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Abstract: Automated analysis of the scientific literature using natural language processing
(NLP) can accelerate the identification of potentially unexplored formulations that enable
innovations in materials engineering with fewer experimentation and testing cycles. This
strategy has been successful for specific classes of inorganic materials, but their general
application in broader material domains such as bioplastics remains challenging. To begin
addressing this gap, we explore correlations between the ingredients and physicochemi-
cal properties of seaweed-based biofilms from a corpus of 2000 article abstracts from the
scientific literature since 1958, using a supervised word co-occurrence analysis and an
unsupervised approach based on the language model MatBERT without fine-tuning. Us-
ing known relations between ingredients and properties for test scenarios, we discuss the
potential and limitations of these NLP approaches for identifying novel combinations of
polysaccharides, plasticizers, and additives that are related to the functionality of seaweed
biofilms. The model demonstrates a valuable predictive ability to identify ingredients as-
sociated with increased water vapor permeability, suggesting its potential utility in opti-
mizing formulations for future research. Using the model further revealed alternative
combinations that are underrepresented in the literature. This automated method facili-
tates the mapping of relationships between ingredients and properties, guiding the de-
velopment of seaweed bioplastic formulations. The unstructured and heterogeneous na-
ture of the literature on bioplastics represents a particular challenge that demands ad hoc
fine-tuning strategies for state-of-the-art language models for advancing the field of sea-
weed bioplastics.

Keywords: seaweed; bioplastics; natural language processing; masked language model;
BERT
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1. Introduction

Bioplastics manufacturing is a subject of great interest due to the harmful effects of
plastic film on the environment. The majority of plastic bags and single-use packaging
materials, made of petrochemical materials, are not recycled, ultimately breaking down
into microparticles in landfills or oceans, leading to environmental degradation and even
contamination of our food supply [1]. Thus, the development of environmentally friendly
films with performance comparable to traditional polymers has become increasingly rel-
evant [2,3].

Bioplastic films made from seaweed polysaccharides have emerged as a promising
solution to address the environmental concerns associated with plastic film production
[4]. Seaweed-based raw materials are fully biodegradable and can be cultivated using en-
vironmentally friendly practices that support ecosystem sustainability. Agar, alginate,
and carrageenan are commonly used polysaccharides for manufacturing biopolymeric
films from seaweed [5-7]. However, films made from a single seaweed material often have
poor properties, such as mechanical or water vapor barrier properties [8,9]. To address
this issue, additives or other biomaterials can be incorporated to enhance the properties
of seaweed films.

Data mining has gained great relevance in recent decades due to its potential in nat-
ural language processing and machine learning modelling techniques [10]. Bioplastics da-
tasets and regression models have been developed for assisting the experimental devel-
opment of seaweed-based bioplastics [11,12]. Data mining techniques can be used to cre-
ate probabilistic models that detect multi-level word associations [13,14] to address dif-
ferent problems involving large corpuses of specific text, such as the extraction of technical
information. These techniques involve pipelines of natural language processing (NLP)
tasks that have focused primarily on biomedical tasks [15] but, more recently, NLP and
Large Language Models (LLMs) have found relevant applications in chemistry [16] and
materials science [17,18]. While previous applications in materials science have focused
on material classes such as inorganic glasses, ceramics, and alloys [17], our study is the
first to apply these techniques to biopolymeric materials.

In this work, we build a corpus of 405,404 words based on 2000 scientific abstracts on
seaweed biopolymer to analyse frequencies and co-occurrences of polysaccharides, plas-
ticizes, and additives and physical properties of reported films. We use a Bag-of-Words
(BoW) approach to obtain a co-occurrence matrix that identifies combinations of common
and rare ingredients used in the literature, without assigning metrics of performance with
respect to properties. We then explore the ability of two transformer-based Large Lan-
guage Models (LLMs) pre-trained on a general material science corpus to assess the po-
tential performance of commonly used combinations of ingredients and properties. This
approach was conducted using prompts using Masked Language Modelling (MLM) in
sentences designed to qualitatively interpret the relationship between compounds in the
BoW. The overall NLP pipeline used in this work is illustrated in Figure 1. Our findings
indicate that LLMs could suggest correlations between certain ingredients and properties,
as confirmed by selected literature reports, but limitations in their ability to suggest new
experiments remain.
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Figure 1. NLP pipeline used in this work. We extracted abstracts from various scientific publications
and employed a Bag-of-Words model to analyse the co-occurrence of ingredients and properties of
the bioplastics. Additionally, the Bag-of-Words model was utilized for an unsupervised approach,

where different word representations were combined in the MatBERT model.

2. Materials and Methods
2.1. Abstract Corpus

A Scopus search was conducted to gather publications on seaweed biopolymers, us-
ing keywords such as “Alginate”, “Agar”, “Carrageenan”, “Seaweed” or “Algae”, and
“Film” or “Packaging”. Research articles and reviews from 1958 to 2022 were included,
resulting in 2000 publications. The metadata and abstracts of each publication were down-
loaded, and publications lacking a DOI or not written in English were excluded. The num-
ber of seaweed-based bioplastic abstracts is at least two orders of magnitude lower than
for other NLP studies in materials science [18]. The search keywords are listed in Table 1.
The list of abstracts and search keywords can be found in the article’s GitHub repository,
available in [19].

Table 1. List of keywords for searching articles in Scopus related to seaweed-based materials and

bioplastics or related packaging materials.

(TITLE-ABS-KEY (alginate OR agar OR carrageenan OR seaweed OR macroalgae)
AND

TITLE-ABS-KEY (bioplastic OR bio-plastic OR “biopolymer film” OR film OR “plastic
bag” OR packaging OR biocomposite OR bio-composite))

2.2. Data Pre-Processing

To prepare the text data for analysis, pre-processing techniques such as stop word
removal and lemmatization were used. Care was taken to ensure that the original mean-
ing of the words in the abstracts was preserved after pre-processing. The resulting abstract
corpus contained 276,490 words, after pre-processing.

2.3. Bag of Words and Co-Occurrence Analysis

A bag of words (BoW) was created by selecting ingredient names and properties from
a list of 20 review articles covering various types of biofilms, constituent components, and
characterization of their properties. Commonly reported names of ingredients and mate-
rial properties were included in the BoW, giving a total of 255 ingredients, classified in 6
categories, and 111 material properties classified in 10 categories. To process the abstracts
using the BoW as input to obtain word frequencies and word co-occurrences, the follow-
ing steps were taken: tokenize the abstracts to split them into individual words, create a
vocabulary of unique words using a set data structure, count the frequency of each word
in each abstract using a dictionary, create a co-occurrence matrix that shows how often
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each word co-occurs with every other word in an abstract, count co-occurrences by iterat-
ing through each abstract, and finally normalize the matrix by dividing each entry by the
total number of co-occurrences to make the values interpretable and comparable across
different abstracts. Co-occurrence matrices help to visualize relationships and patterns be-
tween words. The BoW dictionary could be updated and refined over time as new insights
and knowledge are gained in the field.

2.4. Masked Language Modelling

MLM is a pre-training method and is utilized for how BERT is pre-training, which
involves selectively masking (hiding) 15% of the words or tokens in the input within a
text and then training a language model to predict what those masked words should be.
This approach helps the model learn contextual information and relationships between
words in a given language [20]. MatBERT is a pre-trained language model that has been
trained using MLM and next-sentence prediction as the unsupervised training objectives.
The model has been trained on a general materials science corpus biased towards experi-
mental synthesis topics such as oxides, energetic materials, magnetic materials, and syn-
thesis techniques [21]. The corpus of this training contains 2 million papers of materials
science literature, it has a maximum 512 input token size with 768 hidden dimensions,
and the vocabulary size for the tokenizer is 30.522 [12].

In using MatBERT with the MLM technique, prompts were generated to operate dif-
ferently in analysing the relationships between ingredients and water vapor permeability
in the context of film manufacturing. By masking the adjective in the prompts using
[MASK], the importance of that adjective in the relationship between ingredients and the
properties present in the bag of words is emphasized. Additionally, a score distribution
method was applied to the qualifier word to evaluate how meaningful it was. However,
it is crucial to acknowledge certain limitations associated with employing different
prompts. Variability in prompt structures may introduce biases or limitations in the model
responses, potentially influencing the overall findings [22].

3. Results and Discussion
3.1. Word Frequencies for Ingredients and Properties

Figure 2 shows the frequency of ingredient occurrence in a collection of documents
without repetition. The probability is calculated as the ratio between the number of doc-
uments in which each ingredient appears and the total number of analysed documents.
The ingredients are grouped into different categories, indicated by a color coding that
facilitates visualization. The percent probabilities are shown, providing an overview of
the distribution of ingredients throughout the corpus. The color coding corresponds to the
six categories to which the ingredients in the BoW belong: organic, polysaccharide, inor-
ganic, protein, plasticizer, and synthetic polymer.

The percent distribution of ingredient classes is shown in Figure 2, inset. Polysaccha-
ride ingredients have the highest occurrence in the corpus. Additionally, both organic and
inorganic ingredients used as additives in various studies are identified, with inorganic
ingredients being more frequent.

Figure 3 shows the percent probability of material property occurrences in a collec-
tion of documents without repetition. The color coding indicates the categories to which
the material properties belong, which are listed in the inset. The properties categorized as
chemical, mechanical, antimicrobial, and optical are distributed relatively homogene-
ously. The predominance of tensile strength suggests that this a focal property when eval-
uating the performance of materials in various film applications. This relatively uniform
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representation of categories illustrates the balanced study of different types of material

properties in the field.
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Figure 2. Document-wise percent occurrence probability for ingredients from the bag of words

(BoW) in the corpus of 2000 scientific literature abstracts. Inset: percentage of classes of materials

present in the BoW that occur in the abstract corpus.
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Figure 3. Document-wise occurrence probability of material properties the BoW in the corpus of

2000 scientific literature abstracts. Inset: percentage of classes of material properties present in the

BoW.

3.2. Co-Occurrence Visualization

Figure 4 shows the matrix of ingredient-ingredient co-occurrences, given by the in-

stances in which two ingredients appear together in the dataset of 2000 abstracts. This
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matrix is valuable for visualizing the data related to the co-use of ingredients in the liter-
ature. By identifying pairs of ingredients in frequent associations, researchers can assess
feasible relationships for exploring potential film formulations. The matrix shows that al-
ginate is a central component in many combinations of ingredients, indicating its versatil-
ity and wide application in various formulations. The dominant presence of polysaccha-
rides in combination with other ingredients reflects their importance in the publication
record.
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Figure 4. Ingredient-ingredient co-occurrence matrix as a heatmap. The 30 most commonly occur-
ring ingredients in the dataset of abstracts are included. Each matrix entry contains the number of
co-occurrences. The color scale indicates the values of co-ocurrence from yellow (high values) to

dark blue (low values), as marked.

The lower right corner of the heatmap shows combinations of ingredients with less
co-occurrence, such as titanium/zinc or clay/montmorillonite, which may indicate a pos-
sible relationship between them. Information about rate combinations could be valuable
for identifying research niches where the potential of these ingredients can be explored
for new applications or in improving the properties of existing materials.

Figure 5 shows the co-occurrence matrix of ingredients and material properties, ob-
tained by the number of times each combination of ingredient and material property oc-
curs in the dataset of article abstracts. Tensile strength, barrier properties, and antimicro-
bial activity are some of the most frequency studied properties with a broad range of in-
gredients. These correlations could be used to find trends in the data corpus for extracting
approximate insights about seaweed-based bioplastics. However, there are limitations to
working with statistical word trends, which suggests the need for more advanced NLP
approaches.
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Figure 5. Ingredient—property co-occurrence matrix as a heatmap. The 30 most commonly occurring
ingredients in the dataset of abstracts are included. Each matrix entry contains the number of co-
occurrences. The color scale indicates the values of co-ocurrence from yellow (high values) to dark

blue (low values), as marked.

3.3. Ingredients and Properties from Masked Language Models

In what follows, we use an unsupervised approach based on LLMs without fine-tun-
ing, which are pre-trained to identify materials. We explore the ability of this approach to
uncover relationships between different sets of ingredients and specific properties, which
can potentially lead to predictions for enhanced physical characteristics in bioplastics. The
advantage of using a pre-trained model over the BoW word-counting approach used
above is the ability of LLMs to benefit from contextual information in the corpus.

Specifically, we explore how organic and inorganic additives correlate with proper-
ties of bioplastic films, particularly the water vapor permeability, using two Masked Lan-
guage Models (see Section 2). We adopt the Fill Mask method, which consists of filling in
a [MASK] in the sentence to predict possible replacements. The model is designed to de-
scribe the way compounds influence specific properties, using natural language to focus
on how the combination of these compounds impacts the property depending on the out-
put scores.

We assume hypothetical use cases of alginate membranes and films combined with
glycerol as a plasticizer. The “Additive” word was extracted from a predefined bag of
words containing a total of 185 organic and inorganic additives. We explored how the
model MatBERT suggests, based on the sentence context, the effect of adding a third
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compound as an additive by assessing how this incorporation influences the water vapor
permeability of the resulting bioplastics. Table 2 shows the four sentences (51-54) that
were used in this Fill Mask test. We found that other sentence formulations with similar
meaning gave similar conclusions.

Table 2. Input sentences used in the MatBERT language model to interpret the relationship between
the different compounds and water vapor permeability. The ingredient {Compound 3} is taken from
a predefined bag of words of 185 organic and inorganic additives. On output, the model predicts a
[MASK] word with a score.

Masked Sentence

<S1> Membranes were prepared using alginate, a polysaccharide derived from seaweed, combined with glycerol as
a plasticizer. When {Additive} was incorporated as a secondary additive, the water vapor permeability of the mem-
brane [MASK], potentially affecting its suitability for packaging applications.

<52> The film was produced by mixing alginate, extracted from seaweed, with glycerol to enhance flexibility. Upon
addition of {Additive}, the water vapor permeability of the resulting film [MASK], which could influence its perfor-
mance in moisture-sensitive environments.

<S3> By adding {Additive} to a film composed of alginate, a ssaweed-based biopolymer, and glycerol, the water
vapor permeability [MASK]. This modification aims to optimize the barrier properties of the bioplastic for specific
applications.

<S4> By incorporating {Additive} as an additive in a film formulation based on alginate, a marine-derived biopoly-
mer, and glycerol, the water vapor permeability [MASK]. Such enhancements could improve the functional proper-
ties of bioplastic films for use in sustainable packaging.

Table 3 shows the [MASK] outputs predicted by MatBERT for each input sentence
(51-54). For sentence S1, the model identifies propyl as the additive with the highest out-
put score for “Decreased” (0.54%). Propyl derivatives are chemical compounds that include
the propyl group (CsHv) as part of their structure, such as hydroxypropyl methyl cellulose
(HPMC) and hydroxypropyl cellulose (HPC), and they are used in the formulations of
different types of films and membranes [23-25]. Additionally, the scientific literature men-
tions the use of propylene glycol (PG) as a plasticizer. The use of these compounds in both
contexts is related to modifying the properties of materials, such as water vapor permea-
bility or drug release, to enhance their performance in specific applications such as pack-
aging or drug delivery systems. Also, in relation to sentence 51, methyl (CHzs) is found as
an additive that decreases water vapor permeability. While not specific to bioplastics,
studies have demonstrated the incorporation of methyl in compounds such as hydroxy-
propyl methyl cellulose (HPMC) and sodium carboxymethyl cellulose (Na CMC) in the
fabrication of mucoadhesive films [26,27]. The graft copolymerization of methyl methac-
rylate (MMA) onto alginate has also been explored, which is also related to the modifica-
tion of properties of polymeric materials.

Table 3. Top-scoring additives in masked sentences for modifying water vapor permeability using
the MatBERT model. The output MASK in each of the sentences S1-54 is a qualifier on the impact
on the water vapor permeability of adding a third component (additive) to a mixture of alginate and

glycerol.
Sentence Third Component Mask 1 Mask 2 Mask 3 Mask 4
ropvl decreased: increased: improved: reduced:
s1 Propy 0.5401% 0.3574% 0.1314% 0.0180%

methyl decreased: increased: improved: reduced:
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0.5379% 0.3568% 0.0288% 0.0194%

othvl decreased: increased: improved: reduced:

y 0.5327% 0.3610% 0.0291% 0.0183%

rape seed increased: decreased: increases: improved:

&rap 0.6404% 0.2639% 0.0296% 0.0115%

o oreanic powdered cottonii increased: decreased: increases: improved:
samicp 0.6388% 0.2562% 0.0327% 0.0141%

apricot kernel increased: decreased: increases: reduced:

prico 0.6370% 0.2715% 0.0275% 0.0122%

watermelon increases: decreases: increased: decreased:

0.3895% 0.3522% 0.1024% 0.0905%

3 old increases: decreases: increased: decreased:
& 0.3889% 0.3080% 0.1302% 0.0980%

hach increases: decreases: increased: decreased:

spnac 0.3887% 0.3051% 0.1297% 0.1005%

Ivsozvme increased: increases: decreased: improved:

ysozy 0.5653% 0.1306% 0.1155% 0.0841%

sS4 eroxidase increased: decreased: increases: improved:
P 0.5588% 0.1373% 0.1108% 0.0882%

heat str increased: decreased: increases: improved:

wheat stiaw 0.5558% 0.1278% 0.1216% 0.0899%

However, it is difficult to discern whether a specific ingredient consistently decreases
or increases water vapor permeability. For instance, the incorporation of propylene glycol
alginate can lead to either a reduction or an increase in water vapor permeability and
water solubility, depending on its concentration in the formulation [28]. This dual effect
emphasizes the necessity of precise concentration control when recommending additives
for bioplastic fabrication. Moreover, when applying MatBERT to S1, we observe the
model’s sensitivity to contextual cues like “affecting”. The presence of this term may in-
troduce a negative bias, prompting the model to predict a negative adjective such as “de-
creased” for the masked word.

For sentence S2, the model identifies grape seed extract as the additive with the high-
est score for mask “Increased” (0.6404%), meaning it is likely to increase water vapor per-
meability. This ingredient is less frequently reported in relation to membrane creation
than other additives, but there are reports highlighting its benefits in plastic and bioplastic
films. The scientific literature shows that the phenolic compounds present in grape seed
extract have antioxidant properties and potential molecular interactions with biopolymers
that can modify the mechanical and functional properties of the material [29]. Addition-
ally, the use of grape seed extract as an active agent in edible films has been documented
to improve water vapor permeability, confirming the mask output while also giving anti-
viral and antioxidant capabilities to films, suggesting its potential for enhancing perfor-
mance in specific applications [30]. The model also suggests that the use of organic pow-
dered cottonii (OPC) could influence film properties when using glycerol as one of its
plasticizers, which is also in agreement with reported results [31]. OPC is a product con-
taining carrageenan and derived from the Eucheuma cottonii seaweed. OPC is known for
altering film characteristics such as water vapor permeability. Although its specific use as
an additive for alginate has not been reported, OPC is related to seaweed as it contains
carrageenan. While its effectiveness has been evaluated in applications such as food pack-
aging and edible coatings, studies do not specify its use as an additive for alginate, nor an
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exact correlation between the simultaneous use of a polysaccharide, a plasticizer, and OPC
as an additive. Instead, more complex combinations of OPC together with other additives
and polysaccharides have been explored, as is the case with the OPC which contains car-
rageenan, and its impact largely depends on the specific formulation used.

For sentence S3, the model shows a decreasing trend in the difference between output
values, indicating a minimal difference between “decrease” and “increase” when it comes
to additives such as watermelon extract. Upon reviewing the literature on watermelon, it
was found that its use has been reported in multiple contexts, including as an active in-
gredient and stabilizer for silver and zinc oxide nanoparticles when extracted as melanin
from watermelon seeds [32,33]. Additionally, watermelon rind has been utilized to add
value by creating edible alginate/glycerol films. This suggests that the model can recom-
mend potential ingredients for specific applications based on the desired properties,
demonstrating its capability to identify suitable additives for enhancing the performance
of bioplastics.

In sentence 5S4, the model identifies three additives that, when incorporated into pol-
ymer matrices, can alter their physical properties, whether by increasing the barrier
against water vapor and oxygen or by boosting microbial growth inhibition. Lysozyme,
an antimicrobial enzyme produced by animals, and peroxidase, an enzyme occurring es-
pecially in plants, milk, and white blood cells, are related to enhancing microbial growth
inhibition in biomaterials [34-37]. Wheat straw helps improve the mechanical properties
of biopolymer-based films made from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate
(PHBV), carrageenan, and alginate, with variations in its effectiveness depending on how
it is integrated into the bioplastic matrix. Regarding the results of the MatBERT model,
Sentence 2 has the highest score, identifying 44 relevant ingredients with scores above 0.6.
In contrast, Sentence 3 shows the lowest scores, displaying less relevant ingredients, such
as watermelon extract.

Figure 6 shows the distribution of the top predictive masks by cumulative score for
Sentence S1. The bar chart presents the total sum of the scores obtained for each of the
masks which were considered the most probable in the various combinations of compo-
nents evaluated. As observed, the adjectives “decreased” and “increased” are the most
common, with significantly higher scores compared to other masks such as “improved”,
“reduced”, “declined”, and “dropped”. This suggests that, in the context of bioplastic film
additives, the MatBERT model was more frequently able to predict changes related to the
decrease or increase in water vapor permeability in biopolymers. As shown in Table 2,
these predictions tend to be linked to the incorporation of certain additives to modify the
mechanical properties of films that include biopolymers, such as alginate and carragee-
nan. We also carried out a more explicit testing of MatBERT to explore its ability to predict
an ingredient that increases the water vapor permeability of a film based on sodium algi-
nate, which is one the main ingredients in seaweed films (see Figure 2). Table 4 shows the
sentences (SA, SB, and SC) used in this test.

Table 4. Input sentences used in the MatBERT language model to interpret the relationship between

sodium alginate and additives for increasing water vapor permeability.

Sentences

<SA> By adding [MASK] to sodium alginate, the water vapor permeability increases.
<SB> By adding an additive such as [MASK] to a sodium alginate film, the water vapor permeability increases.
<8C> Adding additives such as [MASK] to a sodium alginate film increases its water vapor permeability.
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Figure 6. Distribution of the top predictive masks by cumulative score for S1 (panel a) and S2 (panel
b). The chart shows the total sum of scores for each of the masks that were found to be among the

most probable in the different combinations of components evaluated.

Table 5 displays the top five ingredients for each sentence. When comparing the pre-
dicted words with Figure 5, although there were variations in ingredients due to differ-
ences in sentences, we find that output ingredient words such as starch (polysaccharide)
are predominant in most cases, along with chitosan (polysaccharide), gelatin (protein),
and glycerol (plasticizer). Additionally, there is the presence of ethanol, an organic com-
pound used to remove pigments and fatty acids [38], and Polyvinyl Alcohol (PVA), a syn-
thetic polymer utilized for bioplastic preparations [39]. The relationship between sodium
alginate and glycerol in bioplastic formulations is well documented, and the MatBERT
output reproduces this combination. The model also predicted starch as an alternative for
improving the water vapor permeability in sentences SB and SC. Starch combined with
alginate is known not only for improving permeability but also for modifying the me-
chanical properties of biofilms [40]. This literature support for the model output is prom-
ising but also limited, given the broad generic corpus on which MatBERT was trained,
primarily with inorganic chemistry literature.

Table 5. The top five predicted ingredients for increasing the water vapor permeability of seaweed-
based films according to the MatBERT model, based on output scores. The mask is a second com-
ponent in a mixture containing sodium alginate, as specified in sentences SA, SB, and SC from Table
4.

Predicted Masked Words
chitosan: 0.1626% starch: 0.0757% starch: 0.1038%
starch: 0.0539% gelatin: 0.0371% gelatin: 0.0567%
SA PVA:0.0513% SB ethanol: 0.0349% SC surfactants: 0.0498%
gelatin: 0.0376% PVA: 0.0344% PVP: 0.0418%
water: 0.0293% glycerol: 0.0339% glycerol: 0.0402%

Table 6 compares two BERT models used in materials science for additive prediction,
averaging the top five outputs for sodium alginate, agar, and carrageenan using the
masked sentences from Table 4. MatBERT predicts additives commonly cited in the sci-
entific literature with the aim of developing applications in food packaging, food preser-
vation, and biomedicine, using films made from polysaccharides derived from seaweed.
For example, the combination of agar and PVA with chitosan in packaging films has
shown that incorporating natural nanocomposites can improve water vapor permeability
[41]. Similarly, the combination of gelatin with sodium alginate increases water vapor
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permeability when yarrow essential oil (YEO) is added [42]. In contrast, MatSciBERT
tends to predict additives associated with inorganic materials, reflecting the focus of its
training data.

Table 6. Comparison of BERT models in materials science.

Model MatBERT MatSciBERT
Size 2,000,000 papers 150,000 papers
Scientific publications, journal articles, . )
. . Inorganic glasses, metallic glasses, al-
and databases containing technical and
Dataset . . . . loys, and cement and concrete from the
academic texts in the field of materials . ) .
. Elsevier Science Direct Database.
science.
Starch: 0.0778 Sucrose: 0.0388
Chitosan: 0.0752 Glucose: 0.0242
Sodium Alginate Gelatin: 0.0438 Urea: 0.0251
PVA:0.0369 Phosphate: 0.0148
PVP: 0.0309 Magnesium: 0.0133
Starch: 0.0853 Zinc: 0.0153
Gelatin: 0.0605 Glucose: 0.014
Agar Chitosan: 0.0408 Methanol: 0.0125
Glycerol: 0.0312 Starch: 0.0109
NaCl: 0.0258 Glycerol: 0.01
Starch: 0.0816 Sucrose: 0.0314
Chitosan: 0.0682 Aluminium: 0.02
Carrageenan Glycerol: 0.0437 Glucose: 0.0188

Gelatin: 0.0418

Magnesium: 0.0186

PVA:0.0344 Glycerol: 0.0122

4. Discussion

Recent transformer-based language models for materials science such as MatBERT
and MatSciBERT have not been specifically trained or fine-tuned for learning correlations
between ingredients and properties in a corpus of seaweed-based bioplastics. While, in
principle, it is not expected that the model outputs could be used for discussing formula-
tions of seaweed-based films, yet some of the high-scoring outputs in Table 5 are ingredi-
ents known to be associated with water vapor permeability studies. Similar output trends
are seen when testing for mechanical properties (tensile strength), but the output word
distribution for ingredients (plasticizers and additives) or qualifiers (increase, decrease,
good, or poor) often contain noise that needs expert assessment. The literature support
found for some of the ingredient-property associations in Table 5 was limited [38—40].
However, the positive correlation suggests that the family of language models based on
BERT could be valuable for the future development of bioplastic formulations after fur-
ther training and fine-tuning efforts.

The output of the BERT models shows that the increase in permeability is closely
related to variations in the concentrations of both the additive and the plasticizer. In this
context, the model faces limitations in accurately interpreting interactions when provided
with sentences containing limited context, which hinders its ability to capture the com-
plexity of ingredient interactions. However, the model still demonstrates a valuable pre-
dictive ability to identify ingredients associated with increased water vapor permeability,
suggesting its potential utility in optimizing formulations for future research.

The effectiveness of a BERT model in predicting specific elements, such as additives,
largely depends on the training data corpus. For example, a model trained with data pre-
dominantly related to metallic materials tends to predict metal-related additives when
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used with masked cues that explore the properties of these additives. This is because the
tokenization process and learning are shaped by the dominant terms and contexts in the
training data. To improve predictions in specialized areas, such as additives for seaweed
polysaccharides, it is beneficial to use a diversified or specially selected corpus. Such a
corpus should cover a wide variety of materials and their interactions with various addi-
tives. MatBERT, for example, is trained on a wide range of materials science literature,
which provides a more complete basis for predictions in this domain.

5. Conclusions

In conclusion, our study provides ways to analyse common ingredient combinations
in seaweed-based bioplastics and their relationship to properties of interest. We have
identified critical ingredients such as starch, cellulose, chitosan, PLA, and their relation-
ship to properties such as biodegradability using a word co-occurrence matrix. The appli-
cation of the MatBERT model enabled us to explore new and less common combinations
of polysaccharides, additives, and plasticizers. Using the model revealed alternative com-
binations that are underrepresented in the literature. This automated method facilitates a
deeper understanding of the relationship between ingredients and properties, guiding the
development of more effective seaweed bioplastic formulations. The model empowers in-
novators to swiftly identify ingredient combinations tailored to specific applications, en-
hancing the potential for experimentation with rare and underexplored combinations.
This can be used to guide the development of seaweed bioplastic formulations, allowing
innovators to quickly identify ingredient combinations of use to specific applications.

Our co-occurrence study has limitations with respect to the accuracy of the associa-
tions suggested between the ingredients and the properties of bioplastics, originating
from the relatively small corpus size of published scientific abstracts and the bag of words.
The analysis of the Masked Language Model outputs for terms within the bag of words is
primarily limited by the envisioned mismatch between the general materials science cor-
pus on which the language models were trained and the domain-specific corpus related
to seaweed bioplastics. In future studies, these limitations can be addressed by expanding
the text mining and data extraction processes using full-length articles including infor-
mation on the fabrication and synthesis conditions of biofilms, which has been shown to
be useful during the fine-tuning steps of more advanced Large Language Models [43].
Specific metrics for assessing the quality of the predicted correlations between the ingre-
dients and the properties of biofilms and reducing the amount of expert assessment re-
quired also need to be developed before automated bioplastic formulation algorithms can
be deployed. Addressing these data and model gaps is essential for advancing research
and practical applications.
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