Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Yeast Strain
2.3. Preparation of Lees of Yeasts by Thermal Treatment
2.4. Preparation of Lees of Yeasts by Ultrasound (US)
2.5. Ageing on Lees of Red Base Wine
2.6. Composition of Wines
2.7. Quantification of Volatile Organic Compounds (VOCs) of Wine by Headspace-Solid-Phase Microextraction-Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS)
2.8. Descriptive Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Oenological Composition of the Base Wines
3.2. Analysis of VOCs in Base Wines
3.3. Analysis of Sensory Characteristics of Base Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawyer, S.; Longo, R.; Solomon, M.; Nicolotti, L.; Westmore, H.; Merry, A.; Gnoinski, G.; Ylia, A.; Dambergs, R.; Kerslake, F. Autolysis and the Duration of Ageing on Lees Independently Influence the Aroma Composition of Traditional Method Sparkling Wine. Aust. J. Grape Wine Res. 2022, 28, 146–159. [Google Scholar] [CrossRef]
- Fornairon-Bonnefond, C.; Camarasa, C.; Moutounet, M.; Salmon, J.-M. New Trends on Yeast Autolysis and Wine Ageing on Lees: A Bibliographic Review. OENO One 2002, 36, 49. [Google Scholar] [CrossRef] [Green Version]
- Comuzzo, P.; Iacumin, L.; Voce, S. Aging on Lees. In White Wine Technology; Morata, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 247–267. ISBN 978-0-12-823497-6. [Google Scholar]
- Buxaderas, S.; Riu-Aumatell, M.; López-Tamames, E. Managing the Quality of Sparkling Wines. In Managing Wine Quality; Reynolds, A.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 797–844. [Google Scholar]
- Morata, A.; Palomero, F.; Loira, I.; Suárez-Lepe, J.A. New Trends in Aging on Lees. In Red Wine Technology; Morata, A., Ed.; Academic Press: London, UK, 2019; pp. 163–176. [Google Scholar]
- Cárcel, J.A.; García-Pérez, J.V.; Benedito, J.; Mulet, A. Food Process Innovation through New Technologies: Use of Ultrasound. J. Food Eng. 2012, 110, 200–207. [Google Scholar] [CrossRef]
- Cacciola, V.; Batllò, I.F.; Ferraretto, P.; Vincenzi, S.; Celotti, E. Study of the Ultrasound Effects on Yeast Lees Lysis in Winemaking. Eur. Food Res. Technol. 2013, 236, 311–317. [Google Scholar] [CrossRef]
- Liu, L.; Loira, I.; Morata, A.; Suárez-Lepe, J.A.; González, M.C.; Rauhut, D. Shortening the Ageing on Lees Process in Wines by Using Ultrasound and Microwave Treatments Both Combined with Stirring and Abrasion Techniques. Eur. Food Res. Technol. 2016, 242, 559–569. [Google Scholar] [CrossRef]
- del Fresno, J.M.; Morata, A.; Escott, C.; Loira, I.; Cuerda, R.; Suárez-Lepe, J.A. Sonication of Yeast Biomasses to Improve the Ageing on Lees Technique in Red Wines. Molecules 2019, 24, 635. [Google Scholar] [CrossRef] [Green Version]
- Vila-Crespo, J.; Blanco-Huerta, C.; Gonzáles-Pascual, J.L.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; Ruipérez, V. Effect of High Hydrostatic Pressures and Ultrasound on Yeast Lysis in a Model Wine. In Proceedings of the XV Congreso Nacional de Investigación Enológica; Grupos de Investigación Enológica (GIENOL), Murcia, Spain, 24–26 May 2022. [Google Scholar]
- Pueyo, E.; Martínez-Rodríguez, A.; Polo, M.C.; Santa-María, G.; Bartolomé, B. Release of Lipids during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 2000, 48, 116–122. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2020; ISBN 978-2-85038-016-7. [Google Scholar]
- Betés-Saura, C.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Phenolics in White Free Run Juices and Wines from Penedes by High-Performance Liquid Chromatography: Changes during Vinification. J. Agric. Food Chem. 1996, 44, 3040–3046. [Google Scholar] [CrossRef]
- Glories, Y. La Couleur Des Vins Rouges. 2e Partie. Mesure, Origine et Interprétation. Connaiss. Vigne Vin 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Segarra, I.; Lao, C.; Lopez, E.; De La Torre, M.C. Spectrophotometric Methods for the Analysis of Polysaccharide Levels in Winemaking Products. Am. J. Enol. Vitic. 1995, 46, 564–570. [Google Scholar] [CrossRef]
- Hidalgo, J. Tratado de Enología, Tomo I; 2a.; Ediciones Mudi-Prensa: Madrid, Spain, 2011; ISBN 84-8476-451-1. [Google Scholar]
- Llaudy, M.C.; Canals, R.; Canals, J.-M.; Rozés, N.; Arola, L.; Zamora, F. New Method for Evaluating Astringency in Red Wine. J. Agric. Food Chem. 2004, 52, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Massera, A.; Assof, M.; Sturm, M.E.; Sari, S.; Jofré, V.; Cordero-Otero, R.; Combina, M. Selection of Indigenous Saccharomyces cerevisiae Strains to Ferment Red Musts at Low Temperature. Ann. Microbiol. 2012, 62, 367–380. [Google Scholar] [CrossRef]
- Sánchez, R.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; González, M.R.; Medina-Trujillo, L.; Martín, P. Volatile Composition and Sensory Properties of Wines from Vineyards Affected by Iron Chlorosis. Food Chem. 2022, 369, 130850. [Google Scholar] [CrossRef]
- Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the Winemaking Process on the Volatile Composition and Aromatic Profile of Tempranillo Blanco Wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef]
- Sieiro, C.; Villa, T.G.; da Silva, A.F.; García-Fraga, B.; Vilanova, M. Albariño Wine Aroma Enhancement through the Use of a Recombinant Polygalacturonase from Kluyveromyces Marxianus. Food Chem. 2014, 145, 179–185. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Standardization Organization: Geneva, Switzerland, 2012.
- ISO 3591:1977; Sensory Analysis—Apparatus—Wine-Tasting Glass. International Standardization Organization: Geneva, Switzerland, 1977.
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Standardization Organization: Geneva, Switzerland, 2007.
- Bakker, J.; Clarke, R.J. Wine Flavour Chemistry; Wiley: Oxford, UK, 2011; ISBN 9781444330427. [Google Scholar]
- Song, J.Q.; Li, H.; Liang, Y.Y.; Tao, Y.S.; Mi, C.Q.; Qian, M.C.; Wang, H. Characterisation of Volatile Components of Red and Sparkling Wines from a New Wine Grape Cultivar “Meili” (Vitis vinifera L.). Vitis 2013, 52, 41–48. [Google Scholar] [CrossRef]
- Pérez-Serradilla, J.A.; de Castro, M.D.L. Role of Lees in Wine Production: A Review. Food Chem. 2008, 111, 447–456. [Google Scholar] [CrossRef]
- Chalier, P.; Angot, B.; Delteil, D.; Doco, T.; Gunata, Z. Interactions between Aroma Compounds and Whole Mannoprotein Isolated from Saccharomyces Cerevisiae Strains. Food Chem. 2007, 100, 22–30. [Google Scholar] [CrossRef]
- Salmon, J.-M. Interactions between Yeast, Oxygen and Polyphenols during Alcoholic Fermentations: Practical Implications. LWT Food Sci. Technol. 2006, 39, 959–965. [Google Scholar] [CrossRef]
- Ancín-Azpilicueta, C.; González-Marco, A.; Jiménez-Moreno, N. Evolution of Esters in Aged Chardonnay Wines Obtained with Different Vinification Methods. J. Sci. Food Agric. 2009, 89, 2446–2451. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.J.; Polo, M.C. Characterization of the Nitrogen Compounds Released during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 2000, 48, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, Q.; Zhuang, J.; Feng, T.; Ho, C.-T.; Song, S. Characterization of Aroma-Active Compounds in Four Yeast Extracts Using Instrumental and Sensory Techniques. J. Agric. Food Chem. 2020, 68, 267–278. [Google Scholar] [CrossRef] [PubMed]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
Code | Parameters | Control (C) | Lees (L) | Ultrasound-Treated Lees | ||
---|---|---|---|---|---|---|
30% | 60% | 90% | ||||
TA | Total acidity (g/L) | 5.3 ± 0.0 | 5.3 ± 0.1 | 5.3 ± 0.2 | 5.3 ± 0.1 | 5.5 ± 0.1 |
pH | pH | 3.39 ± 0.04 | 3.50 ± 0.08 | 3.37 ± 0.26 | 3.35 ± 0.37 | 3.37 ± 0.03 |
AD | Alcohol degree (%, v/v) | 11.4 ± 0.3 | 11.4 ± 0.0 | 11.5 ± 0.0 | 11.4 ± 0.0 | 11.4 ± 0.2 |
VA | Volatile acidity (g/L) | 0.44 ± 0.06 | 0.42 ± 0.04 | 0.43 ± 0.05 | 0.47 ± 0.05 | 0.50 ± 0.03 |
ANT | Total anthocyanins (mg/L) | 190 ± 44 | 195 ± 52 | 176 ± 69 | 138 ± 19 | 197 ± 61 |
NP | Neutral polysaccharides (g/L) | 2.04 ± 0.33 a | 2.11 ± 0.51 a | 2.18 ± 0.39 a | 2.03 ± 0.06 a | 2.46 ± 0.23 b |
SP | Soluble proteins (g/L) | 0.40 ± 0.04 | 0.39 ± 0.02 | 0.35 ± 0.02 | 0.35 ± 0.02 | 0.38 ± 0.02 |
FAN | Free amino nitrogen (mg/L) | 92 ± 5 | 96 ± 4 | 93 ± 4 | 96 ± 10 | 100 ± 7 |
TAN | Tannins (g/L) | 2.00 ± 0.26 | 2.23 ± 0.56 | 2.29 ± 0.58 | 1.70 ± 0.15 | 1.89 ± 0.27 |
%Y | % yellow | 30.06 ± 0.33 | 30.05 ± 0.35 | 30.04 ± 0.21 | 30.29 ± 0.08 | 30.05 ± 0.34 |
%R | % red | 54.31 ± 0.65 | 54.42 ± 0.60 | 54.60 ± 0.84 | 53.92 ± 0.20 | 54.77 ± 1.22 |
%B | % blue | 15.63 ± 0.32 | 15.53 ± 0.26 | 15.36 ± 0.63 | 15.79 ± 0.12 | 15.18 ± 0.88 |
TO | Tonality | 0.55 ± 1.43 | 0.55 ± 1.39 | 0.55 ± 2.58 | 0.56 ± 0.17 | 0.55 ± 2.78 |
CI | Colour intensity | 12.30 ± 0.01 | 12.64 ± 0.01 | 12.33 ± 0.01 | 10.96 ± 0.00 | 12.60 ± 0.02 |
TPI | Total polyphenol index (A280 nm) | 7 ± 0 | 7 ± 1 | 7 ± 1 | 6 ± 0 | 7 ± 1 |
HA | Hydroxycinnamic acids (A320 nm) | 20.55 ± 1.41 | 21.5 ± 1.9 | 20.8 ± 1.1 | 22.1 ± 2.6 | 21.1 ± 2.2 |
FLA | Flavonols (A365 nm) | 6.88 ± 0.53 | 7.13 ± 0.74 | 6.93 ± 0.53 | 7.40 ± 1.20 | 7.05 ± 1.06 |
ASTR | Astringency (g/L) | 0.44 ± 0.05 b | 0.41 ± 0.06 b | 0.37 ± 0.04 ab | 0.34 ± 0.05 a | 0.33 ± 0.06 a |
Code | Parameters | Control (C) | Lees (L) | Ultrasound-Treated Lees | ||
---|---|---|---|---|---|---|
30% | 60% | 90% | ||||
A1 | Ethyl acetate | 1.626 ± 0.131 a | 1.489 ± 0.173 a | 2.007 ± 0.048 b | 1.979 ± 0.015 b | 2.079 ± 0.014 b |
A2 | 3-methylbutyl acetate | 2.176 ± 0.160 a | 1.893 ± 0.733 a | 2.744 ± 0.329 a | 2.650 ± 0.031 a | 2.977 ± 0.267 b |
A3 | Hexyl acetate | 0.259 ± 0.010 | 0.217 ± 0.070 | 0.312 ± 0.070 | 0.321 ± 0.038 | 0.378 ± 0.044 |
A4 | Ethyl 2-phenylacetate | 0.022 ± 0.009 a | 0.021 ± 0.007 a | 0.029 ± 0.009 a | 0.042 ± 0.01 b | 0.031 ± 0.021 b |
A5 | 2-phenylethyl acetate | 0.572 ± 0.079 a | 0.585 ± 0.034 a | 0.777 ± 0.121 b | 0.816 ± 0.039 b | 0.850 ± 0.023 b |
E1 | Pentyl 2-hydroxypropanoate | 0.053 ± 0.004 a | 0.058 ± 0.005 ab | 0.070 ± 0.010 bc | 0.081 ± 0.001 c | 0.082 ± 0.001 c |
E2 | 3-methylbutyl octanoate | 0.080 ± 0.031 | 0.078 ± 0.010 | 0.061 ± 0.000 | 0.064 ± 0.006 | 0.061 ± 0.014 |
E3 | Methyl decanoate | 0.012 ± 0.001 | 0.015 ± 0.001 | 0.011 ± 0.001 | 0.013 ± 0.005 | 0.011 ± 0.001 |
E4 | 3-methylbutyl decanoate | 0.033 ± 0.001 | 0.032 ± 0.010 | 0.027 ± 0.007 | 0.034 ± 0.005 | 0.028 ± 0.004 |
Et1 | Ethyl butanoate | 0.122 ± 0.017 a | 0.100 ± 0.012 ab | 0.165 ± 0.007 bc | 0.142 ± 0.032 bc | 0.169 ± 0.000 c |
Et2 | Diethyl butanedioate | 0.614 ± 0.048 a | 0.714 ± 0.038 a | 0.849 ± 0.066 b | 0.960 ± 0.028 bc | 0.987 ± 0.029 c |
Et3 | Ethyl 2-hydroxypropanoate | 0.542 ± 0.010 a | 0.606 ± 0.019 a | 0.767 ± 0.067 b | 0.746 ± 0.031 b | 0.769 ± 0.011 b |
Et4 | Ethyl 4-hydroxybutanoate | 0.011 ± 0.003 a | 0.011 ± 0.002 a | 0.018 ± 0.000 ab | 0.017 ± 0.001 ab | 0.020 ± 0.006 b |
Et5 | Ethyl hexanoate | 2.998 ± 0.012 a | 2.662 ± 0.500 ab | 3.566 ± 0.502 bc | 3.869 ± 0.174 bc | 4.115 ± 0.280 c |
Et6 | Ethyl heptanoate | 0.045 ± 0.005 | 0.036 ± 0.003 | 0.050 ± 0.008 | 0.060 ± 0.016 | 0.065 ± 0.005 |
Et7 | Ethyl octanoate | 10.928 ± 0.707 | 9.924 ± 0.095 | 10.409 ± 1.425 | 11.800 ± 3.032 | 11.265 ± 0.589 |
Et8 | Ethyl nonanoate | 0.348 ± 0.017 | 0.325 ± 0.052 | 0.365 ± 0.007 | 0.326 ± 0.146 | 0.352 ± 0.008 |
Et9 | Ethyl decanoate | 3.779 ± 0.177 | 3.592 ± 1.194 | 2.995 ± 0.307 | 3.565 ± 1.468 | 2.965 ± 0.199 |
Et10 | Ethyl dodecanoate | 0.358 ± 0.056 | 0.309 ± 0.022 | 0.243 ± 0.044 | 0.337 ± 0.083 | 0.242 ± 0.051 |
Et11 | Ethyl tetradecanoate | 0.391 ± 0.140 | 0.388 ± 0.033 | 0.301 ± 0.060 | 0.293 ± 0.016 | 0.195 ± 0.050 |
Et12 | Ethyl pentadecanoate | 0.046 ± 0.017 | 0.054 ± 0.016 | 0.028 ± 0.008 | 0.027 ± 0.001 | 0.018 ± 0.003 |
Et13 | Ethyl hexadecanoate | 2.069 ± 0.697 | 2.192 ± 0.310 | 1.796 ± 0.513 | 1.623 ± 0.042 | 1.283 ± 0.024 |
Et14 | Ethyl (E)-hexadec-9-enoate | 0.038 ± 0.011 | 0.051 ± 0.047 | 0.029 ± 0.017 | 0.095 ± 0.052 | 0.274 ± 0.307 |
Et15 | Ethyl octadecanoate | 0.149 ± 0.045 | 0.173 ± 0.028 | 0.203 ± 0.046 | 0.182 ± 0.004 | 0.173 ± 0.006 |
Et16 | Ethyl benzoate | 0.025 ± 0.000 a | 0.028 ± 0.001 a | 0.027 ± 0.000 b | 0.030 ± 0.001 c | 0.030 ± 0.000 c |
Et17 | Ethyl furan-2-carboxylate | 0.019 ± 0.001 a | 0.021 ± 0.002 ab | 0.023 ± 0.000 b | 0.024 ± 0.003 b | 0.024 ± 0.001 b |
C6-1 | Hexan-1-ol | 0.629 ± 0.018 a | 0.706 ± 0.044 a | 0.906 ± 0.056 b | 0.975 ± 0.028 bc | 1.021 ± 0.007 c |
C6-2 | (E)-hex-3-en-1-ol | 0.011 ± 0.000 a | 0.013 ± 0.001 ab | 0.015 ± 0.001 b | 0.019 ± 0.001 c | 0.019 ± 0.000 c |
C6-3 | (Z)-hex-3-en-1-ol | 0.103 ± 0.023 a | 0.110 ± 0.005 ab | 0.135 ± 0.007 bc | 0.160 ± 0.002 cd | 0.165 ± 0.002 d |
Alc1 | Propan-1-ol | 0.065 ± 0.013 | 0.057 ± 0.003 | 0.095 ± 0.024 | 0.079 ± 0.029 | 0.086 ± 0.015 |
Alc2 | 2-methylpropan-1-ol | 0.615 ± 0.015 ab | 0.552 ± 0.143 a | 0.714 ± 0.033 ab | 0.747 ± 0.040 b | 0.789 ± 0.033 b |
Alc3 | 3-methylsulfanylpropan-1-ol | 0.031 ± 0.012 | 0.029 ± 0.009 | 0.032 ± 0.006 | 0.034 ± 0.002 | 0.031 ± 0.003 |
Alc4 | Butan-1-ol | 0.024 ± 0.000 | 0.021 ± 0.004 | 0.044 ± 0.024 | 0.035 ± 0.004 | 0.034 ± 0.010 |
Alc5 | 3-methylbutan-1-ol | 8.324 ± 0.084 a | 8.792 ± 0.113 a | 11.379 ± 0.057 c | 11.504 ± 0.233 c | 11.959 ± 0.067 d |
Alc6 | 3-methylpentan-1-ol | 0.014 ± 0.000 a | 0.016 ± 0.001 a | 0.019 ± 0.003 ab | 0.023 ± 0.001 b | 0.022 ± 0.004 b |
Alc7 | Heptan-1-ol | 0.074 ± 0.014 | 0.062 ± 0.006 | 0.070 ± 0.001 | 0.084 ± 0.004 | 0.073 ± 0.003 |
Alc8 | Octan-1-ol | 0.092 ± 0.010 a | 0.103 ± 0.019 a | 0.122 ± 0.023 ab | 0.151 ± 0.009 b | 0.149 ± 0.003 b |
Alc9 | Nonan-1-ol | 0.142 ± 0.010 | 0.126 ± 0.039 | 0.131 ± 0.005 | 0.133 ± 0.006 | 0.129 ± 0.008 |
Alc10 | Decan-1-ol | 0.023 ± 0.005 | 0.028 ± 0.007 | 0.033 ± 0.006 | 0.027 ± 0.003 | 0.029 ± 0.002 |
Alc11 | Dodecan-1-ol | 1.056 ± 0.004 c | 1.116 ± 0.062 c | 1.409 ± 0.159 b | 0.039 ± 0.021 a | 0.028 ± 0.002 a |
Alc12 | Phenylmethanol | 0.073 ± 0.011 | 0.074 ± 0.007 | 0.087 ± 0.002 | 0.113 ± 0.004 | 0.089 ± 0.041 |
Alc13 | 2-phenylethanol | 4.637 ± 0.157 a | 4.915 ± 0.119 a | 5.817 ± 0.145 b | 6.442 ± 0.068 c | 6.284 ± 0.461 c |
Ac1 | 2-methylpropanoic acid | 0.045 ± 0.002 a | 0.050 ± 0.003 ab | 0.070 ± 0.010 bc | 0.086 ± 0.011 c | 0.085 ± 0.010 c |
Ac2 | Butanoic acid | 0.026 ± 0.002 a | 0.027 ± 0.002 a | 0.038 ± 0.007 ab | 0.043 ± 0.005 b | 0.043 ± 0.007 b |
Ac3 | 3-methylbutanoic acid | 0.092 ± 0.003 a | 0.100 ± 0.003 a | 0.140 ± 0.003 b | 0.157 ± 0.026 b | 0.169 ± 0.003 b |
Ac4 | Octanoic acid | 2.710 ± 0.229 a | 2.977 ± 0.445 ab | 3.723 ± 0.515 bc | 4.097 ± 0.340 c | 4.154 ± 0.286 c |
Ac5 | Nonanoic acid | 0.072 ± 0.007 | 0.050 ± 0.010 | 0.090 ± 0.016 | 0.082 ± 0.033 | 0.084 ± 0.027 |
Ac6 | Hexanoic acid | 0.770 ± 0.014 | 0.851 ± 0.051 | 1.137 ± 0.125 | 1.321 ± 0.004 | 1.360 ± 0.082 |
Ac7 | Decanoic acid | 0.316 ± 0.091 a | 0.380 ± 0.155 a | 0.370 ± 0.079 b | 0.411 ± 0.071 c | 0.356 ± 0.065 c |
Ter1 | 3,7-dimethylocta-1,6-dien-3-ol | 0.045 ± 0.024 a | 0.046 ± 0.050 a | 0.096 ± 0.031 b | 0.152 ± 0.012 c | 0.127 ± 0.050 c |
Ter2 | 3,7-dimethyloct-6-en-1-ol | 0.018 ± 0.000 a | 0.016 ± 0.004 a | 0.024 ± 0.002 b | 0.025 ± 0.007 b | 0.021 ± 0.006 b |
Phe1 | Phenol | 0.019 ± 0.000 | 0.020 ± 0.000 | 0.023 ± 0.004 | 0.021 ± 0.002 | 0.021 ± 0.006 |
Phe2 | 4-ethylphenol | 0.184 ± 0.018 a | 0.217 ± 0.125 a | 0.243 ± 0.020 a | 0.309 ± 0.014 ab | 0.245 ± 0.067 a |
Phe3 | 4-ethyl-2-methoxyphenol | 0.069 ± 0.011 | 0.098 ± 0.027 | 0.089 ± 0.012 | 0.120 ± 0.004 | 0.100 ± 0.037 |
Phe4 | 2,4-ditert-butylphenol | 0.085 ± 0.021 | 0.077 ± 0.013 | 0.134 ± 0.063 | 0.117 ± 0.043 | 0.121 ± 0.045 |
Phe5 | 1,1′-biphenyl | 0.010 ± 0.002 a | 0.011 ± 0.003 a | 0.020 ± 0.003 b | 0.018 ± 0.005 b | 0.018 ± 0.004 b |
Ald1 | Acetaldehyde | 0.122 ± 0.024 | 0.100 ± 0.032 | 0.186 ± 0.082 | 0.149 ± 0.006 | 0.152 ± 0.049 |
Ald2 | Nonanal | 0.036 ± 0.006 | 0.025 ± 0.003 | 0.021 ± 0.003 | 0.024 ± 0.006 | 0.021 ± 0.008 |
Ke1 | Octan-2-one | 0.014 ± 0.002 a | 0.013 ± 0.003 a | 0.021 ± 0.002 b | 0.027 ± 0.003 c | 0.022 ± 0.007 b |
Code | Parameters | Control (C) | Lees (L) | Ultrasound-Treated Lees | ||
---|---|---|---|---|---|---|
30% | 60% | 90% | ||||
Visual phase | ||||||
Tona | Tonality | 6.8 ± 2.1 | 6.3 ± 2.3 | 6.4 ± 2.5 | 6.1 ± 2.7 | 6.2 ± 2.3 |
Lay | Layer intensity | 6.5 ± 1.8 | 6.9 ± 1.5 | 6.9 ± 1.4 | 6.4 ± 1.8 | 5.8 ± 1.8 |
Olfactory phase | ||||||
Odo | Odour intensity | 4.5 ± 2.0 | 4.8 ± 1.6 | 5.0 ± 1.3 | 5.1 ± 1.6 | 4.1 ± 1.6 |
Fru | Fruit | 3.6 ± 1.5 | 3.4 ± 1.3 | 4.0 ± 1.3 | 3.9 ± 1.6 | 3.9 ± 1.3 |
Her | Herbaceous | 3.8 ± 1.7 | 3.3 ± 1.4 | 3.5 ± 1.6 | 4.1 ± 1.8 | 3.6 ± 1.7 |
Lac | Lactic | 3.8 ± 1.8 | 3.4 ± 1.5 | 3.2 ± 1.4 | 3.8 ± 1.7 | 3.2 ± 1.2 |
Gustatory phase | ||||||
Alco | Alcoholic | 3.7 ± 1.3 | 3.7 ± 1.1 | 4.1 ± 1.6 | 3.9 ± 1.6 | 3.3 ± 1.4 |
Bit | Bitter | 3.0 ± 1.5 | 3.5 ± 2.0 | 3.1 ± 1.4 | 3.0 ± 1.2 | 2.7 ± 1.2 |
Ast | Astringency | 2.9 ± 1.4 | 3.3 ± 1.5 | 2.7 ± 1.8 | 2.4 ± 1.3 | 3.0 ± 1.4 |
Mou | Mouthfeel | 3.6 ± 1.1 | 3.8 ± 0.9 | 3.6 ± 1.1 | 3.2 ± 1.1 | 3.2 ± 0.7 |
Flavo | Flavour intesity | 4.0 ± 1.1 | 3.9 ± 1.2 | 3.9 ± 1.4 | 3.4 ± 1.1 | 3.5 ± 1.0 |
Per | Persistence | 3.5 ± 1.1 | 3.9 ± 1.1 | 4.1 ± 1.6 | 3.6 ± 1.2 | 3.7 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-Huerta, C.; Fernández-Fernández, E.; Vila-Crespo, J.; Ruipérez, V.; Moyano, R.; Rodríguez-Nogales, J.M. Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine. Beverages 2023, 9, 23. https://doi.org/10.3390/beverages9010023
Blanco-Huerta C, Fernández-Fernández E, Vila-Crespo J, Ruipérez V, Moyano R, Rodríguez-Nogales JM. Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine. Beverages. 2023; 9(1):23. https://doi.org/10.3390/beverages9010023
Chicago/Turabian StyleBlanco-Huerta, Coro, Encarnación Fernández-Fernández, Josefina Vila-Crespo, Violeta Ruipérez, Raúl Moyano, and José Manuel Rodríguez-Nogales. 2023. "Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine" Beverages 9, no. 1: 23. https://doi.org/10.3390/beverages9010023
APA StyleBlanco-Huerta, C., Fernández-Fernández, E., Vila-Crespo, J., Ruipérez, V., Moyano, R., & Rodríguez-Nogales, J. M. (2023). Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine. Beverages, 9(1), 23. https://doi.org/10.3390/beverages9010023