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Abstract: Optimizing production efficiency in Surface-Mount Technology (SMT) manu-
facturing is a critical challenge, particularly in high-mix environments where frequent
product changeovers can lead to significant downtime. This study presents a scheduling
algorithm that minimizes changeover times on SMT lines by leveraging the commonality of
Surface-Mount Device (SMD) reel part numbers across product Bills of Materials (BOMs).
The algorithm’s capabilities were demonstrated through both simulated datasets and prac-
tical validation trials, providing a comprehensive evaluation framework. In the practical
implementation, the algorithm successfully aligned predicted and measured changeover
times, highlighting its applicability and accuracy in operational settings. The proposed
approach integrates heuristic and optimization techniques to identify scheduling strategies
that not only minimize reel changes but also support production scalability and opera-
tional flexibility. This framework offers a robust solution for optimizing SMT workflows,
enhancing productivity, and reducing resource inefficiencies in both greenfield projects and
established manufacturing environments.

Keywords: SMT; scheduling optimization; SMD reels; changeover time; production efficiency

1. Introduction
Printed Circuit Board Assembly (PCBA) is an essential process in electronics manu-

facturing, enabling the production of complex electronic devices with high precision and
efficiency. The process involves multiple steps, including solder paste printing, component
placement, and reflow soldering, with each step requiring meticulous coordination to
ensure quality and throughput. Among these steps, Surface-Mount Technology (SMT)
stands out as a critical method for assembling Surface-Mount Devices (SMDs) onto PCBs,
driven by the need for high-speed, accurate, and scalable manufacturing [1].

In SMT manufacturing, changeover time is a key factor that influences production
efficiency, particularly in high-mix environments [2]. Changeovers occur when the produc-
tion line transitions from one product to another, requiring the adjustment of equipment,
feeders, and the replenishment of SMD reels. Each changeover introduces downtime [3,4],
which can accumulate significantly, impacting overall productivity and increasing oper-
ational costs. Additionally, prolonged changeover times can lead to delays in meeting
production deadlines, escalating costs, and eroding customer satisfaction [5]. In competitive
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industries like electronics manufacturing, such inefficiencies directly affect a company’s
ability to maintain market relevance and respond to customer demands promptly.

A notable challenge in SMT changeovers arises from the need to accommodate unique
Bills of Materials (BOMs) for different products. While some components are common
across multiple BOMs, others are product-specific, necessitating frequent reel changes [6].
The complexity of managing these changes is compounded by the static or manual schedul-
ing methods used in many facilities, which do not account for the commonality of part
numbers or the potential for optimized sequencing of production runs [7]. This results in
inefficiencies that could otherwise be mitigated with a data-driven approach.

The problem of optimizing SMT scheduling, specifically in terms of minimizing reel
changes, remains underexplored. Traditional approaches often focus on volume-driven
scheduling or rely on first-in-first-out methods, which do not adequately address the need
to reduce tooling changes during high-mix production runs [8]. This gap underscores
the importance of developing algorithms that can analyze BOM data, identify shared
components, and sequence production runs to minimize downtime while maintaining
flexibility in production [9].

This work proposes a theoretical scheduling algorithm to optimize the sequencing
of SMT production runs by leveraging shared SMD reel part numbers. The algorithm
is designed to reduce changeover times by minimizing the frequency of reel changes,
addressing a critical inefficiency in the SMT process. The broader implications of reducing
changeover times extend beyond production efficiency to include cost savings, improved
customer satisfaction, and enhanced competitiveness in the SMT industry [5].

The proposed approach aligns with ongoing efforts to integrate advanced optimization
methods into the broader context of intelligent manufacturing systems. Recent studies have
demonstrated the potential of hybrid optimization algorithms, such as the Hybrid Spider
Monkey Optimization (HSMO) algorithm, to address complex scheduling challenges in
multi-level PCB assembly lines by combining heuristic and metaheuristic techniques [10].
These methods emphasize workload balancing, efficient resource allocation, and the seam-
less flow of materials, which are critical for achieving high throughput and minimizing
operational costs in SMT manufacturing.

The HSMO algorithm highlights the importance of incorporating real-time data, pre-
dictive modeling, and intelligent decision-making tools into scheduling frameworks. While
this study focuses on reducing changeover times, future work could integrate the pro-
posed algorithm into Material Requirements Planning (MRP) or Manufacturing Execution
Systems (MESs) to enable dynamic scheduling, improved material handling, and greater
adaptability to production demands [10].

This study contributes a systematic framework for improving SMT line efficiency
by prioritizing shared components across BOMs during scheduling. Leveraging BOM
data and validating the approach in practical scenarios, the algorithm offers an adaptable
solution for reducing changeover times and improving throughput, providing significant
value for high-mix SMT environments and laying the groundwork for future advancements
in data-driven scheduling.

2. Literature Review
The efficient management of SMT has been the focus of extensive research [11,12].

Changeover time, which refers to the period required to transition production lines between
different products, represents a critical bottleneck in SMT manufacturing. This bottleneck
not only affects production efficiency but also influences inventory management, opera-
tional costs, and delivery timelines [13,14]. As such, researchers have explored diverse
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methodologies to optimize these processes, aiming to minimize downtime and enhance
overall productivity.

2.1. Approaches to Changeover Optimization

Changeover in SMT lines is a multifaceted challenge, encompassing machine recon-
figurations, reel replacements, and feeder adjustments. These operations are essential
but time-intensive, particularly in high-mix, low-volume environments. To mitigate their
impact, researchers have proposed various methodologies, including the following:

• Simulation-Based Evaluations: Simulation models have been widely adopted to
analyze the interplay between machine configurations and production schedules [15].
For instance, previous studies approached the feasibility with simulation frameworks
to compare different facility layouts and assess cost-performance trade-offs [16]. These
simulations provided actionable insights into equipment integration, material han-
dling efficiency, and changeover time reduction strategies. Such models are particu-
larly useful in scenarios where empirical data are unavailable [17].

• Algorithmic Solutions: Advanced optimization algorithms have proven effective in
addressing changeover-related challenges, such as, for example, the following:

– Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO): These
metaheuristic algorithms have demonstrated the ability to refine operational
parameters, significantly reducing assembly times and improving scheduling
efficiency [14,18].

– Spider Monkey Optimization (SMO): Inspired by the social foraging behavior
of spider monkeys, SMO has been employed to optimize reel exchanges by
balancing exploration and exploitation. This method is particularly effective in
feeder allocation and sequencing tasks, aligning with the goals of minimizing
changeover times [19].

– Hybrid Spider Monkey Optimization (HSMO): Extending SMO, HSMO inte-
grates genetic operators like crossover and mutation to handle complex, multi-
level scheduling problems. While it encompasses broader SMT operations, such
as component placement and feeder assignment, its application to reel exchange
planning highlights its potential for minimizing setup times in changeover sce-
narios [20].

By iteratively refining scheduling parameters, these algorithms enable manufacturers
to achieve leaner operations with reduced downtime and enhanced throughput.

• Digital Twin and Cyber–Physical Systems (CPS): The integration of digital twins
and CPS has emerged as a cutting-edge solution for real-time optimization [21,22].
Previous studies have introduced the concept of Virtual Quality Gates, which pro-
vide predictive insights into production quality and performance. These systems
enable proactive management of changeovers, minimizing disruptions and ensuring
smoother transitions between production runs [23]. The use of CPS frameworks has
been instrumental in integrating real-time monitoring and decision-making capabili-
ties into SMT processes.

2.2. SMD Reel Replenishment Strategies

SMD reel replenishment plays a crucial role in determining changeover efficiency and
overall line performance [24]. Inadequate replenishment systems can lead to extended
downtimes, material shortages, and operational inefficiencies. Researchers have explored
the following strategies to address these challenges:



Data 2025, 10, 16 4 of 25

• Material Handling Systems: Automated Guided Vehicles (AGVs) and conveyor
systems have been proposed to streamline the movement of reels across SMT facilities.
Rotteveel’s research highlighted the cost-effectiveness of AGVs for interdepartmental
material handling, suggesting their potential in reel replenishment tasks. These
systems reduce manual intervention and improve the consistency of material delivery
to the production floor [25,26].

• Heuristic and Optimization Models: Heuristic methods, such as Mixed-Integer Linear
Programming (MILP), have been extensively used to develop reel allocation models
that minimize travel distances and setup times. While exact optimization methods
are often computationally expensive, hybrid approaches combining heuristics and
metaheuristics have shown promise in scaling these models to large datasets [27].

• Storage and Retrieval Systems: Advanced warehouse designs, including vertical
carousels and automated inventory tracking systems, have been proposed to enhance
reel accessibility. For example, SMT warehouse improvement studies emphasized
the importance of integrating storage solutions with production requirements [28].
By leveraging technologies such as automated retrieval systems, manufacturers can
significantly reduce search and retrieval times, thereby supporting faster changeovers.

2.3. The Concept of Changeover in SMT Processes

The concept of changeover extends beyond mere equipment adjustments to encompass
broader operational and logistical considerations. In SMT manufacturing, changeover
time can be divided into two main components: preparation time and execution time.
Preparation involves identifying and retrieving required components, while execution
includes reel changes, feeder adjustments, and machine setups. Studies indicate that
inefficient changeover management can lead to cascading delays, affecting downstream
processes such as inspection, packaging, and shipping [29].

For greenfield operations—where no historical production data exist—the challenges
of changeover management are amplified. Without prior benchmarks, manufacturers must
rely on simulation models and theoretical frameworks to develop effective strategies. In this
context, the integration of data-driven scheduling algorithms and predictive maintenance
tools has shown significant potential in addressing changeover inefficiencies.

2.4. Reel Exchange

The reel exchange process is a critical aspect of SMT production, directly impacting
changeover times and operational efficiency. This process involves loading component
reels into the feeder section of the pick-and-place machine, which is responsible for placing
components on printed circuit boards (PCBs). The following steps outline the reel exchange
process, supported by visual references:

2.4.1. Pick-and-Place Machine Overview

Figure 1 provides an overview of an SMT pick-and-place machine. Reels containing
components are loaded into the feeder tray section (visible in the lower area of the image).
The pick-and-place machine uses robotic arms to retrieve components from the feeder
section and place them accurately onto PCBs. For the machine to function effectively, each
reel must be positioned correctly in its designated feeder slot.
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Figure 1. Overview of the SMT pick-and-place machine setup, showing the reel feeders and opera-
tional area.

2.4.2. Reel Exchange Procedure

The reel exchange process consists of the following steps:

1. Identification: The operator retrieves the correct reel from the storage area based
on the production requirements. The reel part number and placement location are
indicated on the pick-and-place machine’s monitor.

2. Feeder Preparation: The operator aligns the reel tape with the designated feeder
slot. Proper alignment ensures that the tape can advance smoothly during compo-
nent pickup.

3. Loading the Reel: The tape is inserted into the assigned slot in the feeder section.
The correct slot location is determined by the machine monitor, which provides a clear
mapping of the reel-to-slot assignments.

4. Setup Confirmation: Once the reel is loaded, the operator ensures the feeder is
correctly secured and operational. The machine monitor displays confirmation of the
setup status before resuming operation.

2.4.3. Visual Representation

Figure 2 illustrates an operator positioning a reel in the feeder slot during the ex-
change process. This step requires careful alignment of the reel tape to avoid misfeeds or
operational delays.

Figure 2. Reel being positioned in the feeder slot during the exchange process.
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2.5. Research Gap

While previous studies have significantly advanced SMT manufacturing optimization,
critical gaps remain unaddressed. Table 1 provides a summary of the existing literature
and highlights the unresolved challenges.

Simulation-based studies primarily focus on layout optimization and machine avail-
ability but often lack real-world validation of their findings. Algorithmic approaches like
the Hybrid Spider Monkey Optimization (HSMO) demonstrate robust planning capabili-
ties but are limited in addressing specific challenges such as minimizing reel changeovers.
Additionally, many solutions require complex and resource-intensive implementations,
posing barriers to adoption in small and medium enterprises (SMEs) with constrained
budgets and technical resources.

This study addresses these gaps by validating a data-driven scheduling algorithm in a
real-world SMT manufacturing environment, focusing on minimizing changeover times
through the use of SMD reel commonality. The algorithm is tailored to the needs of SMEs,
offering practical, accessible solutions that ensure scalability without requiring extensive
integration with advanced production systems like Material Requirements Planning (MRP)
or Manufacturing Execution Systems (MESs). These characteristics make the proposed
approach particularly relevant for high-mix production environments and companies
seeking cost-effective methods to enhance scheduling efficiency.

Table 1. Summary of Literature and Research Gaps.

Reference and Author(s) Key Contribution Research Gaps
[16] (Rotteveel et al.) Actionable insights into SMT

facility layout and material
handling efficiency through
simulation frameworks

Lacks real-world validation
of proposed strategies

[30] (Low et al.) Enhanced feeder allocation
and reduced assembly times
using a metaheuristic Multi-
Swarm Firefly algorithm

Limited focus on reel
changeover efficiency

[10] (Mumtaz et al.) Optimized workload balanc-
ing and AGV scheduling
with a Hybrid Genetic-
Artificial Bee Colony (GABC)
algorithm

Focused on AGV integra-
tion; does not address reel-
specific optimization

[21] (Ferreira et al.) Integrated real-time monitor-
ing and predictive insights
using Digital Twin and CPS
frameworks

Requires advanced infras-
tructure unsuitable for
SMEs

This Study Changeover time reduc-
tion tailored to SME needs
through a data-driven
algorithm validated in a
real-world SMT line

Future potential for integra-
tion with MES/MRP sys-
tems and scalability for
larger datasets

2.6. Methodological Insights and Future Directions

The reviewed studies reveal a growing trend towards combining traditional optimiza-
tion techniques with emerging digital technologies. For instance, cyber–physical systems
enhance operational transparency and facilitate real-time decision-making, while hybrid al-
gorithms balance computational efficiency with solution quality [31]. These advancements
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underscore the need for context-specific solutions that address the unique challenges of
SMT manufacturing.

Despite the progress achieved, several gaps remain. For example, most studies fo-
cus on individual aspects of SMT processes, such as changeover or reel replenishment,
without considering their interdependencies [32]. Future research should adopt holistic
frameworks that integrate these components into a unified optimization model. Addition-
ally, the scalability and adaptability of existing methodologies to accommodate varying
production volumes and product mixes warrant further exploration.

In conclusion, the efficient management of changeover and reel replenishment pro-
cesses is critical for achieving lean and agile SMT operations. By leveraging the insights
and methodologies discussed in this section, manufacturers can enhance productivity,
reduce operational costs, and maintain a competitive edge in the fast-paced electronics
manufacturing industry.

3. Materials and Methods
3.1. Reel Exchange Time Measurement

To accurately quantify the time required for reel exchanges, observations were con-
ducted in an operational SMT factory under standard operating conditions. This process
involved measuring the time for each reel exchange performed by experienced operators.

Procedure:

1. Operators retrieved the required reels from the designated storage area.
2. Each reel was loaded into the feeder tray section of the SMT machine, following

proper alignment of the tape into the assigned slot as indicated by the machine’s
monitor.

3. The time taken for each reel exchange was measured using a stopwatch.

Data Collection:

The process was repeated for 30 reel exchanges to account for variability and ensure
reliability of the measurements. Summary statistics, including the mean, standard deviation,
and range, were calculated to characterize the observed times (see Table 2).

Table 2. Summary of Reel Exchange Times in an SMT Production Environment.

Metric Value (s)

Count (n) 30
Mean 31.58
Standard Deviation 1.57
Minimum 28.5
Maximum 35.2

The measured data serve as a baseline for validating the proposed scheduling opti-
mization algorithm by comparing predicted and observed changeover times.

3.2. Bill of Materials (BOM) Structure

The foundation of this study lies in the analysis and preparation of Bill of Materials
(BOM) data, which serve as the blueprint for manufacturing. Each BOM contains compre-
hensive information about the components required for a specific product. A reference
image of a typical BOM structure is shown in Figure 3.



Data 2025, 10, 16 8 of 25

Figure 3. Example of a BOM structure. Each row corresponds to a unique component, with columns
specifying its characteristics.

The columns in the BOM dataset are structured as follows:

• Quantity (Qty): The number of each component required for the product.
• Value: The specific electrical or mechanical value of the component, such as resistance

(e.g., 10 kΩ) or capacitance (e.g., 1 µF).
• Reference Designators: Unique identifiers for component placement on the PCB, such

as R1, C1, or U1.
• Part Number: Manufacturer-specific codes uniquely identifying the exact component.
• Package: The physical packaging of the component, such as R0805 for resistors or

SOIC8 for integrated circuits.
• Description: A brief textual description of the component, typically including the

value and package type.

This structure ensures all relevant component details are captured, providing clarity
and precision for manufacturing processes.

3.3. Data Preparation and Binary Matrix Construction

To facilitate computational analysis, the BOM data for each product were transformed
into a binary matrix. This matrix allows for efficient analysis of component overlap and
differences across products. The data preparation and matrix construction were performed
through the following detailed steps:

3.3.1. Standardization of Components

The initial BOM data for each product were sourced from separate files. To ensure
consistency and uniformity across products:

• Unique Part Numbers: All part numbers were standardized by checking for duplicates
and resolving ambiguities. This ensured that components with identical functions
across products were represented by the same part number.

• Column Consistency: The BOMs were standardized to have uniform column names
and data structures, including fields such as Part Number, Value, Reference Designa-
tors, and Package.

• Validation of Data: Each BOM was inspected to verify the completeness and correct-
ness of the part numbers, quantities, and other attributes. Missing or invalid entries
were flagged and corrected where possible.

The standardization step is critical for ensuring that the data from different BOMs can
be accurately compared and analyzed.
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3.3.2. Binary Matrix Encoding and Implementation

To enable efficient analysis of the BOM data, the standardized BOMs were transformed
into a binary matrix. This matrix provides a structured and compact representation of
component presence across multiple products, serving as the foundation for subsequent
analyses and optimizations.

3.3.3. Matrix Description and R Implementation

The binary matrix encodes the presence of components across products, simplifying
operations such as overlap analysis and changeover time calculations. Each row represents
a unique part number, and each column corresponds to a specific product. A binary value
of 1 indicates the presence of a part number in a product, while 0 denotes its absence.

The matrix was constructed in R following these steps:

1. Loading BOM Data: The BOMs for each product were stored as separate CSV files.
Using the read_csv() function from the tidyverse package, each file was imported
into R, ensuring accurate data representation.

2. Generating a Unified Part List: A master list of all unique part numbers was created
using the unique() function. This ensured no duplication and provided a compre-
hensive reference for encoding the data.

3. Binary Encoding: For each product, a binary vector was created indicating the
presence or absence of each part number in the master list. The %in% operator was
utilized for efficient matching.

4. Matrix Construction: The binary vectors were combined into a matrix using the
sapply() function. Rows represent part numbers, and columns represent products,
providing a complete binary encoding.

The following R code was used to implement the binary matrix:

# Load the BOM files
file_paths <- list.files(path = "path_to_BOM_files", pattern = "*.csv",
full.names = TRUE)

# Initialize an empty list to store BOM data
products <- list()

# Read each BOM and extract the "Part-Number" column
for (file in file_paths) {

bom_data <- read_csv(file)
if ("Part-Number" %in% colnames(bom_data)) {

products[[file]] <- bom_data$‘Part-Number‘
} else {

stop(paste("The file", file, "does not have a ’Part-Number’ column."))
}

}

# Generate a unique list of all part numbers
all_parts <- unique(unlist(products))

# Create the binary matrix
binary_matrix <- sapply(products, function(parts) {

as.integer(all_parts %in% parts)
})
rownames(binary_matrix) <- all_parts
colnames(binary_matrix) <- paste0("Product ", seq_along(products))
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Code Explanation

• The list.files() function identifies all BOM files in the directory, ensuring no file is
missed during processing.

• Each BOM file is read using the read_csv() function, extracting the "Part-Number"
column for analysis. An error message is triggered if this column is missing, ensuring
data integrity.

• The unique() function creates a comprehensive list of all part numbers across products,
preventing duplication.

• The sapply() function iterates over each product’s BOM to construct binary vectors,
which are then combined into the binary matrix. Rows correspond to part numbers,
while columns represent products.

Key Features and Utility

The binary matrix is instrumental in facilitating:

• Overlap Analysis: Identifies components shared between products, helping to stream-
line operations.

• Changeover Time Calculation: Simplifies the quantification of transition costs be-
tween products by highlighting component differences.

• Optimization Analysis: Provides input for scheduling algorithms designed to mini-
mize downtime and enhance production efficiency.

This matrix offers a computationally efficient way to analyze BOM data, enabling
rapid decision-making and optimization in SMT manufacturing. Encoding BOM data in a
structured format supports the broader goals of reducing changeover times and improving
production workflows.

3.4. Changeover Time Calculation and Implementation

Changeover time is a critical metric in SMT manufacturing, representing the time
required to replace or adjust components when transitioning from the production of
one product to another. Efficient calculation and minimization of this time are vital for
optimizing production schedules and reducing downtime.

Changeover Time Matrix and R Implementation

The changeover time matrix quantifies the transition costs between products by ana-
lyzing their component differences. Each entry in the matrix is calculated as

Tij = (|Ci − Cj|+ |Cj − Ci|) · t, (1)

where Ci and Cj represent the sets of components unique to Products i and j, respectively,
and t is the time required to replace a single component (31.58 s in this study).

Process Overview

To construct the matrix, the following steps were executed:

• Component Extraction: For each product, the list of components was extracted from
the binary matrix, representing the presence or absence of parts in the product BOM.

• Set Operations: Using set difference operations, the unique components for each
product pair (i, j) were identified. These represent the parts that need to be replaced
or adjusted during a transition.

• Matrix Construction: The total number of unique components for each product pair
was multiplied by the per-component changeover time (t) to compute the transition
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time. The results are stored in a square matrix, with rows and columns represent-
ing products.

The following R code was implemented to calculate the changeover time matrix:

# Define the time cost for each part number change
time_per_part_change <- 0.5263 # Equals 31.58 Sec

# Initialize the changeover time matrix
changeover_time_matrix <- matrix(0, ncol =
ncol(binary_matrix), nrow = ncol(binary_matrix))

# Calculate the changeover times
for (i in 1:ncol(binary_matrix)) {

for (j in 1:ncol(binary_matrix)) {
if (i != j) {

# Extract components for products i and j
parts_in_i <- rownames(binary_matrix)[binary_matrix[, i] == 1]
parts_in_j <- rownames(binary_matrix)[binary_matrix[, j] == 1]

# Compute unique components
unique_to_i <- setdiff(parts_in_i, parts_in_j)
unique_to_j <- setdiff(parts_in_j, parts_in_i)

# Calculate transition time
changeover_time_matrix[i, j] <- (length(unique_to_i)
+ length(unique_to_j)) * time_per_part_change

}
}

}
# Assign row and column names
rownames(changeover_time_matrix) <- colnames(binary_matrix)
colnames(changeover_time_matrix) <- colnames(binary_matrix)

Code Explanation

• Time Cost Definition: The variable time_per_part_change defines the fixed time
required for a single component change.

• Matrix Initialization: A square matrix (changeover_time_matrix) was initialized to
store transition times between all product pairs.

• Component Analysis: For each product pair (i, j), the components unique to i and j
were identified using the setdiff() function.

• Transition Time Calculation: The total number of unique components for each pair
was multiplied by time_per_part_change to compute the changeover time, which
was stored in the corresponding matrix cell.

• Matrix Naming: The rows and columns of the matrix were labeled with product
names for clarity.

Key Features and Applications

The changeover time matrix is central to the study, enabling the following:

• Scheduling Optimization: Provides input for sequencing algorithms to minimize
total changeover time.

• Visualization and Insights: Facilitates the identification of high-transition-cost prod-
uct pairs, informing decisions to optimize production flow.
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• Practical Utility: Supports real-world applications by quantifying transition costs and
enabling better resource allocation in SMT lines.

3.5. Optimization Algorithm for Scheduling

The optimization algorithm aims to minimize cumulative changeover time by deter-
mining the optimal sequence of products based on the changeover time matrix. The ap-
proach consists of the following steps:

• Changeover Matrix Computation: The algorithm begins by calculating the changeover
time matrix, as described earlier, to quantify the transition cost between every pair
of products.

• Sequence Prioritization: A greedy heuristic is applied to prioritize transitions between
products that involve the smallest changeover time. This ensures that the sequence
minimizes the number of unique component changes between consecutive products.

• Optimal Sequence Identification: An iterative approach is employed to identify
the order of products that minimizes the total changeover time across the entire
production run. The algorithm dynamically adjusts the sequence based on previously
visited products.

R Implementation

The following R code was developed to implement the optimization algorithm:

# Function to find the optimal product sequence
find_optimal_sequence_time <- function(changeover_matrix) {

n <- nrow(changeover_matrix) # Number of products
visited <- rep(FALSE, n) # Track visited products
sequence <- numeric(n) # Initialize the sequence
current <- 1 # Start with the first product
visited[current] <- TRUE
sequence[1] <- current

for (step in 2:n) {
remaining <- which(!visited) # Identify unvisited products
# Select the next product with the smallest changeover time
next_product <- remaining[which.min(changeover_matrix[current, remaining])]
sequence[step] <- next_product
visited[next_product] <- TRUE
current <- next_product

}
return(sequence)

}

# Compute the optimal sequence using the changeover time matrix
optimal_sequence <- find_optimal_sequence_time(changeover_time_matrix)

Code Explanation

• Initialization: The function initializes variables to track visited products and the
sequence. The first product is selected as the starting point.

• Greedy Selection: At each step, the algorithm identifies the next product by selecting
the unvisited product with the smallest transition time from the current product.

• Sequence Construction: The selected product is added to the sequence, marked as
visited, and becomes the new starting point for the next iteration.

• Output: The function returns the optimal sequence, minimizing the cumulative
changeover time.
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The algorithm ensures efficient scheduling by dynamically adjusting the sequence to
minimize downtime, providing a practical tool for optimizing SMT production processes.

3.6. Visualization

The visualization of the computed changeover times plays a crucial role in interpreting
results and ensuring the effectiveness of the proposed scheduling algorithm. The following
steps were taken:

• Changeover Time Heatmap: The changeover time matrix was visualized as a heatmap
to highlight transition costs between products. Each cell in the heatmap represents the
time required to transition from one product to another, with darker colors indicating
higher transition times. This visualization helps identify bottlenecks and provides
actionable insights into the scheduling process.

3.6.1. R Implementation

The heatmap was generated in R using the following code:

library(pheatmap)

# Plot the changeover time matrix as a heatmap
pheatmap(

changeover_time_matrix,
main = "Changeover Time Matrix (in Minutes)",
cluster_rows = FALSE, # Avoid clustering rows
cluster_cols = FALSE, # Avoid clustering columns
display_numbers = TRUE, # Display transition times
color = colorRampPalette(c("white", "blue"))(50) # Color gradient

)

Code Explanation

• Heatmap Library: The pheatmap package is used for creating a clear and visually
appealing heatmap.

• Matrix Input: The changeover_time_matrix is used as the input data for the heatmap.
• Avoid Clustering: Row and column clustering is disabled (cluster_rows = FALSE

and cluster_cols = FALSE) to preserve the original structure of the data.
• Display Values: Transition times are displayed within the heatmap cells using the

display_numbers = TRUE option.
• Color Gradient: A gradient from white (low transition times) to blue (high transition

times) is applied for intuitive visualization.

3.6.2. Utility of Visualization

The heatmap serves multiple purposes:

• Bottleneck Identification: Highlights high-cost transitions, enabling focused process
improvements.

• Decision Support: Assists production managers in identifying efficient product se-
quences and transition strategies.

• Validation Insight: Provides a visual confirmation of the algorithm’s effectiveness in
minimizing changeover times.

This visualization not only supports the interpretation of results but also enhances
the applicability of the algorithm by offering production teams a practical tool to optimize
scheduling decisions.
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3.7. Commonality Analysis

To further analyze the relationships between products, a commonality matrix was
constructed. The matrix quantifies the overlap in components across different products.
Each cell in the matrix represents the number of shared components between two products.
This analysis was performed using the binary matrix, and the methodology consists of the
following steps:

1. Matrix Construction: The binary matrix was utilized to compute the number of
shared components for each pair of products. Logical operations were applied to
determine the intersection of components between product pairs.

2. Data Transformation for Visualization: The resulting matrix was converted into a
suitable format for graph-based visualization. Non-zero entries representing shared
components between distinct product pairs were extracted for further analysis.

3. Network Graph Development: A graph-based representation was created to visually
depict the commonality relationships. Products were represented as nodes, and shared
components were depicted as weighted edges. The weight of each edge corresponds
to the number of shared components.

This approach provides an intuitive understanding of the relationships between
products and highlights groups of products with significant commonality, which is critical
for scheduling and optimization in SMT production workflows.

3.8. Validation Through Real-World Trials

To validate the applicability of the proposed scheduling optimization algorithm in a
real-world SMT production environment, a targeted trial was conducted. The validation
focused on assessing the accuracy of the algorithm’s changeover time predictions under
practical operating conditions.

3.8.1. Procedure

The validation process followed these steps:

• Transition Selection: A transition between Product 3 and Product 4 was selected for
validation. This pair was chosen due to its high BOM commonality, resulting in one of
the shortest predicted changeover times.

• Reel Exchange Process: Reels corresponding to unique components for Products 3
and 4 were manually replaced on the SMT line by an operator.

• Measurement: The time taken for each reel exchange was measured using a stopwatch
to ensure accuracy and precision.

• Summation of Times: The total measured changeover time was calculated as the sum
of individual reel exchange times for the selected product transition.

3.8.2. Data Collection

The experiment was repeated across multiple trials (n=3) to ensure reliability and
minimize variability in the measured changeover times. During each trial, the time taken
for reel exchanges was recorded using a stopwatch.

The measured times for each individual reel replacement were summed to calculate
the total changeover time for the transition between Product 3 and Product 4. This process
ensured that the collected data accurately represented the practical time required for the
selected transition. The collected measurements were subsequently compared with the
algorithm’s predicted values, as presented Section 4.
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4. Results
The dataset used in this study includes 10 unique product BOMs labeled Product

1 through Product 10. Each BOM consists of a set of part numbers, with their presence
or absence represented in a binary matrix. Key descriptive statistics for the dataset are
outlined below.

4.1. Descriptive Analysis

The dataset used in this study includes 10 unique product BOMs labeled Product
1 through Product 10. Each BOM consists of a set of part numbers, with their presence
or absence represented in a binary matrix. The binary matrix serves as a foundation for
analyzing overlaps, differences, and commonalities among products.

To illustrate the structure of the binary matrix, Table 3 shows the first ten rows as a
representative sample. In this matrix, a value of 1 indicates the presence of a part in the
product BOM, while 0 indicates its absence. This truncated view is provided for clarity and
does not represent the entire dataset.

Table 3. Sample Binary Matrix Showing Part Presence Across Products (First 10 Rows).

Part Number P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

JRA-69845-LF 1 1 1 1 1 1 1 1 1 1
JIB-49839-LF 1 1 1 1 1 1 1 1 1 1
JCA-57518-LF 1 1 1 1 1 1 1 1 1 1
JRA-96478-LF 1 1 1 1 1 1 1 1 1 1
JRA-12753-LF 1 1 1 0 1 1 1 1 1 1
JPA-77264-LF 1 1 1 0 1 1 1 1 1 0
JRA-29627-LF 1 1 1 0 1 1 1 0 1 0
JRB-24480-LF 1 1 1 0 1 1 1 0 0 0
JRA-32272-LF 1 1 1 0 1 0 1 0 0 0
JRA-32936-Pb 1 1 1 0 1 0 1 0 0 0

The sample binary matrix highlights the presence of common parts across different
products, which plays a crucial role in subsequent analyses. Specifically, identifying shared
components allows for optimizing changeover times and improving scheduling efficiency.
The full binary matrix, which includes 898 unique parts across 10 products, is used for all
the calculations and results discussed in this study.

4.1.1. Component Type Distribution

The composition of each product in terms of resistors, capacitors, ICs, connectors,
and unknown components was analyzed using the prefix of the part numbers. Each
part number begins with the letter “J”, followed by a character indicating its type: “R”
for Resistor, “C” for Capacitor, “I” for IC, and ”P” for Connector. Components without
identifiable prefixes were categorized as “Unknown”. This classification enabled a detailed
breakdown of the component types across all products.

Table 4 provides the percentage distribution for each component type across the
10 products. Resistors and capacitors dominate the BOMs, with resistors accounting for
up to 46.5% (Product 1) and capacitors for up to 46.0% (Product 1). ICs and connectors are
present in smaller proportions, ranging from 9.0% to 23.5% and 2.1% to 21.1%, respectively.
Notably, no “Unknown” components were identified in this dataset due to the robust
prefix-based classification.
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Table 4. Component Type Distribution Across Products (in %).

Product Resistor Capacitor IC Connector Unknown

Product 1 46.5 46.0 5.3 2.1 0.0
Product 2 35.9 39.5 13.9 10.8 0.0
Product 3 37.5 38.1 14.2 10.2 0.0
Product 4 33.2 35.8 17.1 14.0 0.0
Product 5 39.4 45.8 9.0 5.8 0.0
Product 6 29.9 34.2 19.3 16.6 0.0
Product 7 40.9 32.3 15.6 11.3 0.0
Product 8 33.5 27.8 17.5 21.1 0.0
Product 9 28.3 34.6 18.0 19.0 0.0
Product 10 30.0 33.5 23.5 12.9 0.0

4.1.2. Unique Part Analysis

The analysis of part distribution across products provided the following insights:

• Total unique part numbers across all products: 898.
• Parts shared across at least two products: 298.
• Exclusive parts (present in only one product): 600.

Table 5 presents the count of unique part numbers for each individual product.

Table 5. Unique Part Count Per Product.

Product Unique Part Count

Product 1 187
Product 2 223
Product 3 176
Product 4 193
Product 5 155
Product 6 187
Product 7 186
Product 8 194
Product 9 205
Product 10 170

These findings highlight the criticality of identifying commonalities across BOMs
to optimize changeover efficiency and production scheduling in SMT manufactur-
ing environments.

4.1.3. Top 10 Most Common Parts

The top 10 most frequently used part numbers across the BOMs are listed in Table 6.
Each part was present in at least nine products, highlighting the significant overlap of these
components in the dataset.

These descriptive statistics provide a comprehensive overview of the dataset, serving
as a foundation for subsequent optimization and changeover analysis.
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Table 6. Top 10 Most Common Part Numbers Across Products.

Part Number Usage Count

JRA-69845-LF 10
JIB-49839-LF 10
JCA-57518-LF 10
JRA-96478-LF 10
JRA-12753-LF 9
JPA-77264-LF 9
JRA-29627-LF 9
JRB-24480-LF 9
JRA-32272-LF 9
JRA-32936-Pb 9

4.2. Changeover Analysis

Changeover time is a critical factor in high-mix Surface-Mount Technology (SMT)
manufacturing, as it directly impacts production efficiency. To evaluate the proposed
scheduling algorithm, a changeover time matrix was constructed using the binary matrix
of product BOMs. Each entry in the matrix represents the total time required to transition
from one product to another, calculated as the number of unique parts that need to be
replaced multiplied by a fixed time cost of 0.5 min per part change.

4.2.1. Changeover Time Matrix

Table 7 presents the complete changeover time matrix, where each cell indicates the
time in minutes required to transition from one product to another. Diagonal entries are
zero since they represent transitions within the same product.

Table 7. Changeover Time Matrix (in Minutes). Each value represents the time required to transition
from one product to another.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0.0
P2 87.3 0.0
P3 84.7 84.7 0.0
P4 115.7 122.1 51.0 0.0
P5 56.84 75.7 68.9 99.9 0.0
P6 147.3 119.9 131.0 152.6 134.7 0.0
P7 116.3 135.2 122.1 145.7 69.9 164.7 0.0
P8 156.3 166.8 112.6 88.9 140.5 171.0 171.5 0.0
P9 159.9 169.4 122.6 102.1 143.1 176.8 171.0 148.9 0.0
P10 144.7 124.7 137.8 153.1 128.9 151.0 158.9 171.5 173.1 0.0

4.2.2. Heatmap Visualization

The changeover time matrix is visualized in Figure 4, which provides a heatmap
representation of the time required for each product-to-product transition. Darker shades
of blue represent higher changeover times, while lighter shades indicate shorter transitions.
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Figure 4. Changeover time matrix heatmap. Darker shades represent higher changeover times (in
minutes), and lighter shades represent lower times. Diagonal values represent transitions within the
same product and are always zero.

The heatmap in Figure 4 reveals several critical insights:

• Shortest Changeovers: The shortest transition occurs between Product 3 and Product 4
with a changeover time of 51.05 min. This highlights the significant overlap in shared
part numbers between their BOMs.

• Longest Changeovers: The longest transition is observed between Product 6 and
Product 9, with a changeover time of 176.8 min, reflecting minimal part commonality.

• General Trends: Products with higher BOM commonality generally exhibit shorter
transitions, emphasizing the importance of scheduling decisions.

4.2.3. Optimal Product Sequence and Efficiency

Using the changeover time matrix, an optimized product sequence was determined
by employing a scheduling algorithm designed to minimize total changeover time. This
sequence prioritizes transitions between products with significant BOM overlap, effectively
reducing the time and effort required for reel changes. The optimal sequence and its metrics
are as follows:

• Optimal Sequence: P1 → P5 → P3 → P4 → P8 → P9 → P2 → P6 → P10 → P7.
• Total Changeover Time (Optimal Path): 1014 min.

To provide additional context, a worst-case scenario sequence was constructed, simu-
lating a random order of product transitions with minimal BOM overlap. This sequence
highlights the inefficiencies that arise when transitions are not optimized:

• Worst Path Sequence: P1 → P6 → P9 → P4 → P8 → P2 → P10 → P7 → P5 → P3.
• Total Changeover Time (Worst Path): 1438 min.
• Time Saved with Optimal Path: 424 min (29.4% reduction).

Table 8 summarizes the key metrics for both the optimal and worst paths.
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Table 8. Comparison of Optimal and Worst Paths.

Metric Optimal Path Worst Path

Sequence

P1 → P5 → P3
→ P4 → P8 → P9
→ P2 → P6 → P10
→ P7

P1 → P6 → P9
→ P4 → P8 → P2
→ P10 → P7 → P5
→ P3

Total Changeover Time (Minutes) 1014 1438
Time Saved (Minutes) 424 —

The significant reduction in changeover time achieved by the optimal sequence un-
derscores the importance of data-driven scheduling in SMT manufacturing. This method
minimizes downtime, reduces operational costs, and enhances overall production efficiency.
Conversely, the inefficiencies of the worst path highlight the potential for substantial delays
and increased effort when transitions are poorly planned or left to chance.

The results demonstrate that a structured approach to scheduling, which leverages
component commonality, is critical for achieving lean and efficient operations, particularly
in greenfield SMT environments where historical production data may not yet exist.

4.3. Commonality Analysis Results

The commonality analysis revealed the relationships between products based on their
shared components. The commonality matrix was visualized as a network graph, where
the following are used:

• Nodes represent individual products.
• Edges indicate shared components between products, with the edge width propor-

tional to the number of shared components.

Figure 5 presents the commonality network graph, highlighting clusters of products
with high shared componentality. These clusters indicate opportunities for sequencing
products in a manner that minimizes changeover times, as transitions within clusters
generally require fewer reel changes.

Figure 5. Product commonality network. The graph illustrates shared components between products,
with edge widths proportional to the number of shared components.
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This visualization demonstrates the potential for optimizing production efficiency by
leveraging the relationships identified through the commonality analysis. Products with
significant overlap can be prioritized for consecutive production to minimize transitions
and reel changes, contributing to overall process optimization.

4.4. Significance of Optimization

The optimization highlights the practical implications of scheduling based on part
commonality. By minimizing unnecessary part replacements and downtime, the algorithm
facilitates smoother production flows and higher throughput. This approach is particu-
larly beneficial in high-mix manufacturing environments where frequent product changes
are required.

Real-World Verification of Changeover Time

To validate the accuracy of the proposed algorithm in a real-world SMT environment,
a subset of transitions was tested on an operational SMT line. The measured changeover
times were compared against the algorithm’s predictions for transitions between two
selected products: Product 3 and Product 4. These products were chosen due to their high
BOM commonality, resulting in one of the shortest predicted transition times.

Procedure

The real-world changeover involves the following:

• Replacing reels corresponding to the unique parts of Product 3 and Product 4.
• Measuring the time taken for each reel exchange using a stopwatch.
• Calculating the total changeover time as the sum of all reel exchanges.

The results of the real-world measurement were compared with the algorithm’s pre-
diction, as shown in Table 9.

Table 9. Comparison of Predicted and Real-World Changeover Times.

Transition Predicted Time (min) Measured Time (min)

Product 3 → Product 4 51.05 52.8

Findings

The measured time closely aligns with the algorithm’s predicted value, with a minor
deviation of approximately 3.5%. This result supports the practical applicability of the
proposed scheduling optimization method and highlights the accuracy of the changeover
time estimation model.

5. Discussion
The findings of this study highlight the significant potential of the proposed scheduling

algorithm in optimizing SMT production workflows, particularly in minimizing changeover
times and improving operational efficiency. The changeover time matrix (Table 7) and the
heatmap visualization (Figure 4) illustrate the benefits of sequencing products based on
commonality in BOMs. By prioritizing transitions between products with higher overlap
in part numbers, the algorithm achieved the following key outcomes:

• A cumulative changeover time of 1014 min for the optimal product sequence, repre-
senting a substantial reduction compared with traditional scheduling approaches.

• Enhanced operational efficiency by aligning with lean manufacturing principles,
particularly in reducing waste associated with frequent reel changes and transitions.
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• Improved practicality for high-mix production environments, where frequent product
changes pose a significant challenge to throughput and productivity.

These results reinforce the importance of leveraging data-driven approaches to address
bottlenecks in SMT manufacturing. The emphasis on shared components in sequencing
decisions aligns with prior research that underscores the critical role of reducing reel
replenishment and transition times in high-mix production settings.

5.1. Strengths and Practical Implications

The algorithm’s focus on minimizing unique part changes between successive products
not only reduces downtime but also aligns with broader industry trends toward digitization
and smart manufacturing. The visual analysis provided in Figure 4 offers actionable insights
into the transition dynamics, enabling production managers to make informed decisions
about scheduling strategies.

Additionally, the optimal product sequence identified (P1 → P5 → P3 → P4 → P8
→ P9 → P2 → P6 → P10 → P7) demonstrates the algorithm’s ability to balance multiple
objectives, including minimizing changeover time while maintaining flexibility to adapt to
production demands. This sequence effectively exploits commonality between products,
ensuring smoother transitions and reduced time costs.

Unlike some advanced optimization methods, such as Spider Monkey Optimization
(SMO) or Hybrid Spider Monkey Optimization (HSMO), the proposed algorithm is im-
plemented using an open-source platform, making it accessible to small and medium
enterprises (SMEs). This focus on accessibility enhances its applicability for companies
with limited resources, addressing the need for cost-effective scheduling solutions in
SMT manufacturing.

5.2. Integration with MES/ERP Systems

Future integration of the proposed scheduling algorithm with Manufacturing Execu-
tion Systems (MESs) or Enterprise Resource Planning (ERP) platforms can significantly
enhance its practical implementation. MESs bridge the gap between production floor
operations and overarching business processes, providing real-time data that could refine
scheduling accuracy and responsiveness [12]. Similarly, ERP systems centralize production
planning and inventory management, enabling seamless synchronization of scheduling
decisions with inventory levels and customer orders [2].

The modularity of the proposed algorithm allows it to be adapted for integration into
existing digital infrastructures. For example, incorporating real-time inventory tracking
from an ERP system could ensure the timely availability of reels and components, aligning
production schedules with material readiness. Additionally, MES platforms could provide
real-time feedback on production performance, enabling dynamic adjustments to minimize
disruptions during changeovers. These enhancements would extend the algorithm’s
scalability and applicability in diverse SMT manufacturing scenarios.

While the current study focuses on standalone algorithmic validation, future research
should investigate the operational challenges and technological requirements for integrat-
ing such algorithms into MES/ERP frameworks. Factors such as data interoperability,
system latency, and user interface design must be addressed to ensure smooth adoption
and effective utilization in existing production ecosystems.

5.3. Limitations and Future Directions

While the results of this study are promising, several limitations must be acknowledged:
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• The reliance on simulated data introduces constraints regarding the algorithm’s appli-
cability in operational settings. Validation in live SMT environments is necessary to
confirm its robustness.

• Scalability to larger datasets or facilities with highly complex BOMs has not been
fully evaluated. As production complexity increases, computational efficiency and the
algorithm’s ability to maintain solution quality need further investigation.

• The current model focuses on minimizing changeover time without addressing lead
time constraints, workload balancing, or supply chain flexibility, which are critical for
real-world production planning.

Future work could explore the development of a unified optimization framework that
considers changeover time alongside production volume dynamics, real-time inventory
constraints, and integration with digital manufacturing systems. By aligning with Industry
4.0 principles, this approach would enable manufacturers to achieve higher efficiency and
adaptability in complex SMT environments.

6. Conclusions
This study introduced a scheduling optimization framework for Surface-Mount Tech-

nology (SMT) manufacturing, designed to minimize changeover times by leveraging
component commonality across product Bills of Materials (BOMs). The proposed ap-
proach effectively reduces operational downtime, aligns with lean manufacturing prin-
ciples, and enhances production efficiency. Key contributions of this research include
the following:

• Development of a data-driven scheduling algorithm that prioritizes shared compo-
nents, significantly reducing reel exchange times and improving throughput.

• Validation of the methodology through observational trials in an operational SMT
environment, demonstrating its applicability and accuracy in real-world conditions.

• Practical insights into optimizing resource utilization and streamlining production
workflows in high-mix manufacturing settings.

From a broader perspective, this study underscores the role of efficient scheduling in
improving production performance and supply chain resilience. By optimizing sequencing
strategies and minimizing reel replacements, manufacturers can achieve the following:

• Reduced lead times and faster responses to dynamic market demands.
• Lower operational costs through improved material handling efficiency.
• Enhanced resource utilization, including equipment, labor, and inventory.

6.1. Practical Applications and Future Directions

This research provides a scalable solution for SMT manufacturers aiming to improve
scheduling efficiency. The following practical applications and research opportunities are
proposed to further advance the framework:

6.1.1. Practical Applications

• Integrating the scheduling algorithm with production planning tools and inventory
management systems to enable real-time decision-making.

• Utilizing visual tools, such as heatmaps and changeover matrices, to monitor and
communicate scheduling strategies effectively across production teams.

• Refining scheduling decisions by continuously tracking reel exchange performance
and identifying opportunities to minimize setup times.
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• Extending the algorithm’s integration into existing Manufacturing Execution Sys-
tems (MESs) and Enterprise Resource Planning (ERP) platforms to provide seamless
connectivity and improved workflow management.

6.1.2. Future Research Directions

• Expanding the scheduling model to incorporate variable reel exchange costs, operator
efficiency, and equipment-specific factors for greater precision.

• Integrating lead time constraints, workload balancing, and supply chain flexibility
into the optimization model to ensure holistic production planning.

• Developing adaptive scheduling frameworks using real-time production data and
machine learning to dynamically adjust to evolving conditions.

• Testing the algorithm’s scalability and robustness in diverse SMT production environ-
ments, including automated material handling systems and digital twin technologies.

• Addressing supply chain disruptions, such as component shortages, by incorporating
predictive modeling techniques.

• Exploring the application of the scheduling algorithm in other manufacturing envi-
ronments, such as automotive or aerospace industries, where high-mix production
and frequent changeovers are critical challenges.

In conclusion, this study provides a robust and adaptable framework for addressing
changeover challenges in SMT manufacturing. By reducing downtime, improving resource
utilization, and enhancing scheduling accuracy, the proposed approach enables manufac-
turers to achieve greater operational efficiency and resilience. Future advancements in
integration, adaptability, and scalability will further cement the transformative potential of
data-driven scheduling optimization in SMT production systems.
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