7 | 4.8 | 27.2 | 0.59 |
Ce | 58 | 8 | 56.2 | 0.82 |
Pr | 7.3 1 | 7.9 | 0.08 | |
Nd | 26.4 | 2.9 | 29.4 | 0.77 |
Sm | 6.1 1 | 6.0 | 0.11 | |
Eu | 1.5 1 | 1.2 | 0.04 | |
Gd | 5.8 1 | 6.6 | 0.04 | |
Tb | 0.9 1 | 0.9 | 0.02 | |
Dy | 5.4 1 | 4.1 | 0.04 | |
Ho | 1.1 1 | 0.7 | 0.01 | |
Er | 3.30 1 | 2.11 | 0.05 | |
Tm | 0.5 1 | 0.3 | 0.01 | |
Yb | 2.64 | 0.51 | 1.68 | 0.03 |
Lu | 2 | 0.3 | 0.001 | |
Cd | 2.71 | 0.54 | 3 | |
Hg | 0.367 | 0.038 | 3 | |
Pb | 432 | 17 | 3 | |
Th | 7 1 | 14 | 0.10 |
mg/L | BA | BAs | Nizza | µg/L | BA | BAs | Nizza | ng/L | BA | BAs | Nizza | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | ave | 772.7 | 822.7 | 835.2 | Pb | ave | 22.3 | 51.1 | 17.0 | Y | ave | 648 | 466 | 461 |
min | 636.7 | 642.9 | 591.0 | min | 2.67 | 3.64 | 2.26 | min | 52 | 145 | 72 | |||
max | 908.5 | 1025.9 | 1004.7 | max | 59.0 | 143.5 | 125.0 | max | 1995 | 1289 | 1637 | |||
P | ave | 210.4 | 238.6 | 249.8 | Ni | ave | 44.3 | 41.8 | 36.6 | U | ave | 502 | 270 | 466 |
min | 166.8 | 194.8 | 137.5 | min | 31.7 | 28.9 | 17.1 | min | 10 | 56 | 35 | |||
max | 270.0 | 280.7 | 698.8 | max | 61.9 | 55.7 | 115.9 | max | 1135 | 415 | 1754 | |||
S | ave | 252.9 | 292.1 | 242.8 | Ti | ave | 43.0 | 41.8 | 42.0 | Pd | ave | 86 | 69 | 183 |
min | 165.3 | 188.2 | 138.0 | min | 28.4 | 32.9 | 24.0 | min | 40 | 50 | 54 | |||
max | 488.1 | 479.9 | 450.1 | max | 73.1 | 56.4 | 92.4 | max | 179 | 94 | 1237 | |||
Mg | ave | 110.2 | 115.3 | 137.2 | Cr | ave | 16.4 | 24.3 | 18.6 | Cd | ave | 162 | 294 | 191 |
min | 88.0 | 98.0 | 93.3 | min | 9.01 | 8.31 | 10.38 | min | 94 | 114 | 107 | |||
max | 164.5 | 192.0 | 371.3 | max | 24.9 | 45.8 | 40.8 | max | 296 | 901 | 301 | |||
Ca | ave | 73.2 | 79.3 | 76.4 | Sc | ave | 40.6 | 42.3 | 40.8 | Tl | ave | 412 | 254 | 306 |
min | 54.4 | 60.0 | 55.7 | min | 39.0 | 40.6 | 30.6 | min | 252 | 159 | 141 | |||
max | 89.1 | 103.9 | 122.4 | max | 42.7 | 45.6 | 45.6 | max | 610 | 352 | 620 | |||
Na | ave | 16.25 | 15.69 | 20.31 | Li | ave | 10.3 | 16.0 | 20.7 | Hg | ave | 81 | 86 | 102 |
min | 6.79 | 11.05 | 7.84 | min | 5.40 | 7.75 | 10.77 | min | 1 | 1 | 1 | |||
max | 41.07 | 20.80 | 44.70 | max | 14.2 | 26.1 | 37.2 | max | 376 | 315 | 568 | |||
Fe | ave | 1.22 | 3.79 | 0.89 | Mo | ave | 3.58 | 3.15 | 3.67 | Gd | ave | 152 | 97 | 93 |
min | 0.34 | 0.58 | 0.04 | min | 1.15 | 1.87 | 1.41 | min | 6 | 15 | 7 | |||
max | 1.86 | 14.99 | 4.04 | max | 10.3 | 5.47 | 16.8 | max | 541 | 400 | 334 | |||
B | ave | 3.51 | 4.05 | 4.51 | Sn | ave | 4.44 | 2.44 | 2.10 | Pr | ave | 143 | 99 | 84 |
min | 2.72 | 3.70 | 2.27 | min | 0.45 | 0.07 | 0.03 | min | 4 | 12 | 2 | |||
max | 5.17 | 4.53 | 5.91 | max | 16.5 | 5.80 | 7.55 | max | 538 | 458 | 317 | |||
Si | ave | 3.27 | 3.44 | 3.09 | As | ave | 3.96 | 3.18 | 4.64 | Sm | ave | 131 | 82 | 73 |
min | 2.46 | 2.46 | 2.46 | min | 0.97 | 1.66 | 2.04 | min | 3 | 16 | 3 | |||
max | 4.61 | 4.46 | 4.90 | max | 9.57 | 6.63 | 13.9 | max | 438 | 361 | 283 | |||
Sr | ave | 1.10 | 1.37 | 1.53 | Cs | ave | 7.14 | 5.37 | 4.94 | Dy | ave | 112 | 74 | 73 |
min | 0.83 | 1.00 | 0.88 | min | 5.52 | 3.74 | 2.32 | min | 5 | 19 | 7 | |||
max | 1.35 | 1.70 | 2.43 | max | 12.9 | 7.44 | 10.5 | max | 372 | 254 | 263 | |||
Rb | ave | 1.42 | 1.16 | 1.16 | Co | ave | 3.59 | 5.20 | 3.64 | Th | ave | 104 | 49 | 80 |
min | 1.15 | 0.90 | 0.58 | min | 2.15 | 3.14 | 1.20 | min | 4 | 11 | 6 | |||
max | 1.86 | 1.60 | 1.62 | max | 6.70 | 8.04 | 6.77 | max | 305 | 133 | 230 | |||
Al | ave | 1.13 | 1.09 | 1.19 | Zr | ave | 3.14 | 2.17 | 2.89 | Yb | ave | 73 | 54 | 54 |
min | 0.78 | 0.95 | 0.84 | min | 0.78 | 1.17 | 0.96 | min | 8 | 18 | 13 | |||
max | 1.69 | 1.22 | 1.79 | max | 7.90 | 3.41 | 7.25 | max | 202 | 116 | 191 | |||
Br | ave | 0.849 | 0.870 | 0.860 | Nb | ave | 0.74 | 0.14 | 0.47 | Er | ave | 67 | 49 | 48 |
min | 0.629 | 0.800 | 0.518 | min | 0.01 | 0.05 | 0.04 | min | 5 | 15 | 7 | |||
max | 1.180 | 1.112 | 1.591 | max | 3.55 | 0.52 | 5.75 | max | 201 | 129 | 179 | |||
Zn | ave | 0.431 | 0.675 | 0.527 | Ce | ave | 1.07 | 0.71 | 0.61 | Eu | ave | 89 | 69 | 77 |
min | 0.109 | 0.397 | 0.195 | min | 0.04 | 0.05 | 0.04 | min | 48 | 34 | 25 | |||
max | 0.769 | 1.175 | 1.416 | max | 4.69 | 3.68 | 2.36 | max | 176 | 131 | 139 | |||
Cu | ave | 0.474 | 0.334 | 0.387 | Se | ave | 1.34 | 1.42 | 1.95 | Bi | ave | 10 | 11 | 18 |
min | 0.006 | 0.013 | 0.025 | min | 1.06 | 1.09 | 1.04 | min | 1 | 1 | 1 | |||
max | 1.132 | 0.648 | 1.067 | max | 2.68 | 2.08 | 3.54 | max | 51 | 44 | 92 | |||
Mn | ave | 0.249 | 0.236 | 0.328 | Au | ave | 0.12 | 0.18 | 0.34 | Tb | ave | 19 | 12 | 12 |
min | 0.036 | 0.036 | 0.036 | min | 0.06 | 0.09 | 0.01 | min | 1 | 2 | 1 | |||
max | 0.708 | 0.403 | 0.885 | max | 0.23 | 0.54 | 2.69 | max | 71 | 48 | 44 | |||
I | ave | 0.330 | 0.343 | 0.358 | Sb | ave | 0.65 | 0.72 | 0.56 | Ho | ave | 21 | 14 | 15 |
min | 0.251 | 0.258 | 0.233 | min | 0.17 | 0.10 | 0.13 | min | 1 | 4 | 2 | |||
max | 0.418 | 0.463 | 0.506 | max | 1.44 | 1.89 | 2.46 | max | 67 | 44 | 55 | |||
Ba | ave | 0.154 | 0.126 | 0.149 | La | ave | 0.58 | 0.41 | 0.35 | Lu | ave | 11 | 9 | 9 |
min | 0.109 | 0.078 | 0.054 | min | 0.01 | 0.02 | 0.01 | min | 1 | 4 | 2 | |||
max | 0.207 | 0.185 | 0.280 | max | 2.31 | 2.05 | 1.37 | max | 30 | 19 | 34 | |||
V | ave | 0.038 | 0.007 | 0.027 | Nd | ave | 0.59 | 0.43 | 0.34 | Tm | ave | 9 | 7 | 7 |
min | 0.000 | 0.001 | 0.000 | min | 0.02 | 0.07 | 0.01 | min | 1 | 1 | 1 | |||
max | 0.167 | 0.027 | 0.264 | max | 2.12 | 1.88 | 1.34 | max | 29 | 17 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aceto, M.; Gulino, F.; Calà, E.; Robotti, E.; Petrozziello, M.; Tsolakis, C.; Cassino, C. Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements. Beverages 2020, 6, 63. https://doi.org/10.3390/beverages6040063
Aceto M, Gulino F, Calà E, Robotti E, Petrozziello M, Tsolakis C, Cassino C. Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements. Beverages. 2020; 6(4):63. https://doi.org/10.3390/beverages6040063
Chicago/Turabian StyleAceto, Maurizio, Federica Gulino, Elisa Calà, Elisa Robotti, Maurizio Petrozziello, Christos Tsolakis, and Claudio Cassino. 2020. "Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements" Beverages 6, no. 4: 63. https://doi.org/10.3390/beverages6040063
APA StyleAceto, M., Gulino, F., Calà, E., Robotti, E., Petrozziello, M., Tsolakis, C., & Cassino, C. (2020). Authentication and Traceability Study on Barbera d’Asti and Nizza DOCG Wines: The Role of Trace- and Ultra-Trace Elements. Beverages, 6(4), 63. https://doi.org/10.3390/beverages6040063