Refining Citrus Wastes: From Discarded Oranges to Efficient Brewing Biocatalyst, Aromatic Beer, and Alternative Yeast Extract Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain
2.2. Orange Pulp Suspension
2.3. Immobilized Biocatalyst Preparation
2.4. Beer Production
2.4.1. Ethanol and Residual Sugar
2.4.2. SPME GC/MS Analysis
2.5. Autolysis of the Spent Brewing Biocatalyst and AYE Production
2.6. Effect of the AYE on Yeast Cell Growth
2.7. Calculation of the Activity Energy Ea
2.8. Statistical Analysis
2.9. Biorefinery Process Design
3. Results and Discussion
3.1. Activation Energy and Fermentation Kinetics
3.2. Aromatic Attributes in Beer Produced with the CWBB
3.3. Efficient AYE Production from Spent CWBB
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morone, P.; Koutinas, A.; Gathergood, N.; Arshadi, M.; Matharu, A. Food waste: Challenges and opportunities for enhancing the emerging bio-economy. J. Clean. Prod. 2019, 221, 10–16. [Google Scholar] [CrossRef]
- OECD. Material Resources, Productivity and the Environment; OECD: Paris, France, 2015. [Google Scholar] [CrossRef]
- FAO. WHO. Moving forward on food loss and waste reduction. In The State of Food and Agriculture 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Jeong, D.; Park, H.; Jang, B.-K.; Ju, Y.; Shin, M.H.; Oh, E.J.; Lee, E.J.; Kim, S.R. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. Bioresour. Technol. 2021, 323, 124603. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Dugmore, T.I.J.; Matharu, A.; Martinez-Hernandez, E.; Aburto, J.; Rahman, P.K.S.M.; Lynch, J. Perspectives on “Game Changer” global challenges for sustainable 21st century: Plant-based diet, unavoidable food waste biorefining, and circular economy. Sustainability 2020, 12, 1976. [Google Scholar] [CrossRef] [Green Version]
- Schoina, V.; Terpou, A.; Papadaki, A.; Bosnea, L.; Kopsahelis, N.; Kanellaki, M. Enhanced aromatic profile and functionality of cheese whey beverages by incorporation of probiotic cells immobilized on pistacia terebinthus resin. Foods 2020, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganatsios, V.; Koutinas, A.A.; Bekatorou, A.; Panagopoulos, V.; Banat, I.M.; Terpou, A.; Kopsahelis, N. Porous cellulose as promoter of oil production by the oleaginous yeast Lipomyces starkeyi using mixed agroindustrial wastes. Bioresour. Technol. 2017, 244, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Cano, M.E.; García-Martin, A.; Comendador Morales, P.; Wojtusik, M.; Santos, V.E.; Kovensky, J.; Ladero, M. Production of oligosaccharides from agrofood wastes. Fermentation 2020, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- FAO. Orange Production; FAO: Rome, Italy, 2019. [Google Scholar]
- Raimondo, M.; Caracciolo, F.; Cembalo, L.; Chinnici, G.; Pecorino, B.; D’Amico, M. Making Virtue out of necessity: Managing the citrus waste supply chain for bioeconomy applications. Sustainability 2018, 10, 4821. [Google Scholar] [CrossRef] [Green Version]
- Ordoudi, S.A.; Bakirtzi, C.; Tsimidou, M.Z. The potential of tree fruit stone and seed wastes in Greece as sources of bioactive ingredients. Recycling 2018, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Mariana, O.-S.; Juan Camilo, S.-T.; Carlos Ariel, C.-A. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour. Technol. 2021, 325, 124682. [Google Scholar] [CrossRef]
- Ganatsios, V.; Terpou, A.; Gialleli, A.-I.; Kanellaki, M.; Bekatorou, A.; Koutinas, A.A. A ready-to-use freeze-dried juice and immobilized yeast mixture for low temperature sour cherry (Prunus cerasus) wine making. Food Bioprod. Process. 2019, 117, 373–379. [Google Scholar] [CrossRef]
- Gialleli, A.-I.; Ganatsios, V.; Terpou, A.; Kanellaki, M.; Bekatorou, A.; Koutinas, A.A.; Dimitrellou, D. Technological development of brewing in domestic refrigerator using freeze-dried raw materials. Food Technol. Biotechnol. 2017, 55, 325–332. [Google Scholar] [CrossRef]
- Lappa, I.K.; Papadaki, A.; Kachrimanidou, V.; Terpou, A.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods 2019, 8, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpou, A.; Gialleli, A.-I.; Bekatorou, A.; Dimitrellou, D.; Ganatsios, V.; Barouni, E.; Koutinas, A.A.; Kanellaki, M. Sour milk production by wheat bran supported probiotic biocatalyst as starter culture. Food Bioprod. Process. 2017, 101, 184–192. [Google Scholar] [CrossRef]
- Zarei, O.; Dastmalchi, S.; Hamzeh-Mivehroud, M. A Simple and rapid protocol for producing yeast extract from Saccharomyces cerevisiae suitable for preparing bacterial culture media. Iran. J. Pharm. Res. 2016, 15, 907–913. [Google Scholar]
- Tanguler, H.; Erten, H. Utilisation of spent brewer’s yeast for yeast extract production by autolysis: The effect of temperature. Food Bioprod. Process. 2008, 86, 317–321. [Google Scholar] [CrossRef]
- Chae, H.J.; Joo, H.; In, M.-J. Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: Effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour. Technol. 2001, 76, 253–258. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Nisiotou, A.; Kourkoutas, Y.; Panas, P.; Nychas, G.J.E.; Kanellaki, M. Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range. Bioresour. Technol. 2009, 100, 4854–4862. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Koliopoulos, D.; Kourkoutas, Y.; Psarianos, C.; Alexopoulos, A.; Marchant, R.; Banat, I.M.; Koutinas, A.A. Upgrading of discarded oranges through fermentation using kefir in food industry. Food Chem. 2008, 106, 40–49. [Google Scholar] [CrossRef]
- Terpou, A.; Bekatorou, A.; Bosnea, L.; Kanellaki, M.; Ganatsios, V.; Koutinas, A.A. Wheat bran as prebiotic cell immobilisation carrier for industrial functional Feta-type cheese making: Chemical, microbial and sensory evaluation. Biocatal. Agric. Biotechnol. 2018, 13, 75–83. [Google Scholar] [CrossRef]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer volatile fingerprinting at different brewing steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef]
- Kallis, M.; Sideris, K.; Kopsahelis, N.; Bosnea, L.; Kourkoutas, Y.; Terpou, A.; Kanellaki, M. Pistacia terebinthus resin as yeast immobilization support for alcoholic fermentation. Foods 2019, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Terpou, A.; Ganatsios, V.; Kanellaki, M.; Koutinas, A.A. Entrapped psychrotolerant yeast cells within pine sawdust for low temperature wine making: Impact on wine quality. Microorganisms 2020, 8, 764. [Google Scholar] [CrossRef]
- Terpou, A.; Dimopoulou, M.; Belka, A.; Kallithraka, S.; Nychas, G.-J.E.; Papanikolaou, S. Effect of myclobutanil pesticide on the physiological behavior of two newly isolated Saccharomyces cerevisiae strains during very-high-gravity alcoholic fermentation. Microorganisms 2019, 7, 666. [Google Scholar] [CrossRef]
- Converti, A.; Bargagliotti, C.; Cavanna, C.; Nicolella, C.; Del Borghi, M. Evaluation of kinetic parameters and thermodynamic quantities of starch hydrolysate alcohol fermentation by Saccharomyces cerevisiae. Bioprocess Eng. 1996, 15, 63–69. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Sypsas, V.; Kandylis, P.; Michelis, A.; Bekatorou, A.; Kourkoutas, Y.; Kordulis, C.; Lycourghiotis, A.; Banat, I.M.; Nigam, P.; et al. Nano-tubular cellulose for bioprocess technology development. PLoS ONE 2012, 7, e34350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabasari, I.; Pettolino, F.; Liao, M.-L.; Bacic, A. Pectic polysaccharides from mature orange (Citrus sinensis) fruit albedo cell walls: Sequential extraction and chemical characterization. Carbohydr. Polym. 2011, 84, 484–494. [Google Scholar] [CrossRef]
- Bekatorou, A.; Plessas, S.; Mallouchos, A. Cell immobilization technologies for applications in alcoholic beverages. In Applications of Encapsulation and Controlled Release; Mishra, M., Ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 933–955. [Google Scholar] [CrossRef]
- Plioni, I.; Bekatorou, A.; Mallouchos, A.; Kandylis, P.; Chiou, A.; Panagopoulou, E.A.; Dede, V.; Styliara, P. Corinthian currants finishing side-stream: Chemical characterization, volatilome, and valorisation through wine and baker’s yeast production-technoeconomic evaluation. Food Chem. 2021, 342, 128161. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochimica Biophysica Acta BBA Biomembr. 2004, 1666, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 2011, 22, 896–902. [Google Scholar] [CrossRef]
- Kamineni, A.; Shaw, J. Engineering triacylglycerol production from sugars in oleaginous yeasts. Curr. Opin. Biotechnol. 2020, 62, 239–247. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Deterre, S.; Leclair, C.; Bai, J.; Baldwin, E.A.; Narciso, J.A.; Plotto, A. Chemical and sensory characterization of orange (Citrus sinensis) Pulp, a by-product of orange juice processing using gas-chromatography-olfactometry. J. Food Qual. 2016, 39, 826–838. [Google Scholar] [CrossRef]
- Larroque, M.N.; Carrau, F.; Fariña, L.; Boido, E.; Dellacassa, E.; Medina, K. Effect of Saccharomyces and non-Saccharomyces native yeasts on beer aroma compounds. Int. J. Food Microbiol. 2021, 337, 108953. [Google Scholar] [CrossRef] [PubMed]
- Carrau, F.M.; Medina, K.; Boido, E.; Farina, L.; Gaggero, C.; Dellacassa, E.; Versini, G.; Henschke, P.A. De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol. Lett. 2005, 243, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Ferreira, I.M.P.L.V.O.; Pinho, O.; Vieira, E.; Tavarela, J.G. Brewer’s Saccharomyces yeast biomass: Characteristics and potential applications. Trends Food Sci. Technol. 2010, 21, 77–84. [Google Scholar] [CrossRef]
- Sun, X.-Y.; Zhao, Y.; Liu, L.-L.; Jia, B.; Zhao, F.; Huang, W.-D.; Zhan, J.-C. Copper tolerance and biosorption of Saccharomyces cerevisiae during alcoholic fermentation. PLoS ONE 2015, 10, e0128611. [Google Scholar] [CrossRef]
- Claus, H. Copper-Containing Oxidases: Occurrence in soil microorganisms, properties, and applications. In Soil Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2010; pp. 281–313. [Google Scholar] [CrossRef]
- Aggelopoulos, T.; Bekatorou, A.; Plessas, S.; Koutinas, A.A.; Nigam, P. Upgrading of mixed food industry side-streams by solid-state fermentation with P. ostreatus. Recycling 2018, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Aggelopoulos, T.; Bekatorou, A.; Pandey, A.; Kanellaki, M.; Koutinas, A.A. Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl. Biochem. Biotechnol. 2013, 170, 1885–1895. [Google Scholar] [CrossRef]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef]
- Senit, J.J.; Velasco, D.; Gomez Manrique, A.; Sanchez-Barba, M.; Toledo, J.M.; Santos, V.E.; Garcia-Ochoa, F.; Yustos, P.; Ladero, M. Orange peel waste upstream integrated processing to terpenes, phenolics, pectin and monosaccharides: Optimization approaches. Ind. Crops Prod. 2019, 134, 370–381. [Google Scholar] [CrossRef]
- Plessas, S.; Bekatorou, A.; Koutinas, A.A.; Soupioni, M.; Banat, I.M.; Marchant, R. Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresour. Technol. 2007, 98, 860–865. [Google Scholar] [CrossRef] [PubMed]
Biocatalyst | Batch | Temp. (°C) | Initial Sugar (g/L) | Fermentation Time (h) | Residual Sugar (g/L) | Alcohol Conc. (% v/v) | Ea (kJ/K·mol) |
---|---|---|---|---|---|---|---|
Free cells | 1 | 15 | 141.0 ± 0.4 a | 134 | 0.4 ± 0.2 c | 5.3 ± 0.5 a | |
2 | 15 | 139.3 ± 0.2 b | 135 | 0.4 ± 0.1 c | 5.3 ± 0.3 a | ||
3 | 15 | 141.2 ± 0.3 a | 136 | 0.2 ± 0.1 c | 5.4 ± 0.4 a | 89.8 ± 2.9 b | |
4 | 10 | 141.4 ± 0.1 a | 260 | 0.8 ± 0.1 b | 5.1 ± 0.3 a | ||
5 | 10 | 141.1 ± 0.2 a | 248 | 0.9 ± 0.1 b | 4.9 ± 0.2 a | ||
6 | 10 | 141.3 ± 0.2 a | 240 | 1.1 ± 0.2 b | 4.8 ± 0.3 a | ||
CWBB | 1 | 15 | 141.1 ± 0.3 a | 124 | 1.1 ± 0.1 b | 4.8 ± 0.2 a | |
2 | 15 | 141.2 ± 0.2 a | 120 | 1.3 ± 0.1 b | 4.6 ± 0.5 a | ||
3 | 15 | 141.2 ± 0.3 a | 120 | 0.9 ± 0.2 b | 4.9 ± 0.3 a | ||
4 | 10 | 141.4 ± 0.5 a | 248 | 2.2 ± 0.1 a | 4.4 ± 0.7 a | 56.6 ± 4.1 a | |
5 | 10 | 141.2 ± 0.1 a | 240 | 1.8 ± 0.2 a | 4.5 ± 0.5 a | ||
6 | 10 | 141.3 ± 0.3 a | 200 | 1.4 ± 0.2 b | 4.6 ± 0.6 a |
Volatile Compounds | KI | KIref | Free Cells (mg/L) | CWBB (mg/L) |
---|---|---|---|---|
Organic acids | ||||
Hexanoic acid | 1895 | 1926 | 19.0 ± 2.1 a | 10.8 ± 3.0 b |
Octanoic acid | 2044 | 2111 | 318.4 ± 12.5 a | 351.3 ± 9.1 b |
Decanoic acid | 2289 | 2336 | 130.2 ± 7.5 a | 129.2 ± 8.3 a |
Undecanoic acid | 2301 | 2266 | 9.8 ± 1.01 b | 25.3 ± 4.7 a |
Undecylenic acid | 2320 | 2390 | n.d. | 5.7 ± 0.9 |
Alcohols | ||||
2-Methyl-1-butanol | 1190 | 1213 | 85.9 ± 8.3 b | 167.9 ± 11.1 a |
1-Hexanol | 1319 | 1354 | 1.8 ± 0.5 a | 0.2 ± 0.1 b |
1-Octanol | 1507 | 1563 | 9.9 ± 1.3 a | 3.1 ± 0.7 a |
2-Furanmethanol | 1627 | 1680 | n.d. | 4.1 ± 0.8 |
Phenyl ethyl alcohol | 1847 | 1933 | 24.16 ± 4.1 b | 48.2 ± 5.9 a |
Terpenes | ||||
β-Myrcene | 1182 | 1176 | n.d. | 2.3 ± 0.4 |
Limonene | 1225 | 1212 | 0.2 ± 0.1 b | 2.7 ± 0.6 a |
γ-Terpinene | 1244 | 1265 | n.d. | 0.3 ± 0.1 |
β-Linalool | 1522 | 1556 | n.d. | 2.3 ± 0.4 |
α-Terpineol | 1652 | 1688 | Tr | 0.6 ± 0.1 |
β-Terpineol | 1723 | 1711 | n.d. | 0.1 ± 0.05 |
Geranial | 1860 | 1862 | 0.2 ± 0.1 b | 1.4 ± 0.5 a |
Esters | ||||
2,3-Butanedione | 988 | 973 | 0.2 ± 0.1 a | 0.3 ± 0.1 a |
Ethyl acetate | 885 | 889 | 16.4 ± 3.1 b | 84.3 ± 6.9 a |
Ethyl butanoate | 1022 | 1040 | n.d. | 1.2 ± 0.1 |
Ethyl 2-hydroxyhexanoate | 1372 | 1386 | n.d. | 0.04 ± 0.02 |
Carbonyl compounds | ||||
Nonanal | 1281 | 1406 | n.d. | 12.4 ± 0.9 a |
Decanal | 1417 | 1507 | 0.9 ± 0.1 b | 8.8 ± 1.4 a |
Minerals | Content (mg/100 g) | |||
---|---|---|---|---|
AYE | CYE | Orange Pulp/Water (1:1) [43] | Molasses (Undiluted) [43] | |
Calcium | 221.0 ± 8.0 a | 120.0 ± 4.1 b | 28.5 | 163.6 |
Magnesium | 185.0 ± 3.7 b | 200.0 ± 4.0 a | 0.02 | 1420.0 |
Iron | 0.6 ± 0.1 b | 5.0 ± 0.9 a | n.d. | 7.1 |
Copper | 2.31 ± 0.15 | n.d. | 0.32 | 0.60 |
Yeast Extract Conc. (%) | Initial Biomass (g) | Sugar Conc. (g/L) | Biomass Conc. (g/L) | Biomass Productivity (g/L/h) | Biomass Yield (g/g) |
---|---|---|---|---|---|
CYE 0.3% | 0.1 | 40 | 6.72 ± 1.05 b | 0.22 ± 0.04 b | 0.17 ± 0.01 bb |
CYE 0.4% | 0.1 | 40 | 8.64 ± 1.72 b | 0.57 ± 0.07 b | 0.22 ± 0.01 b |
CYE 0.5% | 0.1 | 40 | 5.46 ± 0.81 b | 0.19 ± 0.05 b | 0.15 ± 0.05 b |
AYE 0.3% | 0.1 | 40 | 13.44 ± 2.77 a | 0.55 ± 0.11 a | 0.36 ± 0.01 a |
AYE 0.4% | 0.1 | 40 | 20.16 ± 2.46 a | 0.88 ± 0.15 a | 0.51 ± 0.05 a |
AYE 0.5% | 0.1 | 40 | 15.84 ± 1.23 a | 0.41 ± 0.08 a | 0.39 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganatsios, V.; Terpou, A.; Bekatorou, A.; Plessas, S.; Koutinas, A.A. Refining Citrus Wastes: From Discarded Oranges to Efficient Brewing Biocatalyst, Aromatic Beer, and Alternative Yeast Extract Production. Beverages 2021, 7, 16. https://doi.org/10.3390/beverages7020016
Ganatsios V, Terpou A, Bekatorou A, Plessas S, Koutinas AA. Refining Citrus Wastes: From Discarded Oranges to Efficient Brewing Biocatalyst, Aromatic Beer, and Alternative Yeast Extract Production. Beverages. 2021; 7(2):16. https://doi.org/10.3390/beverages7020016
Chicago/Turabian StyleGanatsios, Vassilios, Antonia Terpou, Argyro Bekatorou, Stavros Plessas, and Athanasios A. Koutinas. 2021. "Refining Citrus Wastes: From Discarded Oranges to Efficient Brewing Biocatalyst, Aromatic Beer, and Alternative Yeast Extract Production" Beverages 7, no. 2: 16. https://doi.org/10.3390/beverages7020016
APA StyleGanatsios, V., Terpou, A., Bekatorou, A., Plessas, S., & Koutinas, A. A. (2021). Refining Citrus Wastes: From Discarded Oranges to Efficient Brewing Biocatalyst, Aromatic Beer, and Alternative Yeast Extract Production. Beverages, 7(2), 16. https://doi.org/10.3390/beverages7020016