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Abstract: This paper accompanies the initial public release of the EDI multi-modal SLAM
dataset, a collection of long tracks recorded with a portable sensor package. These include
two global shutter RGB camera feeds, LiDAR scans, as well as inertial and GNSS data
from an RTK-enabled IMU-GNSS positioning module—both as satellite fixes and internally
fused interpolated pose estimates. The tracks are formatted as ROS1 and ROS2 bags,
with separately available calibration and ground truth data. In addition to the filtered
positioning module outputs, a second form of sparse ground truth pose annotation is
provided using independently surveyed visual fiducial markers as a reference. This enables
the meaningful evaluation of systems that directly utilize data from the positioning module
into their localization estimates, and serves as an alternative when the GNSS reference is
disrupted by intermittent signals or multipath scattering. In this paper, we describe the
methods used to collect the dataset, its contents, and its intended use.

Keywords: robotics; SLAM; computer vision; LiDAR; dataset; ROS

1. Introduction
While in a traditional static, industrial setting planning a robot’s trajectory can be

treated as an open-loop problem, operating a mobile robot autonomously in a previously
unseen environment requires a means of perceiving its surroundings and localizing itself. If
onboard sensors are utilized to place the robot with respect to a model of the environment,
but this model is built incrementally by using these position and orientation estimates, we
arrive at the circular Simultaneous Localization and Mapping (SLAM) problem, which is
one of the core challenges in robot autonomy [1]. Considering the wide range of potential
applications for a SLAM system, there has been no shortage of research interest in this
direction over the decades, resulting in functional systems using sensors such as LiDAR [2],
depth imagery [3], RGB images [4], stereo imagery, and IMU data [5].

The need to evaluate systems—both individually and competitively, as part of the
iterative development process and for comparison—has also provided ample incentive
for the collection and release of public SLAM datasets [6]. However, due to the wildly
diverging requirements faced by developers of systems intended for various use cases, these
come in many mutually incompatible formats. Moreover, for any given target application,
few—if any—will approximate the anticipated input data distribution very well. Finally,
the collection of these data is expensive and time-consuming, with considerable storage
space requirements. Taken all together, we assert that there is still a pressing need for more
publicly available SLAM datasets, collected in a wide range of environments.

To this end, we are publishing EDI-SLAM, a collection of calibrated sensor tracks
primarily intended for the development, testing, and evaluation of LiDAR-, visual-, and
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stereo-inertial SLAM systems with a focus on unstructured outdoor environments, which
may involve choosing to also integrate GNSS data in environments where it may be
intermittent and unreliable. To aid with performing semantic inference on the data, all
images are collected in color. At the writing of this article, this contains a mix of recordings
originally made for internal use in ongoing SLAM system development, with and without
ground truth positioning data, collected in three environments, as pictured in Figure 1:

• The EDI courtyard and its surroundings—an urban landscape, a mix of structured
built-up scenery and some dense vegetation, notable for poor-quality GNSS position-
ing data due to occlusions and multipath scattering;

• An open-field landscape, with high-quality GNSS data but segments that make frame-
to-frame tracking difficult due to a lack of reliable tracking features;

• A forest road network—long, straight tracks with intermittent GNSS data and highly
repetitive scenery, recorded on a vehicle.

Figure 1. The three types of scenery represented in the initial release of the dataset: (I) courtyard—the
EDI courtyard and surroundings, a semi-structured urban environment; (II) saga—an open field with
good GNSS coverage but a shortage of reliable tracking features; (III) ropazi—a forest road network.

We use the fiducial marker method described in [7] and depicted in Figure 2 as the
ground truth localization reference at a number of locations, whereby we pre-position
plates with Apriltag [8] markers and survey the location of their corners. This provides a
reference that is independently distributed with regard to the IMU-GNSS sensor module’s
estimates, allowing for meaningful evaluation of SLAM systems that fuse GNSS data in
environments where the satellite positioning signal is intermittent or has been distorted by
environmental factors. Due to the ubiquity of the Robot Operating System (ROS) [9] robotics
framework, we have elected to store the dataset in the form of ROS bag files, which greatly
simplify usage through the playback mechanism. Bags are provided in both the ROS1 and
ROS2 [10] file formats.

Figure 2. (I) Front and (II) top views of the sensor package, with some of the sensors indicated.
(III) One of the images processed for reference pose measurement in the courtyard_gt track, showing
a tracking gate with detected marker indices and their corners drawn in black.
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2. Background
2.1. Conventions

The outputs of a SLAM system, and therefore the ground truth annotations of this
dataset, are expressed as poses—proper rigid transformations from R3 to itself. The
trajectory pose reference files in this dataset use the quaternion formulation:

Tb
a = (t, q)

t ∈ R3

q = (qx, qy, qz, qw) ∈ H : |q| = 1

Tb
a (xa) = xb (1)

where t is a translation vector and q a rotation unit quaternion representing these compo-
nents of a transformation with regard to a fixed reference frame in Euclidean space, with
qw being the real coefficient. However, in calibration files and to describe computations, we
use the pose matrix notation:

T =

[
R t
0T 1

]
∈ SE3 ⊂ R4×4 (2)

where R ∈ SO3 is a rotation matrix. The notation convention adopted in this paper is that
the transformation Tb

a applied to a vector xa in basis a (the child frame) produces xb in b
(the parent frame).

When working with GNSS data, it is important to understand the geometrical model
used. Many commercial receivers such as the Xsens MTi-680G RTK (Xsens Technologies
B.V., Enschede, The Netherlands) used in this work provide position outputs in WGS84
ellipsoid coordinates (ϕ, ψ, h) [11] where ϕ, ψ are the angular latitude and longitude, while
the altitude h is expressed in terms of normal height above the reference ellipsoid. To
compare these to position estimates obtained by a SLAM system, conversion to a Euclidean
coordinate system is necessary, such as the WGS84 Earth-centered Earth-fixed (ECEF)
Euclidean frame [12].

In addition, by default, the Xsens module outputs orientation in a local Earth-aligned
reference frame referred to as east–north–up (ENU), where the x coordinate axis points east,
y points north (in the case of this real time kinematic (RTK)-enabled device, true north [13]),
and z points normal to the surface [14]. This can be changed in the device configuration,
but we have elected to retain this setting for applications that require a gravity-aligned
reference frame. The conversion between this and the ECEF orientation is therefore a
function of ϕ and ψ, though over small distances, it maybe be treated as a static calibration.
When computing the GNSS reference pose track, we use a spherical approximation at each
ECEF position t, expressed in matrix form as follows:

ẑ =
t

∥t∥

x̂ =
Ẑ × ẑ

∥Ẑ × ẑ∥
ŷ = ẑ × x̂

RECEF
ENU (t) =

[
x̂(t) ŷ(t) ẑ(t)

]
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TECEF
xsens (t) = TECEF

ENU (t)TENU
xsens =

[
RECEF

ENU (t) t
0 1

][
RENU

xsens 0
0 1

]
(3)

where Ẑ is the ECEF z-axis unit vector, x̂, ŷ, ẑ are the unit vectors of the coordinate axes in
the rotated reference frame, and RENU

xsens is the orientation as reported by the measurement
device. The latter are also available in the bag files, for direct use.

2.2. SLAM Datasets

For a broad overview of the SLAM problem, its formulation, and approaches in solving
it and more discussion on existing datasets, we direct the reader to our prior review of the
field in [1]. Furthermore, an exhaustive resource on publicly available SLAM datasets can
be found at [6]. Among those that share some overlap in terms of structure or purpose with
ours are the following:

• NTU VIRAL (A Visual–Inertial–Ranging–Lidar Dataset for Autonomous Aerial Vehicles
(2022) [15]) uses a similar sensor setup (LiDAR, IMU, a pair of cameras) and also
employs an external ground truth annotation method. Unlike us, they provide
two LiDAR scanners located at right-angle planes to each other, which is more impor-
tant in an aerial vehicle, but do not include GNSS data in their tracks. Their ground
truth localization system is not designed for long, open-ended trajectories, instead
utilizing a set of stationary ultra-wideband (UWB) radars to continuously localize the
drone in a confined working area.

• The Multi-Vehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception
(2018) [16], as the name suggests, is primarily intended for use in the development of
systems utilizing event cameras. Despite treating the LiDAR primarily as a ground
truth estimation tool, it nevertheless provides both LiDAR and GNSS data in addition
to the primary stream of event camera and grayscale images. Furthermore, some of
the trajectories in this dataset are also on the kilometer scale in length, enabling use in
similar target applications in comparison to ours.

• The KITTI [17] and KITTI-360 [18] datasets provide painstakingly annotated bench-
marks for semantic scene understanding, and therefore greatly differ from our data
both in scale and purpose. However, these do provide a similar sensor suite to ours
alongside reliable ground truth localization.

• The TUM-VI [19] visual odometry benchmark provided the inspiration for our portable
sensor package collection method. However, it (alongside many other popular datasets
collected in a similar manner) does not include LiDAR data. Moreover, they only
provide GNSS-invariant ground truth annotation at the starts and ends of trajectories,
where motion tracking equipment can be deployed.

• The Malaga 2009 dataset [20] also consists of calibrated LiDAR, camera, and GNSS
readings, with the GNSS data being used to provide a ground truth trajectory. Further-
more, they conduct a much more extensive analysis of the ground truth uncertainty
metrics. The greatest practical differences between their approach and ours are the
platform, collection environment and purpose. We use a hand-held sensor package
for most recordings, which is often lower, slower, and less stable (particularly in
orientation); we collect data in less structured and/or GNSS-inhibited environments;
we also target the evaluation of systems that directly fuse GNSS data, necessitating
GNSS-independent ground truth measurements.

What differentiates EDI-SLAM from most currently existing datasets is the intended
use case and collection environment. We emphasize wholly or partially unstructured
environments, long trajectories (on the order of kilometers) where drift accumulation poses
a considerable challenge in spatial consistency and loop closure detection, and sensor
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data suitable for use with semantic segmentation algorithms (pinhole projection color
imagery). We provide valid ground truth annotation for SLAM systems which may use
any combination of LiDAR, IMU, RGB, and GNSS data in their localization estimates.
Our collection methodology is platform-agnostic, being collected using a portable sen-
sor package which can be carried by hand or mounted on a vehicle, such as a car in
the case of the ropazi track. We believe our dataset fills a gap in the currently available
resources—low-to-the-ground, relatively low-velocity recordings from unstable platforms
(e.g., lightweight UGVs) in mixed urban, rural, and forest terrain, specifically featuring
LiDAR data. The additional ground truth reference obtained using the markers also enables
the evaluation of SLAM systems which directly fuse the onboard GNSS data in partially
GNSS-denied environments.

3. Materials and Methods
3.1. Hardware Setup

All recordings were made with an evolved version of the hand-portable sensor pack-
age first discussed in [7] and depicted in Figure 2. It mounts the following sensors and
equipment, with numbers corresponding to their tags in Figure 2:

1. Ouster OS1 rev7 32-line mechanical LiDAR, which outputs point clouds at 10 Hz and
IMU data at 100 Hz.

2. 2× Basler Dart 1920-160uc global shutter cameras with 4 mm lenses. These are used
with a software trigger for stereo applications, produce a center-cropped image at
480 × 752 pixels, and were configured to collect RGB images at 30 frames per second
for the recordings.

3. Xsens MTi-680g RTK GNSS-IMU navigation unit (occluded in the image).
4. Intel nuc compact from factor general-purpose computer, running Ubuntu Linux 20.04

LTS and ROS1 Noetic, to servce as the ROS master and perform data collection;
5. Intel RealSense L515 depth camera (not used for this application);
6. Reflective markers for testing and calibration in the Optitrack motion tracking system;
7. A voltage regulator that can supply the LiDAR and PC from a 6S Li-Po battery or

direct current power supply.

The official ROS drivers [21] are used to interface with the LiDAR. To employ the
MTi-680g with RTK, we use a local fork of the now-superseded driver at [22]. We provide
our own RTK base station located on EDI grounds. The cameras are operated through a
ROS front-end for the Pylon SDK [23] developed for internal use, though ROS drivers are
available [24]. For time synchronization, the Ouster OS1 ROS driver was configured to use
the host system’s time stamps, the Xsens was initialized with UTC time from the nuc in
the manufacturer’s mtmanager software, and the images are stamped with the software
trigger time.

3.2. Calibration

Figure 3 shows the reference frames of the sensor package and the calibrated trans-
forms between them, with frames belonging to different physical devices being coded
in different colors. os_sensor is the parent frame of the point clouds published by the
LiDAR. The LiDAR’s internal calibration—transformed between os_sensor, os_imu, and
os_lidar—is provided by the device’s ROS driver and does not require user calibration. To
obtain the camera-intrinsic—as well as the camera-to-camera-, camera-to-LiDAR-, and
camera-to-xsens-extrinsic calibration matrices—we use kalibr [25] on the same recording
of the sensor package in motion with a 6 × 6 Apriltag [8] grid in view. The intrinsic and
camera-to-camera parameters are obtained using the multi-camera calibration tool, whereas
both the camera-to-xsens and camera-to-LiDAR calibration is performed in camera-to-imu
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mode—we use the Ouster’s built-in IMU for reference. The LiDAR-to-xsens transform is
then obtained as

Tos_sensor
xsens = Tos_sensor

os_imu (Tcam0
os_imu)

−1Tcam0
xsens (4)

Figure 3. (I) A view of the sensor frames. (II) The transform graph.

3.3. Collection

Over the course of developing the methodology used in this dataset, we performed
dozens of collection runs over the spring and summer of 2024, most of which were not
prepared for use with external reference poses and many only include partial sensor sets.
Two such runs, courtyard_no_gt and saga_no_gt, were deemed to be of sufficient quality to be
included in the public dataset. However it must be noted that the calibration provided with
these was performed later, during the collection of the annotated tracks, and is therefore
not as accurate. The main part of the dataset as it is provided at initial release consists
of the three trajectories pictured in Figure 4. Two different ways of carrying the sensor
package were employed during collection—both courtyard tracks and saga_gt were collected
by hand; for saga_no_gt and ropazi_gt, it was attached to the roof of a car using an ad hoc
fixture, to ease data collection over long distances.

Figure 4. Cont.
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Figure 4. Satellite maps with reference positions—made with GNSS-IMU (top) and visual marker
tracking gates (middle). Expanded views (bottom) of marker-derived reference poses (solid blue),
markers (red), and corresponding GNSS-IMU estimates (gradient).

3.4. Ground Truth Measurement

Before each collection run, a number of tracking gates (see Figure 2, item III) is
placed along the planned route. One is always placed at the start of the track, while
the others are spaced to maximize their value in measuring anticipated tracking drift.
Additionally, in the case of the EDI courtyard track, the gates are placed in locations where
significant GNSS degradation is predicted. Each consists of four markers mounted in a
broadly rectangular pattern on two stands. Each marker corner is uniquely identified,
and its position is surveyed, providing xy measurements in the LKS92 geodetic coordinate
system [26] and heights referenced to the LV’14 quasi-geoid model [27]. These are converted
first to lat, lon, and alt coordinates and then to positions in ECEF. The reference poses
corresponding to each image with a sufficient number of corner detections (in this case,
16) are then independently estimated using the SQPNP perspective-n-point algorithm [28],
implemented in OpenCV [29]. As is clearly seen in the middle row of maps of Figure 4,
the tracking gate method produces a much sparser set of reference poses. However, as
previously shown in [7] and discussed below, these are of higher accuracy—and sometimes
substantially so—compared with the GNSS-IMU track. Specifically, when evaluated under
laboratory conditions with motion capture equipment as a reference, the mean error of the
perspective-n-point ground truth measurement method was assessed at 0.018 m in translation
and 0.43◦ in rotation.
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4. Structure, Contents, and Usage
4.1. The Dataset

The EDI-SLAM dataset is hosted on EDI’s domain at [30] and has been made available
for download under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License [31] as of the writing of this article. At initial public release, it consists
of five sensor tracks collected at three different locations, totaling around 250 GB of raw
sensor data. ROS1 and ROS2 versions of the bags with a subset of the topics—renamed to
establish an interface agnostic to future changes in the collection methodology or sensor
models—have been created. Ground truth reference poses are provided for three of the
tracks, one at each location, and the original raw recordings are also available. Finally, a
script for using the reference poses as well as example outputs discussed in Section 4.2 are
included. The directory structure is laid out as follows:

ground_truth
<location>_gt

ecef.txt # marker corner locations in ECEF
poses_abs.csv # camera poses computed with pnp
poses_ahru.csv # xsens poses converted to ECEF
tag_observations.zip # images used for pnp with detected markers

raw_bags
<location>_<ground truth status>.bag # ROS1 bags are files

ROS1
<location>_<ground truth status>

calibration.yaml
<location>_<ground truth status>.bag # ROS1 bags are files

ROS2
<location>_<ground truth status>

calibration.yaml
<location>_<ground truth status>.bag # ROS2 bags are directories

metadata.yaml
<location>_<ground truth status>.bag.db3

example
compute_error_metrics.py # script for computing ATE, RPE, RMSE
T_xsens_cam0.csv # calibration matrix used in the examples
metrics_<location>_<ground truth status>.txt

Depending on the intended application, potential users can therefore choose to bulk-
download only the relevant type of recording—raw, reformatted ROS1 or ROS2. Only the
poses_abs.csv and poses_ahru.csv files are necessary for evaluation; the marker corners and
tag observations only being saved to aid in the identification and mitigation of potential
errors and outliers. The reference poses are stored in rows of

(t, xece f , yece f , zece f , qxece f
x , qxece f

y , qxece f
z , qxece f

w ) (5)

where t is the timestamp. x, y, z are the translation coordinates and qx, qy, qz, qw are the
rotation coordinates, all given in the ECEF frame. All of the ROS1 and ROS2 bags contain
the same topics, with the same types, listed in Table 1. As stated in the notes column, cam0
is always on the left and cam1 is on the right. The frames of the point cloud and IMU
topics are also given. The gnss_pose contains the output of the xsens positioning filter before
conversion in a surface-aligned orientation frame. Table 2 summarizes the sizes of the
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respective tracks. Track length l and average velocity v estimates were produced for the
ground-truth-annotated tracks, using the Xsens positions tECEF

Xsens,i by taking

l =
n−1

∑
i=1

∥tECEF
Xsens,i − tECEF

Xsens,i+1∥ (6)

where n is the number of the Xsens fused pose estimates and

v =
l

t(n)− t(1)
(7)

where t(i) is the timestamp of the i-th observation.

Table 1. Topics and message types in the bagfiles.

Topic Type Notes

/points sensor_msgs/msg/PointCloud2 os_sensor
/gnss sensor_msgs/msg/NavSatFix

/imu_lidar sensor_msgs/msg/Imu os_imu
/imu_xsens sensor_msgs/msg/Imu xsens
/gnss_pose geometry_msgs/msg/PoseStamped lat, lon, alt, ENU

/camera_left/image_raw sensor_msgs/msg/Image cam0
/camera_right/image_raw sensor_msgs/msg/Image cam1

Table 2. Sensor measurement counts, lengths, and velocities in the tracks where available.

Track LiDAR Images (per Camera) l, m v, m/s size, GB

courtyard_gt 5599 17,152 747.36 1.32 42.9
saga_gt 7905 24,344 1099.22 1.36 60.9

ropazi_gt 11,673 35,375 4223.57 3.59 88.8
courtyard_no_gt 4366 13,458 - - 33.6

saga_no_gt 3320 10,315 - - 25.8

4.2. Use in Evaluation

Given two sets of timestamped poses, there exist many statistics one may compute to
compare them. In the SLAM context, two common benchmarks are are Relative Pose Error
(RPE) and Absolute Trajectory Error (ATE), formalized in [32]. Additionally, in cases such
as SLAM-GNSS fused systems, a simple root mean square position error (RMSE) may be of
interest. In the initial release version of the dataset, we include a script to compute RPE,
ATE, RMSE, as well as local ENU-aligned XY projections of the ATE and RMSE. We also
take advantage of the fact that two sets of reference poses are already present in the data to
provide a worked example of using the dataset.

Given two corresponding sequences of poses in SE3 (Tt), (Qt), where Q is the reference,
and a delay interval ∆, the root mean square RPE is computed as

Θi,i+∆ = (Q−1
i Qi+∆)

−1(T−1
i Ti+∆)

ϵrpe =
1
|K| ∑

i∈K
∥t(Θi,i+∆)∥2 (8)

where K is the index set of the discrete sequences and t(T) is the translation component
of a pose. As is apparent from the expression, this statistic measures the amount of local
deviation—over any given interval of a fixed length ∆—between the two trajectories.
Computing the ATE requires first estimating an aligning transform S, which is found by
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minimizing the distance between corresponding translation points. The expression is then
given as

ϵate =
1
|K| ∑

i∈K
∥t(Q−1

i STi)∥2 (9)

while the final metric, trajectory RMSE, is simply a special case found by not performing
the alignment step—in effect, setting S to be the identity matrix

ϵrmse =
1
|K| ∑

i∈K
∥t(Q−1

i Ti)∥2 (10)

Special care needs to be taken in cases when the two sequences Tt, Qt are not given
in the same reference frame. We adopt the convention whereby, given zero error, the
calibration matrix C is given such that the following equation holds

Qi = TiC (11)

which, in the case of aligning Xsens filtered GNSS-IMU pose estimates with the marker-
derived poses of the left camera, is given by the transform Txsens

cam0 .
Finally, while RPE is invariant to external rotations (left-multiplied transforms cancel

by construction), the directional components of ATE and RMSE may be examined separately
in an external reference frame—potentially of interest when evaluating systems integrating
GNSS, which may perform worse in estimating altitude than latitude or longitude, as
shown below. To obtain error estimates in the XY-plane only, ϵate,XY and ϵrmse,XY, we bring
all poses Qi, Ti into the ENU frame computed at ground truth centroid cQ, as in Equation (3)

cQ =
1
|K| ∑

i∈K
t(Qi)

QENU
i = (TECEF

ENU (cQ))
−1QECEF

i

TENU
i = (TECEF

ENU (cQ))
−1TECEF

i (12)

and set the z components of all translation vectors to 0 before computing the ATE and
RMSE as before.

The script compute_error_metrics.py, in the example directory of the dataset, computes
all of the error statistics given above when provided with three inputs: an inferred track
file, a reference track file, both formatted as per Equation (5), as well a calibration matrix
C in its own .csv file. For each timestamp t in the inferred track, we find two timestamps
τ1, τ2 in the reference track, such that

τ1 ≤ t < τ2

|τi − t| < η (13)

where η is the timing tolerance parameter, arbitrarily set to 0.2 s in the example—equivalent
to two LiDAR scan periods. This ensures that only estimates inside intervals covered by
the reference track are included in the error calculations. We interpolate the reference Qt as

α =
t − τ1

τ2 − τ1
∈ [0, 1]

tt = (1 − α)t(Qτ1) + αt(Qτ2)

qt = SLERP(q(Qτ1), q(Qτ2), α)
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Qt = M(tt, qt) (14)

where α is the interpolation coefficient, SLERP is the spherical linear interpolation of quater-
nions [33]; t(Q), q(Q) denote functions mapping a pose to its translation and quaternion
rotation components, respectively; and M : R3 ×H → SE3 builds a pose matrix from the
interpolated vector and quaternion. To avoid distorting the RPE, we also need to discard
any pairs of poses spanning an interruption in the reference track—in the example, this is
performed through simply discarding any pairs of inferred poses for which the timestamp
difference exceeds the timing tolerance η multiplied by RPE interval length ∆.

As a worked example, we have collected the error statistics of the Xsens trajectory with
regard to the marker poses for all three of the annotated tracks, which are shown in Table 3.
The courtyard track clearly illustrates the point previously made in [7]: in environments
with disruptions, such as multipath scattering, GNSS estimates do not provide a reliable
reference, even with RTK correction (from within the same courtyard, no less). Comparing
the RMSE results, it bears out that a significant contribution to the error comes in the form
an incorrect altitude estimate, which is confirmed by visually examining the trajectory
in Figure 5. The global transform S eliminates the contribution of steady state altitude
error to the ATE metric when contrasted with RMSE, but outliers and drift still affect
it. The RPE, on the other hand, seems to be largely a function of trajectory length, with
longer paths that contain multiple losses and re-acquisitions of the satellite signal, creating
more discontinuities.

Figure 5. Three-dimensional views of the courtyard reference track. (I) A large jump discontinuity;
(II) the biased altitude estimate. The coordinate axes correspond to the ground truth centroid ENU
frame TECEF

ENU (cQ), while the clusters of points at the origin altitude are the surveyed marker positions.

Table 3. Error statistics of the Xsens positioning estimates with regard to the marker poses, given
in m.

Track ϵrmse ϵrmse,XY ϵate ϵate,XY ϵrpe

courtyard_gt 77.291 6.873 4.000 3.193 0.008

saga_gt 1.305 0.452 0.114 0.099 0.024

ropazi_gt 8.223 2.165 3.059 2.405 0.047

5. Conclusions and Future Work
With this article, we introduce our public SLAM dataset, explain its collection method-

ology, provide usage examples, and evaluate the relative quality of the two reference pose
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tracks available within. Due to ongoing research and development in the field of percep-
tion systems for autonomous robotics at EDI, we are likely to keep collecting more data
which may potentially be appended to the repository. By providing an evaluation method
independent of the onboard GNSS-IMU measurement unit, we enable the benchmarking
of systems that fuse data from it into their positioning estimates, and also show that simply
having such a sensor onboard is not sufficient for fully consistent localization. These data
are currently being extensively used by EDI’s researchers in developing an outdoor-focused
multi-modal SLAM system and we hope that they prove similarly useful to others. A
potential direction for future work that would greatly increase the value of these data
is semantic annotation, in the form of terrain segmentation and object detection ground
truth data.
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Abbreviations
The following abbreviations are used in this manuscript:

EDI Institute of Electronics and Computer Science (Latvia)
SLAM Simultaneous Localization and Mapping
ENU East–North–Up surface-aligned coordinate system
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
ROS Robot Operating System
LiDAR Light Detection and Ranging
RGB Red–Green–Blue images
ECEF Earth-centered, Earth-fixed Euclidean frame
RTK Real-Time Kinematic GNSS
ATE Absolute Trajectory Error
RPE Relative Pose Error
RMSE Root Mean Squared Error
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