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Abstract: In clinical nutrition, it is regularly observed that individuals respond differently
to a dietary treatment. Personalized nutrition aims to consider such variability in response
by delivering personalized nutritional recommendations. Ideally, the optimal treatment for
each individual will be selected and then dispensed according to the specific individual’s
characteristics. The aim of this paper is to discuss and apply existing statistical meth-
ods, which can be adequately used in the context of personalized nutrition. We discuss
the estimation of individualized treatment rules (ITRs) as we wish to favor one out of
two interventions. The applicability of the methods is demonstrated by reusing two public
datasets: one in the context of a parallel group design and one in the context of a crossover
design. The bias of the estimator of the ITRs underlying parameters is evaluated in a
simulation study.

Keywords: personalized nutrition; individualized treatment rules; simulations; real data
example; publicly available datasets; parallel group and crossover design

1. Introduction
In nutrition research, heterogeneity in response to dietary interventions has been

repeatedly observed. To give just a few examples, heterogeneity in stimulation after
caffeine intake [1] has already been established, in addition to heterogeneity in postprandial
glycemia [2] in weight loss [3] and in absorption, metabolism, and excretion of nutrients [4].
Personalized nutrition aims to take this heterogeneity into account by providing individuals
with different nutritional recommendations, depending on whether or not they are carriers
of specific genetic variants, for example. Since the cost as well as the benefits of a dietary
intervention might be difficult to predict in advance, it is useful to know how the magnitude
of the benefits vary with individual attributes (i.e., by a covariate) (Athey and Imbens [5]).

Standard statistical methods considering and comparing population averages of some
parameters of interest may not be adequate for exploiting such heterogeneity in human
response to treatments since heterogeneity is often seen as a nuisance parameter.

More appropriate statistical tools in such a personalized context already exist, and they
are receiving greater attention: so-called individualized treatment rules (ITRs). ITRs aim to
assign treatments, favoring one treatment over alternative treatments, in order to achieve
optimal outcomes and can be expressed via the so-called conditional average treatment effects
function D.
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Nevertheless, some work exists in the literature on the estimation of the conditional
treatment effects function in question. Most notably, Matsouaka et al. [6] proposed a two-
step robust method to derive ITRs and evaluate their values; Kuenzel et al. [7] proposes
a unifying framework for many estimators of the function D, using different machine
learning techniques; Athey and Imbens [5] propose a partitioning approach in order
to find subpopulations that differ in the magnitude of treatment effects, focusing on
estimating and making inference for the function D. Moreover, extensions that balance bias
and variance inflation, when using regularization, have also been proposed recently by
Cai et al. [8], in addition to a constrained Lasso approach of hierarchical interactions for
predicting treatment response and analyzing heterogeneity of treatment effects proposed
by Du et al. [9].

The main focus of the current paper is to show and discuss the estimation of the
conditional average treatment effects function D in a clinical context. Specifically, the con-
tribution of this paper consists in identifying and transferring existing statistical methods,
which can be useful in personalized nutrition, in addition to illustrating application to real
data after practical implementation of the estimators.

The rest of the paper is organized as follows. Section 2 introduces some notation and
assumptions and discusses an estimation of D; Section 3 provides two illustrative examples
and includes a simulation study. Section 4 outlines and discusses possible extensions of
the framework.

2. Methods
Notation and Assumptions

Let (X, Y, G), (X1, Y1, G1), . . . , (Xn, Yn, Gn) be a (Rd ×R× {0, 1}) i.i.d triple, where X
is a baseline covariate vector, Y is the outcome variable, and G a dichotomous variable
indicating treatment choice over two: G is equal to 0 for a standard or control treatment, and G
is equal to 1 for an experimental treatment, which are assigned randomly. The dimension of
the covariate X may be relatively large, and the covariate may or may not be continuous.

Throughout the article, we use the notation Y(0), which denotes the potential outcome
of Y in case where G was equal to 0 (standard treatment), and we use the notation Y(1),
which denotes the potential outcome of Y in case where G was equal to 1 (experimen-
tal treatment).

Y, Y(0), and Y(1) are related via the consistency assumption, requiring that Y = GY(1) +

(1− G)Y(0) [6]. Moreover, we assume that each individual’s potential response to treatment
does not depend on the treatment assignment mechanism, the treatment received by other
individuals, or their potential responses to treatment (standard stable unit treatment value
assumption) [10]. The assumption of ignorable treatment assignment rules out the existence of
unobservable factors that affect the treatment selection, meaning that (Y(0), Y(1)) and G are
conditional independent with respect to X (Rosenbaum et al. [11]). Finally, we assume that
a larger value of Y is more beneficial, without loss of generality [6].

Let I(X) be an individualized treatment rule (ITR), i.e., a function Rd → {0, 1} that
assigns one of the two treatments to individuals (i.e., 0 for treatment 0 and 1 for treatment
1), given the vector X of the (observable) covariate.

The final aim is to identify an optimal I(·), i.e., an optimal treatment assignment,
which maximizes individuals’ outcomes, depending on some of their characteristics. When
the treatment choice is optimized for all individuals, the resulting population average
outcome is also optimized. Thus, an optimal ITR is also expected to maximize a population
average value function. One way to quantify such individuals’ outcomes is by the population
average outcome, defined as
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VI := E
{
I(X)Y(1) + (1 − I(X))Y(0)

}
. (1)

The population average outcome is optimized as long as treatment assignment is
optimized for all individuals. The optimal I(·) maximizing VI is Bayes Rule

IBayes = argmaxIVI with IBayes(X) = 1
{
E
{(

Y(1) − Y(0)
)
|X
}
≥ 0

}
(2)

where 1{·} is the indicator function (compare [6]). Bayes Rule (2) is determinated by a
function Rd → R, called conditional average treatment effects function (CATE), defined as

D(x) := E
{(

Y(1) − Y(0)
)
|X = x

}
, (3)

which can be expressed as µ(1)(x)− µ(0)(x) = E
{

Y(1)|X = x
}
− E

{
Y(0)|X = x

}
. There-

fore, µ(0) and µ(1) refer to the conditional expected potential outcome with the standard
treatment and the experimental treatment, respectively, factorized on the covariate value.
Since the distribution of (X, Y, G) and, therefore, I and D are typically unknown, we have
to estimate them by a sample (X1, Y1, G1) . . . (Xn, Yn, Gn) of i.i.d. copies of (X, Y, G). Then,
the function D as in Equation (3) can be estimated by

D̂(x) = µ̂(1)(x)− µ̂(0)(x), (4)

where µ̂(0) and µ̂(1) are estimators of µ(0) and of µ(1). If the two true functions µ(0) and µ(1)

are parallel, their difference would represent a treatment effect independent of x. Otherwise,
if µ(0) and µ(1) are not parallel, the difference varies with x, which would suggest a distinct
benefit by one treatment over the other according to the value of x; this would represent an
individualized treatment effect.

The CATE can be given parametrically by means of a linear model, expressed via

parameters β̂0 and β̂1, i.e., µ̂(0)(x) = β̂0
(0)

+ β̂1
(0)

x and µ̂(1)(x) = β̂0
(1)

+ β̂1
(1)

x. Assuming
the parameter estimates are asymptotically normal, then, asymptotic confidence intervals
of the treatment effect D(x) can be calculated by the delta method. An ITR could be given
by assigning the experimental treatment if the lower bound of the confidence interval of the
CATE at the observed value of the covariate is bigger than zero. Comparing to Bayes Rule,
this is a more conservative approach, which is motivated by a higher potential risk, by
applying non-standard treatments. However, an increase in sample size will decrease the
size of the confidence interval, and by the consistency of the estimators, the ITR converge
for increasing sample size to Bayes Rule.

In the case of a linear regression model with a one-dimensional covariate X the
estimator of D becomes

D̂(x) = (β̂0
(1) − β̂0

(0)
) + (β̂1

(1) − β̂1
(0)

)x, (5)

as in Rosenbaum et al. [11]. In the case of a linear regression model with a two-dimensional
covariate vector X, i.e., X = (X1, X2)

T the estimator of D becomes

D̂(x) = (β̂0
(1) − β̂0

(0)
) + (β̂

(1)
1 − β̂

(0)
1 )x1 + (β̂

(1)
2 − β̂

(1)
2 )x2

3. Data Examples
3.1. Application to a Trial Concerning Serum Vitamin D Concentration

In order to illustrate the described method, we reconsidered a randomized controlled trial
on the effect of two different doses of cholecalciferol on the serum vitamin D concentration
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as the primary outcome, see Steenhoff et al. [12], with freely available data at the PLOS
ONE repository https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117
123.

The study was carried out in 2012 in Gaborone, Botswana. The goal of this study was
to investigate whether the two supplementation doses of cholecalciferol of 4000 IU/day
versus 7000 IU/day would safely result in an increased serum 25(OH)D concentration.
Serum 25(OH)D concentrations were measured at baseline and after 6 and 12 weeks of
treatment. To summarize, this trial considered two possible treatments in conjunction
with repeated measurements at three time points. The original authors failed to find
evidence of heterogeneous treatment effects when using simple linear models. However,
the high variance in the serum vitamin D (25(OH)D) concentration, especially after the
treatment with the higher dose, suggested that participants reacted heterogeneously to
the supplementation.

The data (in the long format) were imported (see Appendix A and Listing 1); the
variables of interest were as follows: the serum 25(OH)D concentration at the end of
the study (Serum.25.OH.D.ng.mL), the two different supplementation doses: 4000 IU/day
as standard treatment and 7000 IU/day as experimental treatment (Vitamin.D3.dose.IU),
the two time points: after 6 and after 12 weeks of treatment (Time), and the baseline
serum 25(OH)D concentration (baseline). Moreover, a new categorical variable was defined
(timXvit), encoding the combinations of the two supplementation doses and the two time
points after 6 and after 12 weeks of treatment. Finally, the adjusting covariates were as
follows: sex (Sex), age (Age.yrs) and weight (Weight.kg).

Listing 1. Import and convert the data of the Vitamin D dataset.

data.vitd.3nobase <-read.csv2(file.path(dataDir ,
"journal.pone .0117123. s006_pgf.csv"))

data.vitd.3 nobase [[" Vitamin.D3.dose.IU"]] <-
as.factor(data.vitd.3 nobase [[" Vitamin.D3.dose.IU"]])

data.vitd.3 nobase [[" Time "]] <- as.factor(data.vitd.3 nobase [[" Time.wks "]])
data.vitd.3 nobase [[" timXvit "]] <- with(data.vitd.3nobase ,

interaction(Time , Vitamin.D3.dose.IU))

For parametric estimation of the serum 25(OH)D concentration with the baseline
serum 25(OH)D concentration as a one-dimensional covariate, we began fitting a treatment-
covariate interaction model (Royston and Sauerbrei [13]). For this, the serum 25(OH)D
concentration was described by linear mixed models including a specific interaction term:
This term combined the categorical variable of the interaction between the doses and the
time points (timXvit, taking the values 6.4000, 12.4000, 6.7000, and 12.7000, corresponding
to the four combinations between time and dosage), together with the continuous variable
of the baseline serum vitamin D concentration, timXvit:baseline, compare Listing 2. This
enables the preservation of as much information as possible, with the baseline serum
25(OH)D concentration unchanged as a continuous variable and avoiding any categoriza-
tions for it. The covariate-treatment interaction term was essential for the identification of
the individualized treatment effects. The treatment-covariate interaction model implied
different intercepts and covariate-specific slope(s) for each time point and each treatment
group. Moreover, the model also included individual-specific random effects for capturing
between-participant variation ((1|ID)) and three adjusting covariates.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117123
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117123
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Listing 2. The model for the Vitamin D dataset.

library(lme4)
pn.lmm <- lmer(Serum .25.OH.D.ng.mL ~ timXvit -1 +

timXvit:baseline -baseline + Sex+Age.yrs+Weight.kg+ (1|ID),
data = data.vitd.3 nobase)

The output of the calculation consisted of eleven estimated coefficients for the fixed
effects, with 95% confidence intervals given in Table 1. With the exception of the interaction
term for the time after 12 weeks combined with the higher dose (timXvit12.7000), all other
intercept and slope parameters were significantly different from zero, with 95% confidence
intervals not crossing the zero.

Table 1. Intercept and slope parameters of the fixed effects for the serum 25(OH)D concentration,
with baseline serum 25(OH)D concentration as one-dimensional covariate, with adjusting covariates,
and with 95% confidence intervals.

Estimate Std. Error 2.5% 97.5%

timXvit6.4000 40.90 11.98 18.47 63.32
timXvit12.4000 45.98 11.87 23.75 68.21
timXvit6.7000 26.96 10.97 6.41 47.51
timXvit12.7000 24.39 11.03 3.73 45.05
SexM −5.02 3.76 −12.07 2.01
Age.yrs 0.37 0.21 −0.03 0.77
Weight.kg −0.44 0.15 −0.71 −0.16
timXvit6.4000:baseline 0.70 0.29 0.16 1.24
timXvit12.4000:baseline 0.61 0.29 0.07 1.15
timXvit6.7000:baseline 1.25 0.29 0.71 1.79
timXvit12.7000:baseline 1.36 0.29 0.81 1.90

Moreover, the confidence intervals for the estimate D̂(x) were calculated by the delta
method after having named the eleven estimated parameters from a1 to a11 (compare
Listing 3 and the first column in Table 1).

Listing 3. Confidence intervals by delta method for D̂(x) (first dataset).

coefVec <- coef(summary(pn.lmm))[, 1]
parmNames <- paste ("a", 1:11, sep = "")
names(coefVec) <- parmNames
vcmat.lmm1 <- vcov(pn.lmm)
library(car)
diffFct0 <- function(baseVal)
{

deltaMethod(coefVec , paste("a4-a2 + (a11 -a9)*", baseVal), vcmat.lmm1 ,
parameterNames = parmNames , level = 0.95)[ , "Estimate "]

}

diffSEFct0 <- function(baseVal)
{

deltaMethod(coefVec , paste("a4-a2 + (a11 -a9)*", baseVal), vcmat.lmm1 ,
parameterNames = parmNames , level = 0.95)[ , "SE"]

}

With this, the parametric estimate D̂(x) was given by (24.39 − 45.98) + (1.36 − 0.61) · base-
line, for any baseline value. The baseline serum vitamin D concentration had a minimum
value of 15.30 ng/mL, a first quartile of 28.55 ng/mL, a median of 33.60 ng/mL, a mean of
35.54 ng/mL a third quartile of 41.85 ng/mL, and a maximum of 55.40 ng/mL. For instance,
for a value x of 40 ng/mL, the estimate D̂(x), i.e., a value higher than the mean and lower
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than the third quartile, was equal to 8.22 ng/mL with 95% CI [−0.18, 16.62] and therefore
statistically not significant. The estimation D̂(x) for x equal to 40.5 ng/mL was statistically
significant, with a value of 8.60 ng/ml and 95% CI of [0.02, 17.17]. The CATE function
D quantifies the difference between the two treatment effects, i.e., after the experimental
or the standard treatment. To summarize, this difference is dependent on the baseline
value. Specifically, for increasing baseline values, the difference between the two treatments
increases. In fact, the modeled function D is linear in baseline and the estimated D̂(x)
is in baseline increasing. This means that for individuals starting with higher baseline
concentrations, the higher dose might be necessary when wanting to achieve a further
increment (Ferrario et al. [14]). For further details, compare the freely available code at
https://zenodo.org/records/6223422.

3.2. Application to a Trial in Crossover Design

The second example studies the effect of using Walkasins, which are a non-invasive
neuroprosthesis, on clinical outcomes of balance and gait Koehler-McNicholas et al. [15],
with freely available data at the PLOS ONE repository https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0216212.

Enrolled participants were people who experienced balance problems or were at risk
of falling. Specifically, thirty-one males participated in a two-way crossover, and the par-
ticipants were in a blinded, randomized study with repeated measurements at three time
points in total. All participants wore Walkasins, which were turned ”on” or ”off” in a ran-
domized order, with a washout period between the test days (from here, they are denoted
by periods). The outcomes of interest were as follows: (i) The score of the Functional Gait
Assessment (FGA). The gait speed, which was assessed under two conditions: (ii) Normal
speed; (iii) Fast speed. (iv) The score of a 4-stage balance test. The working hypothesis was
that participants classified as at-risk who wore Walkasins turned ”on” would improve their
FGA score by at least four points. Hitherto, we have shown for illustration purposes the
results concerning the fast gait speed; a similar procedure can also be used for the other
outcomes of interest: (i), (ii), and (iv). Participants performed a series of outcome measures
while wearing the device turned OFF (Assessment #1). The assessments were repeated
two additional times during the study session (Assessment #2 and Assessment #3). The
first step was to import and rearrange the data (compare Listing 4). Since in the original
data treatment groups were color-coded, we first rearranged the data manually, adding
three columns: (i) Treatment (taking values equal to on or off); (ii) Period (taking values
equal to one or two); (iii) Sequence (taking values equal to one for on-off or two for off-on).
Moreover, we considered four columns with the baseline values for the four outcomes of
interest (for instance, gaitFast_base), with the values under Assessment #1 in the original file.

Listing 4. Import and convert the data of the crossover dataset.

library (" openxlsx ")
dataDir <-"../ dataDir"
data.co <-read.xlsx(file.path(dataDir ,"pone .0216212. s001_pgf.xlsx"),

sheet =" Modified ")
data.co[[" Treatment "]] <- as.factor(data.co[[" Treatment "]])
data.co[[" Period "]] <- as.factor(data.co[[" Period "]])
data.co[[" Sequence "]] <- as.factor(data.co[[" Sequence "]])

We analyzed the fast gait speed as the primary outcome using a linear mixed model,
taking into account the fact that the data were generated under a crossover design. Fixed ef-
fects included the treatment term, the baseline, and the adjustment for period and sequence
effects. Moreover, there was a participant-specific random effect (compare Listing 5).

https://zenodo.org/records/6223422
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216212
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216212
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Listing 5. The model for the crossover dataset.

library (" lmerTest ")
fit <-lmer(gaitFast~Treatment -1+ Treatment:gaitFast_base -gaitFast_base

+Period+Sequence +(1| Subject),data=data.co)

The output of the calculation consisted of six estimated coefficients for the fixed
effects, with 95% confidence intervals given in Table 2. While the intercept parameters
were not significantly different from zero, as well as the sequence and period variables,
the slope parameters were significantly different from zero, with 95% confidence intervals
not crossing zero.

Table 2. Intercept and slope parameters, with 95% confidence intervals, estimated parametrically for
the fast gait speed with baseline fast gait speed as a one-dimensional covariate, under a crossover
design.

Estimate Std. Error 2.5% 97.5%

TreatmentOFF 0.05 0.14 −0.23 0.32
TreatmentON 0.06 0.14 −0.21 0.33
Period2 0.01 0.03 −0.04 0.06
Sequence2 −0.01 0.05 −0.11 0.10
TreatmentOFF:gaitFast_base 1.00 0.10 0.80 1.20
TreatmentON:gaitFast_base 1.02 0.10 0.82 1.22

Moreover, the confidence interval for the estimate D̂(x) was calculated after having
named the six estimated parameters from a1 to a6 (compare Listing 6 and the first column
in Table 2).

Listing 6. Confidence intervals by delta method for D̂(x) (second dataset).

coefVec <- coef(summary(fit))[, 1]
parmNames <- paste ("a", 1:6, sep = "")
names(coefVec) <- parmNames
vcmat.lmm1 <- vcov(fit)
library(car)
diffFct0 <- function(baseVal)
{

deltaMethod(coefVec , paste("a2-a1 + (a6 -a5)*", baseVal), vcmat.lmm1 ,
parameterNames = parmNames , level = 0.95)[ , "Estimate "]

}

With this, the parametric estimate D̂(x) was given by (0.06 − 0.05) + (1.02 − 1) ·
baseline, for any baseline value.

The baseline gait speed had a minimum value of 0.74 m/s, a first quartile of 1.18 m/s,
a median of 1.4 m/s, a mean of 1.41 m/s, a third quartile of 1.58 m/s, and a maximum of
2.28 m/s. After the estimation of the fixed and the random effects, the difference function
was estimated for a grid of baseline values x. As a result, the observed difference function
for x equal to 0.74 m/s (i.e., for the minimum of x) was not statistically significant, with an
estimated value of 0.03 m/s and 95% CI of [−0.09, 0.14]. The observed difference function
for x equal to 1.41 m/s (i.e., for the mean) was not statistically significant, with an estimated
value of 0.04 m/s and 95% CI of [−0.01, 0.09]. Finally, the observed difference function for
x equal to the maximum baseline value of 2.28 m/s was likewise not statistically significant,
with an estimated value of 0.05 m/s and 95% CI of [−0.12, 0.23]. Together, these results
imply that the values of the baseline gait speed are not crucial in predicting whether the
difference between the two treatment effects (on minus off) is positive. The generated code
for this analysis is available online on zenodo.org: https://zenodo.org/records/13945382.

https://zenodo.org/records/13945382
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3.3. Simulation Study

In order to evaluate the performance of the described method in finite-sample settings,
we conducted a simulation study. Specifically, the goal of the simulation was to evaluate the
bias of the parametric estimator for increasing sample size, n, and under different models
in the setup analogy to the dataset in Section 3.1.

For this, we generate data from models with known parameters. Specifically, we
defined two lists, which contained a set of values for the intercept and for the slope
parameters. These lists represented different scenarios or conditions we wanted to simulate.
Subsequently, some parameters were set: the number of generated datasets equal to
1000 and four different possible sample sizes, which were equal to 60, 120, 180, and
10,000. Together, many datasets, depending on the different parameters, were generated.
Moreover, we considered two treatment groups and two time points. Half of the individuals
were assigned to the standard treatment and half to the experimental treatment. A one-
dimensional covariate x was considered, which was generated by a uniform distribution
between 0 and 40. Random errors (epsilon) and random intercepts were generated as
independent and standard normally distributed. The response variable y was drawn based
on the linear mixed-effects model. The models included fixed effects for the covariate x
for a new categorical variable, which encodes the combinations of the two treatments and
two time points, as well as a random intercept for the individuals. This resulted in four
intercept parameters and four slope parameters for the fixed effects. For the given fit, we
extracted the estimated coefficients. Finally, the bias between the true coefficients and the
estimated coefficients for each generated dataset was calculated, which was given as a
percentage. A seed was set for reproducibility, the mapply R function was used to apply
the function simulating the data to different sets of true intercept and slope parameters (R
version 4.4.1).

For the first scenario, the four intercept parameters were β0 = (10, 12, 13, 11)T , and
the four slope parameters were β1 = (0.3, 0.6, 0.2, 0.6)T . For the second scenario, the
four intercept parameters were β0 = (9, 12, 14, 10)T , and the four slope parameters were
β1 = (0.4, 0.5, 0.3, 0.7)T . For the last scenario, the four intercept parameters were β0 =

(9.5, 11.5, 12.5, 10.5)T , and the four slope parameters were β1 = (0.5, 0.6, 0.3, 0.8)T . The
results of this simulation are summarized in two tables (Tables 3 and 4), which reports the
empirical bias and the empirical standard deviation in percentage for the estimated slope
and intercept coefficients under the three working models.

Table 3. Estimation of average bias with standard deviation for the estimated intercept parameters of
the given true coefficients. The estimated parameters b0 are given for the first time point and for the
second time point under the two treatments. All the estimated numbers are given in percentages.
The number of generated datasets was equal to 1000.

ss * b0 t1 (0) b0 t1 (0) b0 t1 (0) b0 t2 (0) b0 t2 (0) b0 t2 (0) b0 t1 (1) b0 t1 (1) b0 t1 (1) b0 t2 (1) b0 t2 (1) b0 t2 (1)
True Coef Bias m Bias sd True Coef Bias m Bias sd True Coef Bias m Bias sd True Coef Bias m Bias sd

60 10.00 −0.11 3.86 12.00 0.03 3.25 13.00 −0.10 2.77 11.00 −0.04 3.50
120 10.00 −0.08 2.52 12.00 0.01 2.21 13.00 0.00 1.99 11.00 0.05 2.38
180 10.00 0.02 2.17 12.00 0.03 1.77 13.00 0.08 1.61 11.00 0.05 1.89
10,000 10.00 0.01 0.29 12.00 −0.00 0.25 13.00 0.01 0.21 11.00 −0.00 0.25
60 9.00 −0.31 4.29 12.00 −0.02 3.14 14.00 −0.05 2.68 10.00 −0.10 3.78
120 9.00 −0.14 2.91 12.00 −0.11 2.15 14.00 0.00 1.80 10.00 −0.05 2.47
180 9.00 0.09 2.33 12.00 0.05 1.69 14.00 −0.06 1.57 10.00 −0.12 2.15
10,000 9.00 −0.02 0.31 12.00 −0.01 0.23 14.00 −0.01 0.20 10.00 −0.01 0.29
60 9.50 −0.03 3.95 11.50 0.02 3.16 12.50 −0.08 2.94 10.50 −0.06 3.39
120 9.50 −0.01 2.74 11.50 0.01 2.24 12.50 0.02 2.05 10.50 0.03 2.40
180 9.50 −0.05 2.22 11.50 0.00 1.80 12.50 −0.02 1.71 10.50 −0.08 2.01
10,000 9.50 −0.01 0.30 11.50 0.00 0.24 12.50 −0.00 0.23 10.50 0.02 0.27

* ss: sample size. true coef: true coefficients. bias m: estimated average of the bias. bias sd: estimated standard
deviation of the bias. b0: intercept parameters. t1: first time point. t2: second time point. (0): treatment (0). (1):
treatment (1).



Data 2025, 10, 18 9 of 12

Table 4. Estimation of average bias with standard deviation for the estimated slope parameters of
the given true coefficients. The estimated parameters b1 are given for the first time point and for the
second time point under the two treatments. All the estimated numbers are given in percentages.
The number of generated datasets was equal to 1000.

ss * b1 t1 (0) b1 t1 (0) b1 t1 (0) b1 t2 (0) b1 t2 (0) b1 t2 (0) b1 t1 (0) b1 t1 (1) b1 t1 (1) b1 t2 (1) b1 t2 (1) b1 t2 (1)
True Coef Bias m Bias sd True Coef Bias m Bias sd True Coef Bias m Bias sd True Coef Bias m Bias sd

60 0.30 0.11 5.55 0.60 −0.05 2.79 0.20 0.21 7.78 0.60 0.02 2.80
120 0.30 0.16 3.59 0.60 0.01 1.90 0.20 −0.11 5.69 0.60 -0.05 1.89
180 0.30 −0.08 3.17 0.60 −0.02 1.56 0.20 −0.18 4.47 0.60 −0.07 1.50
10,000 0.30 −0.02 0.40 0.60 0.00 0.21 0.20 −0.01 0.59 0.60 0.00 0.20
60 0.40 0.29 4.15 0.50 −0.04 3.25 0.30 0.02 5.39 0.70 0.09 2.31
120 0.40 0.11 2.86 0.50 0.03 2.25 0.30 0.00 3.66 0.70 0.03 1.56
180 0.40 −0.10 2.31 0.50 −0.02 1.79 0.30 0.04 3.13 0.70 0.04 1.29
10,000 0.40 0.02 0.30 0.50 0.01 0.24 0.30 0.02 0.40 0.70 0.01 0.18
60 0.50 −0.01 3.19 0.60 −0.00 2.61 0.30 0.14 5.33 0.80 0.02 1.95
120 0.50 −0.00 2.27 0.60 0.01 1.84 0.30 0.05 3.72 0.80 −0.03 1.39
180 0.50 −0.00 1.83 0.60 −0.04 1.53 0.30 −0.01 3.07 0.80 0.03 1.16
10,000 0.50 0.01 0.24 0.60 0.00 0.20 0.30 −0.01 0.42 0.80 −0.01 0.16

* ss: sample size. true coef: true coefficients. bias m: estimated average of the bias. bias sd: estimated standard
deviation of the bias. b1: slope parameters. t1: first time point. t2: second time point. (0): treatment (0). (1):
treatment (1).

By the maximium likelihood theory the used estimates of the model parameters are
consistent and asymptotically normal distributed with the regular rate of convergence

√
n,

hence the bias and the standard deviation of the bias should converge to zero. We see that
the bias is still unstable for small sample sizes (60-120-180), varying around a value close to
zero. For instance, for a true intercept parameter equal to 13 the estimated bias was equal to
−0.10, −0.00 and 0.08 for n equal to 60, 120 or 180, respectively. Moreover, as expected by
the theory, the bias is getting smaller when the sample size is sharply increased to 10,000.
Here, the bias for the intercept parameter was equal to 0.01.

We also see that the estimated standard deviation is high for small sample sizes: for
instance, for a true slope parameter equal to 0.2, the standard deviation of the bias is equal
to 7.78, 5.69, 4.47 for n equal to 60, 120, or 180. For a sample size of 10,000 the standard
deviation is equal to 0.59, which decreases by increasing sample size, as expected because
of the strong law of large numbers.

Analogously, for a true slope parameter equal to 0.6, the estimated bias was oscillating
to the values −0.02, −0.05, −0.07 for n equal to 60, 120, or 180, respectively, while the
bias for a sample size of 10,000 decreased to −0.00. This is also expected by the theory,
specifically by the consistency of the estimator.

The entire generated code for these simulations is available online at https://zenodo.
org/records/14725244.

4. Discussion
In this article, we estimated the conditional average treatment effect function (CATE

function D) involving a one-dimensional covariate, and we illustrate this procedure by real
data examples through a re-evaluation of publicly available data. Specifically, we worked
on a dataset in the context of a supplementation by vitamin D. Here, the participants
receive standard treatments and not personalized treatment. However, by the estimation
of individualized responses to the classical treatments we have new criteria for a future
personalized treatment. Moreover, the second real data example concerning the Walkasins
represents a possible application of a potential personalized medicine. We, therefore,
believe that the described procedures can be useful in many disciplines of applied statistics.

It is important to note that the choice of adequate individual baseline covariates should
be based on the clinical relevance of the pre-treatment information and not be chosen in a
data-driven manner. Moreover, we want to underline that a baseline covariate could be
strongly associated with one outcome of interest (and therefore be known for this in the

https://zenodo.org/records/14725244
https://zenodo.org/records/14725244
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literature), but at the same time, this baseline covariate may not be a valuable predictor of
the outcome of interest.

To estimate an ITR, it is not necessary, in general, to use an estimate of the outcome
Y. However, the estimated treatment success can be valuable per se. The problem of
estimating an ITR is related to a classification problem. However, the underlying data
might be different since the true class memberships of the training data, i.e., the true better
individual treatments, are not known. In the example of supplementation by vitamin
D the training data are parts of a parallel design study, so that only the outcome of one
randomly assigned treatment per participant can be used. The second example concerning
the Walkasins was based on a crossover study, so that for each participant the better
treatment choice is only available with respect to a negligible carry over effect.

The ITRs, as discussed here, involved two possible treatments: A standard and an
experimental treatment; however, further scenarios could be realistic in case of a complex
design also involving three or more treatments. Also, in such a scenario under a different,
more complex design, estimation of the CATE function D could be of interest and should
be investigated accordingly. Moreover, an unbalanced design with respect to the treatments
could represent a further issue, ideally to be examined in advance.

Generally speaking, the delta method uses a Taylor expansion yielding point estimate
and confidence intervals for a (non-linear) transformation (here, for the CATE function D) of
a random variable (here, β̂0, the parameter estimators, for instance) [16]. This works when
the random variable is asymptotically normal. Other alternatives could be possible in order
to construct confidence intervals. A classical alternative would be the construction of the
confidence intervals based on a (multivariate) t-distribution. In the context of mixed models,
the estimation of the degree of freedom of the t-distribution could become challenging.
Another approach would be bootstrapping. However, the delta method typically requires
fewer computation and perform well with small sample sizes (which is the case here).

Finally, there are further possible approaches for estimation of the CATE function based
on so-called meta-algorithms that have been proposed in the literature (Caron et al. [10]).
These meta-algorithms are referred to as Meta-Learners and are machine learning algo-
rithms. Some examples of these are random forests, LASSO regression, neural networks,
gradient boosting trees, etc.

In view of the results of the simulation study, and also supported by theoretical
considerations, we see that the sample size should not be too small, and we therefore
recommend investing time in calculating a proper sample size to better achieve asymptotic
results. The simulation study focused on the bias of the proposed estimator. This is a start
for further simulations, which can be easily conducted since we share the entire code.

A natural extension of the discussed procedures would be to include a two-
dimensional or a higher dimensional covariate vector for exploring how treatment effects
vary depending on a pre-treatment covariate vector. However, dealing with a high dimen-
sional vector is a non-trivial step for many reasons. There is, firstly, the issue of how to
model the relationship between the outcome of interest and the covariate vector. In fact,
the CATE function D could take a complex form in a high dimensional context. Then,
overfitting issues could arise if the covariate vector dimension is not small. Moreover, these
methods are subject to the curse of dimensionality, requiring the recruitment of a much
larger number of individuals to draw conclusions. A possible correlation between the
components of the covariate vector poses challenges when making inferences, or at least
such correlations could be taken into account for appropriate multiplicity corrections (i.e.,
less conservative than, for instance, by Bonferroni corrections). Here, the multiple marginal
model approach could be helpful [17].
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Theoretical and applied procedures for considering a higher dimensional covariate
vector warrant further research.
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Appendix A
Using the package plyr, we rearrange the data of the first real data example concerning

vitamin D as follows.

Listing A1. Rearrange the data of the vitamin D dataset.

dataDir <-"../ dataDir"
data.vitd.3<-read.csv2(file.path(dataDir ,

"journal.pone .0117123. s006.csv"))

# from broad to long form
library(plyr)
plyFct <- function(dataSet ){ds2 <- dataSet[-1, ];
ds2 [[" baseline "]] <- dataSet[1, "Serum .25.OH.D.ng.mL"]; ds2}
data.vitd.3 nobase <- ddply(data.vitd.3, .(ID), plyFct)
write.csv2(data.vitd.3nobase ,file.path(dataDir ,

"journal.pone .0117123. s006_pgf.csv"),
quote=FALSE ,row.names =FALSE )
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