
Academic Editor: Florentino

Fdez-Riverola

Received: 2 December 2024

Revised: 29 December 2024

Accepted: 30 December 2024

Published: 2 January 2025

Citation: Yang, Z.; Zhou, H.;

Srivastav, S.; Shaffer, J.G.; Abraham,

K.E.; Naandam, S.M.; Kakraba, S.

Optimizing Parkinson’s Disease

Prediction: A Comparative Analysis of

Data Aggregation Methods Using

Multiple Voice Recordings via an

Automated Artificial Intelligence

Pipeline. Data 2025, 10, 4. https://

doi.org/10.3390/data10010004

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Optimizing Parkinson’s Disease Prediction: A Comparative
Analysis of Data Aggregation Methods Using Multiple Voice
Recordings via an Automated Artificial Intelligence Pipeline
Zhengxiao Yang 1,†, Hao Zhou 1,† , Sudesh Srivastav 2, Jeffrey G. Shaffer 2 , Kuukua E. Abraham 3,
Samuel M. Naandam 4 and Samuel Kakraba 2,5,*

1 Biostatistics and Data Science Graduate Program, Celia Scott Weatherhead School of Public Health and
Tropical Medicine, Tulane University, 1440 Canal St., New Orleans, LA 70112, USA;
zyang17@tulane.edu (Z.Y.); hzhou13@tulane.edu (H.Z.)

2 Department of Biostatistics and Data Science, Celia Scott Weatherhead School of Public Health and Tropical
Medicine, Tulane University, New Orleans, LA 70112, USA; ssrivas@tulane.edu (S.S.);
jshaffer@tulane.edu (J.G.S.)

3 Department of Mathematics and Statistics, Minnesota State University, Mankato, MN 60001, USA;
kuukua.abraham@mnsu.edu

4 Department of Mathematics, University of Cape Coast, Cape Coast 00233, Ghana; snaandam@ucc.edu.gh
5 Tulane Center for Aging, School of Medicine, Tulane University, 1440 Canal St., New Orleans, LA 70112, USA
* Correspondence: skakraba@tulane.edu; Tel.: +1-504-988-2475
† These authors contributed equally to this work.

Abstract: Patient-level grouped data are prevalent in public health and medical fields, and
multiple instance learning (MIL) offers a framework to address the challenges associated
with this type of data structure. This study compares four data aggregation methods
designed to tackle the grouped structure in classification tasks: post-mean, post-max, post-
min, and pre-mean aggregation. We developed a customized AI pipeline that incorporates
twelve machine learning algorithms along with the four aggregation methods to detect
Parkinson’s disease (PD) using multiple voice recordings from individuals available in
the UCI Machine Learning Repository, which includes 756 voice recordings from 188 PD
patients and 64 healthy individuals. Seven performance metrics—accuracy, precision,
sensitivity, specificity, F1 score, AUC, and MCC—were utilized for model evaluation.
Various techniques, such as Bag Over-Sampling (BOS), cross-validation, and grid search,
were implemented to enhance classification performance. Among the four aggregation
methods, post-mean aggregation combined with XGBoost achieved the highest accuracy
(0.880), F1 score (0.922), and MCC (0.672). Furthermore, we identified potential trends in
selecting aggregation methods that are suitable for imbalanced data, particularly based
on their differences in sensitivity and specificity. These findings provide meaningful
implications for the further exploration of grouped imbalanced data.

Keywords: Parkinson’s disease (PD); machine learning (ML); artificial intelligence (AI);
multiple instance learning (MIL); data aggregation; classification; supervised learning;
comparative study

1. Introduction
Healthcare has experienced significant strides in personalized medicine, predictive

analytics, medical imaging diagnostics, and optimizing clinical workflows, leading to
improved patient outcomes and more efficient healthcare delivery due to the application of
artificial intelligence (AI) [1–5]. In the dynamic field of AI, comprehensive research and
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accumulated expertise have consistently demonstrated a fundamental principle: there is no
universal, one-size-fits-all approach that can optimally solve every computational challenge
or problem across diverse scenarios [6–8]. When dealing with diverse structures of data, it is
essential to customize methodologies based on the data’s intrinsic characteristics to provide
reliable outcomes. This work concentrates on a particular form of imbalanced grouped
data, where each group encompasses multiple individual samples. This data structure is
common in fields such as public health and medicine, where individual patients would
have multiple records and diagnoses need to be made based on these records. This work is
both relevant and essential, especially considering the swift progress in AI applications in
these fields [4]. Additionally, handling unbalanced data remains to be a common difficulty
that requires customized solutions to ensure solid and significant analytical results [9].

Multiple instance learning (MIL) is a specialized machine learning approach designed
to handle data grouped into “bags” containing multiple instances [6]. It is particularly
useful in scenarios where labels are assigned to bags rather than individual instances, such
as in medical research where patients (bags) have various test results (instances) [6,7]. MIL’s
key feature is its ability to work with partially labeled data, making it suitable for situations
where traditional supervised learning methods fall short. The primary goal of MIL is
to develop techniques that can effectively analyze and make predictions based on these
collections of unlabeled instances within labeled bags, enabling more effective analysis in
scenarios where instance-level labels are unavailable or impractical to obtain [10,11].

In addressing multiple instance learning challenges, researchers typically employ two
main approaches: the bag-based approach and the instance-based approach. The bag-based
method focuses on consolidating data at the bag level [12–15]. Essentially, it simplifies the
problem by treating each bag as a single, cohesive unit rather than a collection of separate
instances. This approach involves representing each bag (a collection of instances) as a
single vector. By doing so, it becomes possible to apply conventional supervised learning
models to these bag-level representations. One effective technique within this approach is
the use of neural network embedding to extract features for each bag [10]. While the bag-
based approach offers simplicity and ease of implementation, it comes with a significant
drawback: the potential loss of valuable information from individual instances within each
bag. This limitation is particularly concerning in medical research and practice. It risks
overlooking subtle but potentially vital patterns or indicators that exist at the instance
level [10], which could be essential for accurate diagnosis, personalized treatment, or
in-depth medical research [10].

The instance-based approach focuses on labeling individual instances within each bag,
allowing for the application of supervised learning models at the instance level. Once these
models predict labels for each instance, the collective results are used to determine the
overall label for the bag. One innovative technique within this approach involves clustering
instances into several groups, effectively creating distinct classes. This clustering strategy
provides a systematic way to assign labels to all instances, enabling a more granular analy-
sis of the data. By preserving the detailed information of each instance, this approach can
potentially capture nuanced patterns that might be lost in bag-level aggregation, though
it may also introduce additional complexity in terms of computation and result interpre-
tation [16]. The instance-based approach preserves the unique details of each instance
but labeling instances requires a careful design to capture their nature [10]. Nevertheless,
both approaches have distinct advantages and disadvantages, and the selection primarily
depends on the characteristics of the data and the specific objectives of the project.

To evaluate the effectiveness of bag-based and instance-based approaches in han-
dling multiple instances, we developed two distinct data aggregation strategies tailored
to a specific dataset. Our comprehensive AI-driven analysis employs a custom-designed
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pipeline optimized for supervised learning, with a focus on classification tasks. This so-
phisticated workflow comprises three core components: data preprocessing, model fitting,
and evaluation, with each component adaptable to either data aggregation strategy. We
rigorously tested twelve AI algorithms, assessing their performance across seven diverse
evaluation metrics. To ensure the robustness and reliability of our findings, we incorpo-
rated several advanced techniques, including data augmentation to expand our dataset,
cross-validation for thorough model testing, and grid search for optimal hyperparameter
tuning. This methodical approach allows for a thorough comparison of the two strate-
gies, providing valuable insights into their relative strengths and weaknesses in multiple
instance learning scenarios.

2. Parkinson Disease and Dataset Description
Parkinson’s disease (PD) is a chronic, progressive neurological disorder that primarily

affects motor function [17]. It is marked by the progressive deterioration of dopamine-
producing neurons in the substantia nigra, a region near the brain’s base. The loss of
neurons hinders the brain’s capacity to regulate bodily movements, leading to a trifecta
of hallmark motor symptoms: tremors, muscle rigidity, and bradykinesia [18–22]. In
addition to movement abnormalities, PD frequently entails cognitive deterioration and
several non-motor symptoms, including depression, sleep disturbances, and anosmia.
The disorder profoundly affects patients’ quality of life and presents an escalating global
health concern, with an estimated 500,000 to 1 million individuals impacted in the United
States alone and a consistently increasing global occurrence [23–29]. Numerous research
studies have consistently linked the persistent accumulation of cytotoxic intracellular and
extracellular protein aggregates to various neurodegenerative disorders (NDs), including
PD [30–33]. This established connection has catalyzed extensive exploration into potential
pharmacological interventions, with a significant focus on developing and identifying novel
non-steroidal anti-inflammatory drugs (NSAIDs) that show promise in inhibiting protein
aggregation associated with NDs. These innovative compounds include Aspirin, various
quinoline analogs, TDZD analogs such as PNR886 and PNR962, and combretastatin-A4
analog PNR502, among others [30–33]. These compounds are being designed to target not
only PD, but also a broader spectrum of NDs. The pursuit of such multi-faceted therapeutic
approaches reflects the growing understanding of shared pathological mechanisms across
different NDs and the potential for more comprehensive treatment strategies that could
address multiple aspects of these complex disorders simultaneously. However, despite
these advancements, no intervention has been able to cure PD to date, reinforcing the
critical need for continued research in this field. Timely diagnosis and comprehensive care
are vital for preserving patients’ independence and quality of life as PD advances [34–40].

The dataset used in this research was obtained from the UCI Machine Learning
Repository, specifically the Parkinson’s Disease Classification dataset (https://archive.
ics.uci.edu/dataset/470/parkinson+s+disease+classification, accessed on 1 September
2024) [41]. The objective of this study is to develop AI models capable of predicting
Parkinson’s disease (PD) using voice recordings as input. We utilized a comprehensive
dataset consisting of 756 voice samples collected from 252 individuals, encompassing
188 PD patients (107 males and 81 females, aged 33–87) and 64 healthy controls (23 males
and 41 females, aged 41–82). Each participant provided three sustained phonations of the
vowel /a/, recorded at a sampling rate of 44.1 kHz. A unique identifier was assigned
to link samples from the same individual. The dataset includes binary labels (1 for PD,
0 for healthy) and an extensive set of 754 features for each voice recording. These features,
derived from advanced speech signal processing algorithms, comprise Time Frequency
Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform-based Features,

https://archive.ics.uci.edu/dataset/470/parkinson+s+disease+classification
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Vocal Fold Features, and TWQT (Tunable Q-factor Wavelet Transform) features. Despite
the acoustic limitations of the data, the vocal features captured by sustained vowel sounds
were sufficient to distinguish patients from healthy individuals, enabling the development
of sophisticated AI models for disease prediction [42]. Extensive research has revealed
that vocal biomarkers, derived from patients’ speech patterns and acoustic characteristics,
offer a promising avenue for the identification and diagnosis of Parkinson’s disease (PD).
This method stands out for its reliability and non-invasive nature. Even in the early
stages of the disease, when speech abnormalities are often subtle, advanced vocal analysis
techniques can detect these changes. This capability not only suggests a powerful tool for
early detection but also presents an opportunity for the ongoing monitoring of disease
progression. By leveraging sophisticated analysis of speech, healthcare professionals may
be able to identify PD earlier and track its development more effectively, potentially leading
to improved patient outcomes through timely intervention and personalized treatment
strategies [43,44].

PD frequently manifests in speech abnormalities, including reduced volume (hypo-
phonia), slowed speech rate, imprecise articulation, and voice tremor [45–47]. These vocal
changes stem from the progressive degeneration of neural pathways governing motor
control in the brain. Leveraging advanced artificial intelligence algorithms and speech
processing technologies to analyze these vocal biomarkers offers a promising avenue for
early PD detection and diagnosis [48]. This non-invasive method may facilitate earlier
diagnosis and intervention strategies, thereby enabling more timely and targeted treatment
with the potential to halt the progression of Parkinson’s disease and enhance the quality
of life for individuals with the condition [49]. The application of AI in vocal analysis has
shown remarkable potential, with some studies demonstrating the ability of artificial neural
networks (ANNs) to detect PD based on voice samples of vowels, with test accuracy rates
as high as 86.47% [50]. By utilizing these technologies, clinicians could potentially intervene
at the pre-clinical stage of PD, a critical period when neuroprotective therapies might be
most effective in preserving neurological function.

In this research, we leveraged the meticulously preprocessed features from the original
dataset to construct a bespoke multi-algorithm AI pipeline specifically designed for PD
classification. Our approach builds upon this solid foundation, emphasizing the imple-
mentation and refinement of various AI algorithms. The primary objective of our study is
to enhance the accuracy of PD detection while eliminating the need for additional signal
processing steps. By focusing on algorithm application and optimization within our cus-
tom pipeline, we aim to streamline the classification process and potentially improve its
effectiveness, contributing to the advancement of non-invasive diagnostic tools for PD.

3. Methods (Workflow Description)
This study was implemented using Python 3.10.12, with scikit-learn 1.6.0 [51] serving

as the primary tool for data preprocessing and AI tasks.

3.1. Data Preprocessing

The data preprocessing stage involved two key steps: first, splitting the data into
training and test sets, and second, conducting data augmentation to address the issue of
class imbalance.

3.1.1. Train–Test Split

To assess the generalizability of our AI pipeline, we implemented a strategic 70:30
split of the dataset into training and test sets [52]. This division resulted in a training set
of 528 voice recordings from 176 subjects and a test set of 228 recordings from 76 subjects.
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Crucially, we employed stratified sampling based on the diagnosis status to maintain a
consistent distribution of PD cases (approximately 75%) and healthy controls across both
sets. This stratification is essential for ensuring reliable performance evaluation, especially
given the imbalanced nature of our dataset. By preventing the overrepresentation of the
majority class in either set, this approach enhances the robustness of our model assessment
and helps guarantee that our AI pipeline’s performance is accurately evaluated across
diverse data subsets [53].

3.1.2. Bag Over-Sampling (BOS)

The dataset exhibits a mild class imbalance, with Parkinson’s disease (PD) cases
outnumbering healthy controls in a ratio of approximately 3:1. Although this level of
imbalance may not significantly impact the classification performance of our models, it
remains an important consideration, particularly when contemplating real-world appli-
cations. For instance, in population-based screening scenarios, the class distribution is
likely to be reversed, with healthy individuals substantially outnumbering those with PD.
Addressing this imbalance is crucial for ensuring our models can generalize effectively to
diverse real-world situations, maintain fairness in predictions, and potentially optimize
performance across various population distributions [54].

Data augmentation was implemented on the training set to enable the AI models
to place more emphasis on the minority class during the training phase. Specifically, we
use Bag Over-Sampling (BOS) [55], which is a generalization of the Synthetic Minority
Over-Sampling Technique (SMOTE) [56] in MIL. Since this is an interpolation method in
Euclidean space, all features of the voice recordings are first standardized to mitigate the
influence of different feature scales.

In the BOS algorithm, a new bag is synthesized based on two existing bags. Since there
is no information showing that the three recordings from each subject have any inherent
order or weight, we assumed that the recordings are equivalent and should be treated with
equal importance for each subject [41]. Considering two existing bags, (i.e., subject) Bi and
Bj, an instance (i.e., a voice recording) is randomly sampled from each of them, say xi

p and

xj
q. Then, an instance in the new bag Bij can be generated as follows:

xij
pq = xi

p + δpq ×
(

xj
q − xi

p

)
, (1)

where δpq ∈ [0, 1] is a random number. This process assigns equal sampling probabilities
to the three instances in a bag, ensuring equivalent treatment. This step is repeated three
times and then a new bag Bij containing three instances is synthesized.

To select two bags for synthesis, the K-nearest neighbor method is used. For a ran-
domly selected bag, the K-nearest neighbor (K = 2 in our case) is identified, and new bags
are then synthesized based on this bag and each of its neighbors, respectively. Since this
method requires the distance between bags, we defined it as the distance between their
centroids, which are calculated as the mean vector of the three instances in a bag. The
over-sampling process is repeated for the minority class until the ratio of the two classes
reaches 1:1, thereby completing the data augmentation process.

3.2. Handling Multiple Instances

In this PD dataset, each subject provided three voice recordings, resulting in mul-
tiple instances that need to be addressed through MIL [57]. Therefore, we designed
two customized data aggregation strategies, one following the instance-based approach
and another following the bag-based approach, to handle these multiple instances.
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3.2.1. Post-Aggregation Strategy

Our exploratory data analysis (EDA) revealed a high degree of similarity among
the three voice recordings from each subject. When clustered, these recordings typically
grouped together, suggesting they would likely receive the same label. This observation
led us to adopt a straightforward strategy: assigning the subject’s overall label to all three
of their voice recordings. This strategy eliminates the need for a separate clustering process
and provides practical meaning to the labels. Consequently, we labeled all recordings from
Parkinson’s disease (PD) patients as diseased (1) and those from healthy individuals as
non-diseased (0). This allows AI algorithms to directly predict whether a voice recording
indicates the presence of disease, simplifying the classification task while maintaining
clinical relevance.

Once predictions for the voice recordings are generated, they must be aggregated to
produce the final predictions for each subject, a process known as post-aggregation. We
proposed three aggregation methods: mean, min, and max. These methods calculate the
mean, minimum, and maximum of the predicted probabilities of being diseased from the
three voice recordings to represent the overall likelihood of each subject having Parkinson’s
disease (PD). This aggregation process ensures that we capture a comprehensive assessment
of the subject’s condition based on their voice recordings. These methods can be represented
as follows:

Pmean
i =

pi,1 + pi,2 + pi,3

3
, (2)

Pmin
i = min {pi,1, pi,2, pi,3}, (3)

Pmax
i = max {pi,1, pi,2, pi,3}, (4)

where pi,j is the predicted probability of being diseased for the jth voice recording of the ith
subject, and Pmean

i , Pmin
i , and Pmax

i are the three kinds of overall probabilities of having PD
for the ith subject derived from the three post-aggregation methods. During this process,
we avoid assigning any different weights to the three voice recordings from each subject to
ensure the equivalent treatments. The overall probability is then compared to a threshold
of 0.5 to determine whether the subject is classified as having PD or not.

The selection of specific aggregation methods—mean, min, and max—was based on
varying priorities. The post-min aggregation method requires all three voice recordings
to be classified as diseased in order to predict that the subject has Parkinson’s disease
(PD). This method is ideal for situations where it is crucial to avoid misdiagnosing healthy
individuals as diseased. Conversely, the post-max aggregation method predicts a subject
as having PD if any one of their three voice recordings is classified as diseased, making it
suitable for scenarios where it is vital not to overlook individuals with the disease. The
post-mean aggregation method, on the other hand, does not favor either class and operates
similarly to a voting system, providing a balanced assessment. This strategy allows us to
leverage all available data points, enabling the model to learn from the nuances of each
recording. However, it is important to note that assuming each voice recording has a
definitive label indicating whether it is diseased may not be entirely accurate, which could
limit the model’s effectiveness and necessitates validation in practical applications.

3.2.2. Pre-Aggregation Strategy

In the pre-aggregation strategy, we employed the bag-based idea by aggregating the
features of the three voice recordings from each subject into a single vector to represent the
subject. Since the recordings are assumed to be equally important, we simply aggregate
the features of the three voice recordings by taking their mean value. In other words,
the centroid of the three instances is used to represent the entire bag. This produces a
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composite feature vector for each patient, subsequently utilized to train AI models on the
subject level. This strategy facilitates the direct modeling of the subjects, but at the cost of
omitting certain details from the individual recordings. By simply mean-aggregating the
three recordings into one, we may lose some information on variations across recordings
that could be useful for diagnosis.

3.3. Artificial Intelligence (AI) Algorithms

In the modeling stage, we applied a range of AI classification algorithms to predict
Parkinson’s disease (PD). The inclusion of multiple machine learning algorithms in the
pipeline serves to assess whether the aggregation methods yield consistent results across
different algorithms, thereby evaluating their generalizability. This approach allows us to
determine the robustness of our findings and ensures that the predictive performance is
not overly dependent on a single algorithm. The algorithms employed include Logistic Re-
gression [58], Decision Tree [59], Random Forest [60], Gradient Boosting [61], XGBoost [62],
LightGBM [63], K-nearest neighbor (KNN) [64], Support Vector Machine (SVM) [65], Naive
Bayes [66], AdaBoost [67], and Multi-layer Perceptron (MLP) [68].

In addition, we included a stacking classifier, which consists of two base estimators
(KNN and SVM) and a final estimator (Logistic Regression). The stacking model leverages
the predictive power of base models, with the final model learning to optimally combine
the predictions of these base estimators [69,70].

3.3.1. Hyperparameter Tuning

We employed cross-validation and grid search for hyperparameter tuning to mini-
mize the risk of overfitting while enhancing the generalizability and stability of our AI
models [71,72]. For each AI algorithm, we delineate a spectrum of hyperparameter values
and use 5-fold cross-validation to identify the best hyperparameter combinations, where
models are evaluated based on accuracy.

In particular, we implemented group 5-fold cross-validation when applying the post-
aggregation strategy, ensuring that all voice recordings from the same subject are kept
within the same fold to prevent data leakage [73]. The final model is then trained on the
entire training set using the optimal hyperparameters identified in this process.

3.3.2. Model Evaluation

Once the final models have been developed through hyperparameter tuning, we
evaluate the performance of each AI model using a range of evaluation metrics. This
comprehensive assessment is designed to capture the various aspects of classification per-
formance, providing a well-rounded understanding of how effectively each model predicts
outcomes. These metrics include accuracy, precision, sensitivity, F1 score, Area Under the
Receiver Operating Characteristic Curve (AUC), and Matthews Correlation Coefficient
(MCC) [74,75]. By standard conventions, accuracy measures the overall correctness of the
model. Mathematically,

Accuracy =
TP + TN

TP + FP + TN + FN
, (5)

where TP refers to true positives, TN denotes true negatives, FP represents false positives,
and FN refers to false negatives.

Precision measures the proportion of positive identifications that are accurate:

Precision =
TP

TP + FP
. (6)
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Sensitivity and specificity measure the proportions of actual positives and negatives
that are accurately identified, respectively:

Sensitivity =
TP

TP + FN
, (7)

Specificity =
TN

TN + FP
. (8)

The F1 score is the harmonic mean of precision and sensitivity, providing a balance
between the two metrics:

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity

. (9)

The Area Under the Receiver Operating Characteristic Curve (AUC) quantifies a
model’s capacity to differentiate between classes, with a higher AUC reflecting a superior
performance. Finally, the Matthews Correlation Coefficient (MCC) provides a balanced
measure, even in the presence of class imbalance:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (10)

Each AI model was trained on the training set and evaluated on the test set by these
performance metrics. Subsequently, comparisons between models were made to identify
the best-performing AI model for PD classification.

3.4. Workflow

To clearly illustrate our customized multi-algorithm AI pipeline for predictive mod-
eling, we have included a detailed flowchart that outlines the methods employed in this
study. Supplementary Material for a fully reproducible workflow using the provided
Python scripts, including all necessary packages and code snippets, is available in our
GitHub repository: https://github.com/Durixas/Parkinson-s-Disease-Prediction-Code-
and-Data-Repository (accessed on 2 December 2024). The entire workflow is summarized
in Figure 1.

https://github.com/Durixas/Parkinson-s-Disease-Prediction-Code-and-Data-Repository
https://github.com/Durixas/Parkinson-s-Disease-Prediction-Code-and-Data-Repository
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Figure 1. Workflow of the multi-algorithm AI pipeline. The pipeline starts with input data and
progresses through preprocessing steps, including stratified train–test splitting, feature standardiza-
tion, and data augmentation. It then diverges into two primary strategies: post-aggregation, where
machine learning models are trained at the voice level with subsequent aggregation of predictions,
and pre-aggregation, where features are aggregated at the subject level prior to model training.
For both aggregation strategies, twelve (12) machine learning algorithms are utilized. The process
concludes with an evaluation phase that assesses model performance on the test set using seven
different metrics.

4. Results
We present the evaluation results of the models trained using the four aggregation

methods—post-aggregation (mean/min/max) and pre aggregation via our customized
multi-algorithm AI pipeline. The models were evaluated on the test set using the seven-
performance metrics: accuracy, precision, sensitivity, specificity, F1 score, AUC, and MCC.
The data were randomly split into training and test sets 10 times, and the pipeline was run
accordingly. The average metrics of different AI algorithms for each aggregation method
are summarized in Tables 1–4.
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Table 1. Model performance on the test set with post-mean aggregation ranked by accuracy.

Model Name Acc Prec Se Sp F1 AUC MCC

XGBoost 0.880 0.904 0.942 0.695 0.922 0.907 0.672
LightGBM 0.871 0.890 0.946 0.647 0.917 0.909 0.642

MLP 0.866 0.887 0.942 0.637 0.913 0.866 0.625
GBDT 0.859 0.878 0.946 0.600 0.910 0.899 0.606
SVM 0.855 0.861 0.965 0.526 0.909 0.854 0.586

Stacking 0.854 0.857 0.968 0.511 0.909 0.863 0.579
AdaBoost 0.843 0.910 0.881 0.732 0.894 0.898 0.601

Random Forest 0.836 0.868 0.925 0.568 0.894 0.878 0.545
Logistic Regression 0.824 0.888 0.877 0.663 0.881 0.866 0.542

Decision Tree 0.772 0.855 0.840 0.568 0.845 0.752 0.415
KNN 0.749 0.892 0.758 0.721 0.817 0.792 0.436

Naive Bayes 0.733 0.895 0.732 0.737 0.803 0.811 0.420

Table 2. Model performance on the test set with post-min aggregation ranked by accuracy.

Model Name Acc Prec Se Sp F1 AUC MCC

GBDT 0.843 0.905 0.886 0.716 0.894 0.892 0.599
LightGBM 0.842 0.928 0.858 0.795 0.891 0.904 0.616
XGBoost 0.833 0.924 0.849 0.784 0.883 0.900 0.598
Stacking 0.824 0.884 0.882 0.647 0.882 0.858 0.530

Random Forest 0.822 0.888 0.877 0.658 0.880 0.862 0.537
SVM 0.822 0.888 0.875 0.663 0.881 0.845 0.534
MLP 0.803 0.907 0.823 0.742 0.862 0.860 0.528

AdaBoost 0.783 0.926 0.774 0.811 0.842 0.878 0.527
Logistic Regression 0.733 0.921 0.705 0.816 0.796 0.861 0.462

Naive Bayes 0.680 0.911 0.637 0.811 0.746 0.803 0.393
Decision Tree 0.676 0.884 0.656 0.737 0.748 0.702 0.350

KNN 0.667 0.907 0.621 0.805 0.735 0.750 0.373

Table 3. Model performance on the test set with post-max aggregation ranked by accuracy.

Model Name Acc Prec Se Sp F1 AUC MCC

LightGBM 0.858 0.853 0.981 0.489 0.912 0.907 0.591
MLP 0.853 0.847 0.981 0.468 0.909 0.854 0.575

XGBoost 0.851 0.852 0.972 0.489 0.908 0.908 0.570
AdaBoost 0.849 0.864 0.949 0.547 0.904 0.893 0.570

Logistic Regression 0.841 0.850 0.958 0.489 0.900 0.846 0.540
GBDT 0.841 0.837 0.979 0.426 0.902 0.909 0.535

Random Forest 0.830 0.833 0.968 0.416 0.895 0.876 0.503
SVM 0.829 0.820 0.989 0.347 0.897 0.848 0.495

Stacking 0.820 0.810 0.993 0.300 0.892 0.840 0.463
Decision Tree 0.797 0.814 0.947 0.347 0.875 0.655 0.393
Naive Bayes 0.795 0.874 0.853 0.621 0.861 0.773 0.467

KNN 0.789 0.839 0.891 0.484 0.863 0.741 0.414

Figure 2 presents a visual comparison of the seven metrics for the best-performing
models—those with the highest accuracy—across the four aggregation methods. The
error bars denote the 95% confidence intervals for the means of each metric. The upper
bounds of some intervals are truncated at 1, given that 1 is the maximum possible value for
these metrics.
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Figure 2. Comparison of best models on test set across different aggregation methods. For each
aggregation method, the model with the highest accuracy was identified as the best performer.
Overall, the post-mean aggregation method achieved a superior classification performance based on
accuracy, F1 score, AUC, and MCC. In contrast, the post-min aggregation exhibited higher precision
and specificity but lower sensitivity, while the post-max aggregation showed the opposite trend. The
error bars on the graphs represent the 95% confidence intervals of means using the Standard Error of
the Mean (SEM).

Figure 3 offers a visual comparison of the averages of seven metrics for the twelve
machine learning algorithms across the four aggregation methods.
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Figure 3. Comparison of average performance on the test set across different aggregation methods.
The mean values of seven metrics were calculated for each aggregation method across twelve AI
algorithms to represent average performance. In line with Figure 2, the post-mean aggregation
method achieved the highest overall classification performance in terms of accuracy, AUC, and MCC.
Furthermore, the post-min aggregation demonstrated higher precision and specificity but lower
sensitivity, while the post-max aggregation displayed the opposite trend. The error bars on the graphs
represent the 95% confidence intervals of means using the Standard Error of the Mean (SEM).
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To further investigate the effect of aggregation methods on classification performance,
we performed a comprehensive comparison of each AI algorithm across the four aggrega-
tion methods within our customized multi-algorithm AI pipeline. Figure 4 displays the
performance metrics for each algorithm across these four aggregation strategies.
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Figure 4. Comparison of AI algorithms’ performance on the test set across different aggregation
methods. The twelve AI algorithms were ranked according to their average accuracy across the
four aggregation methods. The results show that more complex algorithms, such as MLP and
boosting models, generally outperformed simpler algorithms like Naive Bayes, Decision Tree, and
KNN. Among the higher-ranked algorithms, post-mean aggregation consistently proved to be the
most effective method, while post-max aggregation was particularly noteworthy for the lower-
performing algorithms. The error bars on the graphs represent the 95% confidence intervals of means
using the Standard Error of the Mean (SEM).
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Table 4. Model performance on the test set with pre-mean aggregation ranked by test accuracy.

Model Name Acc Prec Se Sp F1 AUC MCC

MLP 0.861 0.888 0.933 0.642 0.909 0.858 0.613
GBDT 0.841 0.869 0.930 0.574 0.897 0.880 0.556

XGBoost 0.838 0.878 0.914 0.611 0.894 0.876 0.558
Random Forest 0.837 0.878 0.912 0.611 0.893 0.864 0.557

Stacking 0.837 0.846 0.958 0.474 0.898 0.849 0.524
LightGBM 0.828 0.865 0.916 0.563 0.888 0.880 0.519

Logistic Regression 0.826 0.888 0.882 0.658 0.883 0.841 0.546
AdaBoost 0.825 0.873 0.900 0.600 0.885 0.858 0.526

SVM 0.818 0.845 0.930 0.484 0.885 0.840 0.476
Decision Tree 0.762 0.847 0.833 0.547 0.840 0.691 0.376
Naive Bayes 0.754 0.893 0.765 0.721 0.822 0.795 0.444

KNN 0.722 0.860 0.754 0.626 0.802 0.750 0.350

5. Discussion
5.1. Findings

Previous research that employed similar AI algorithms reported accuracies between
0.66 and 0.90 for PD diagnosis using different datasets [9,76–88]. Notably, in the post-mean
aggregation method, the XGBoost algorithm achieved peak performance with an accuracy
of 0.880, precision of 0.904, sensitivity of 0.942, specificity of 0.695, F1 score of 0.922, AUC
of 0.907, and MCC of 0.672.

Our results demonstrate that the post-mean aggregation method is the overall best ag-
gregation method, as evidenced by the mean accuracy, F1 score, AUC, and MCC presented
in Figure 3. The other three methods display varying performances across these metrics
without demonstrating significant superiority. Figure 2 provides an additional comparison
of the top-performing machine learning algorithms across different aggregation methods.

Figure 4 ranks the machine learning models based on their mean accuracy across
the four aggregation methods, revealing that higher-performing models tend to be more
complex, such as MLP and boosting algorithms, with post-mean aggregation achieving the
best results. Conversely, for the lower-performing models, post-max aggregation tends to
demonstrate a superior performance.

The evaluation metrics indicate that post-min aggregation generally results in higher
specificity, but lower sensitivity, compared to post-mean aggregation. For instance, the
top-performing GBDT algorithm achieved an accuracy of 0.843, with a sensitivity of 0.886
and a specificity of 0.716. This distinction is evident when the metrics are analyzed in detail.
To explain this phenomenon, it is important to examine how the aggregation method affects
the balance between true positives (TP), true negatives (TN), false negatives (FN), and false
positives (FP). The post-min aggregation method employs a conservative threshold by
focusing on the lowest prediction scores. This method emphasizes the accurate classification
of negative samples (i.e., TN) while minimizing false positives (FP), resulting in higher
specificity. However, this method also has the drawback of increasing false negatives (FN)
and decreasing true positives (TP), which ultimately leads to reduced sensitivity.

In contrast, post-max aggregation prioritizes the maximum prediction scores, leading
to the opposite effect: it emphasizes the identification of positive cases, thereby enhancing
sensitivity (0.981 for LightGBM). However, this method also decreases specificity (0.489
for LightGBM) because it is more prone to misclassifying negative samples as positives,
resulting in an increase in false positives (FP). This may explain why post-max aggregation
is more effective for lower-performing models. By applying straightforward formula-
based reasoning, we can infer that in an imbalanced dataset with more positive cases than
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negative ones, sensitivity has a greater influence on accuracy than specificity. For models
like MLP or boosting algorithms, the sensitivity achieved through post-mean aggregation
is already close to 1, and post-max aggregation does not result in a significant increase
in sensitivity. However, for models that underperformed, the enhancement in sensitivity
provided by post-max aggregation becomes crucial for improving overall accuracy.

These differences underscore the importance of selecting between post-min and post-
max aggregation based on specific requirements. In applications where it is essential to
prevent misclassifying negatives as positives—such as situations where false positives
could lead to serious consequences (e.g., unnecessary medical interventions) —post-min
aggregation would be the preferable choice. Conversely, when the goal is to maximize
the identification of positive cases, such as in screening for rare but critical conditions,
post-max aggregation may be the more suitable option [89,90].

Another important consideration is the inherent class imbalance in the dataset, with
positive samples outnumbering negative ones at a ratio of 3:1. This type of imbalance leads
machine learning models to prioritize positive samples, resulting in higher sensitivity but
lower specificity [89]. Although the data augmentation performed by BOS mitigates the
imbalance to some extent, this trend persists. In this context, even post-min aggregation
shows high sensitivity and low specificity, though it maintains the highest specificity among
the four aggregation methods. Post-max aggregation exacerbates this trend, increasing
mean sensitivity by only 0.168 while decreasing mean specificity by 0.296 compared to
post-min aggregation. This illustrates the potential limitations of post-max aggregation,
particularly in scenarios where specificity is critical [91].

The pre-aggregation strategy, in contrast to post-aggregation, exhibits no advantages
in any metric. One possible explanation is that simply taking the mean of features before
model training results in substantial information loss. Despite our study utilizing a rel-
atively large volume of data for PD voice analysis [51,92,93], any loss of information is
potentially detrimental [51,92,93].

Several rival methods for Parkinson’s disease (PD) prediction using voice analysis
can be compared to the proposed AI pipeline. Clustering-based approaches, such as the
hierarchical clustering applied by Tsanas and Arora, have shown promise in identifying PD
subtypes based on voice characteristics [94]. Deep learning methods, particularly Convolu-
tional Neural Networks (CNNs), have been explored with success, as demonstrated by Shen
et al.’s hybrid model combining CNN, RNN, Multiple Kernel Learning, and Multi-layer
Perceptron, achieving 91.11% accuracy in PD diagnosis [95,96]. Support Vector Machines
(SVMs) have also proven effective, with Little et al. establishing an early benchmark of
91.4% accuracy in classifying PD patients’ voice recordings. Combined machine learning
approaches, like Shen et al.’s hybrid method, have shown robust performance in distin-
guishing between healthy controls and PD patients [96]. These rival methods offer various
strengths in feature selection, dimensionality reduction, and classification, with the choice
of method depending on factors such as dataset size, feature complexity, and the desired
interpretability of results.

5.2. Future Directions

The current design of the pre-aggregation method in our research can be improved,
necessitating further exploration. To preserve intraindividual variability, more advanced
techniques are required to extract maximum information from each voice recording during
the pre-aggregation phase. One potential strategy is to concatenate various descriptive
statistics, such as mean and variance, from the features of multiple voice recordings to
create subject-level features. It may capture more information beyond the mean and has
the potential to enhance classification performance. Additionally, neural networks could
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be effective if a specialized encoder is developed to extract features from multiple voice
recordings [97–103].

While our pipeline shows promising results, certain limitations might be addressed
in future studies to enhance its generalizability. The data imbalance identified in this
study stems from the case–control design, which maintains a 3:1 ratio of cases to controls.
However, in practical applications, such class imbalances may not always be present. For
instance, in population-based research, the number of individuals with a disease can be sig-
nificantly lower than that of healthy individuals. This potential reversal in class distribution
requires modifications to the pipeline for effective adaptation. Possible adjustments include
implementing additional resampling techniques or recalibrating classification thresholds to
strike a balance between sensitivity and specificity.

We acknowledge that our approach to voice analysis for Parkinson’s disease detection
uses fewer parameters than typical phonoscopy methods. While our feature selection
aimed for simplicity and effectiveness based on previous research, we recognize its poten-
tial limitations in capturing the full spectrum of PD-related voice changes. To enhance our
method, we propose that future studies incorporate a wider range of voice characteristics,
conduct comparative analyses with more comprehensive approaches, and collaborate with
experts in phonoscopy and speech pathology. These steps aim to improve the model’s
robustness and diagnostic accuracy while balancing simplicity and effectiveness. Further-
more, developing aggregation strategies that maintain robustness across varying class
distributions by automatically adjusting for class imbalance could improve the pipeline’s
applicability in real-world scenarios.

6. Conclusions
This study developed a multi-algorithm AI pipeline for non-invasive Parkinson’s

disease screening using voice recordings, emphasizing the importance of data aggregation
strategies in multiple instance learning with imbalanced classes. The post-mean aggregation
method performed best, achieving high accuracy and MCC scores. While promising for
early PD detection, we stress the need to consider potential confounding factors like
nasopharyngeal and lung diseases. It is appropriate that a comprehensive approach
combining thorough medical evaluation with advanced analytical techniques as presented
here is considered for reliable PD diagnosis using voice analysis. The findings from this
work have broader implications for applying aggregation methods in medical diagnostics
for improved healthcare outcomes.

Supplementary Materials: A fully reproducible workflow using the provided Python scripts,
including all necessary packages and code snippets, is available in our GitHub repository:
https://github.com/Durixas/Parkinson-s-Disease-Prediction-Code-and-Data-Repository (accessed
on 2 December 2024). These scripts are designed to facilitate reproducibility and allow users to
replicate the machine learning classification tasks outlined in our study.
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