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Abstract: Ionic liquids have a broad spectrum of applications ranging from gas separation to sensors and
pharmaceuticals. Rational selection of the constituent ions is key to achieving tailor-made materials with
functional properties. To facilitate the discovery of new ionic liquids for sustainable applications, we
have created a virtual library of over 8 million synthetically feasible ionic liquids. Each structure has been
evaluated for their-task suitability using data-driven statistical models calculated for 12 highly relevant
properties: melting point, thermal decomposition, glass transition, heat capacity, viscosity, density,
cytotoxicity, CO2 solubility, surface tension, and electrical and thermal conductivity. For comparison,
values of six properties computed using quantum chemistry based equilibrium thermodynamics
COSMO-RS methods are also provided. We believe the data set will be useful for future efforts directed
towards targeted synthesis and optimization.

Dataset: The datasets used for machine learning can be accessed at dx.doi.org/10.5281/zenodo.3251643.
The SQLite database containing computed properties and a graphical user interface for querying, are
available from dx.doi.org/10.5281/zenodo.3251661.

Dataset License: The data set is made available under the Creative Commons License CC BY 4.0.

Keywords: ionic liquids; machine learning; database; properties; combinatorial screening

1. Introduction

Ionic liquids (ILs) comprised of cations (mostly organic) and anions (both organic and inorganic)
provide a widely applicable set of building blocks for advanced functional materials. Demonstrated
applications include coatings and lubricants [1], pharmaceuticals [2], fuel cells [3], and catalysis [4].
Desirable properties such as high thermal and electrochemical stabilities, together with a negligible
volatility, make them well-suited for developing novel and innovative materials. By making simple
changes to the structure of the constituent ions, the chemical makeup can be altered to create the optimum
solvent for a given application. The challenge, however, is to identify optimal task-specific ILs from the
near-infinite combinations of the constitutive ions and functional groups [5,6]. Experimental work is
limited to a small area of the ionic liquid chemical space, leaving many potentially promising compounds
unexplored. Given the need to minimize experimental cost and time, the rational selection of suitable ILs
from the available choices becomes paramount.

Currently, most ILs are discovered through laborious trial-and-error experiments. Given the diversity
of the IL applications, the custom design of the solvents requires general knowledge of the properties,
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to carry out even preliminary studies. Chemical intuition and experience play key roles in the selection.
In a number of studies, approaches based on electronic structure theory have been used to understand the
structure–property mechanisms [7,8]. The use of electronic structure methods [9] are, however, confined to
a few systems, and despite advances in computer hardware, the associated computational costs are still
prohibitive for rapid large scale screening. In recent times, machine learning (ML) based virtual screening
have emerged as a powerful approach facilitating in silico searches over millions of compounds [10–12].
With the availability of data repositories such as ILThermo [13], there has been a steep rise in the use of
such approaches for modelling ionic liquid properties as evidenced by recent publications [14–18].

With a view to expedite task-specific ionic liquid discovery, we have assembled a large library of ionic
liquids spanning nine different cation scaffolds: ammonium, imidazolium, phosphonium, piperidinium,
pyridinium, pyrrolidinium, morpholinium, azepanium and sulphonium. These are combined with
a diverse set of anions (alkylsulphonates, phenolates, phosphates, triazolides, HF6, BF4) yielding over
8 million compounds. For each IL, twelve properties of interest have been predicted using machine learning.
The conductor-like screening model for real solvents (COSMO-RS) developed by Klamt and Eckert [19]
has been shown to be a relatively robust predictive method for properties such as activity coefficients
of molecular solutes in ionic liquids [20], gas separation capacity [21] and cellulose solubilities [22].
The COSMO-RS approach, however, requires computationally expensive density functional theory (DFT)
calculations and has been shown to fail as much as it succeeds [23]. It nevertheless remains a popular
choice for ionic liquid-based screening [24–26] and is likely to improve with better parameterization [27].
We have therefore included COSMO-RS estimates for selected properties. The database can be expanded
by way of progressively adding new structures and associated properties. We expect this repository to be
a playground for future work in this active research area.

2. Data Description

2.1. Workflow

Figure 1 provides a schematic overview of the database. Using SmiLib [28] as the combinatorial
enumeration engine, 219,216 cations spanning nine different cation families were created. These were
combined with 38 anions to yield a total of 8,333,096 ionic liquids. For each IL, values for twelve properties
of interest are reported: melting point (Tm), glass transition temperature (Tg), thermal decomposition
temperature (Td), viscosity (η), density (ρ), heat capacity (Cp), CO2 capacity (xCO2), electrical (κ) and
thermal conductivity (λ), cytotoxicity towards the leukemia rat cell line IPC-81 (log10EC50), surface tension
(σ) and refractive index (nD). For each property, an estimate of the uncertainty associated (±1 standard
deviation) with the prediction is included as a way to assess when the model is likely to be more accurate.
Large standard deviations are typically associated with those that cannot be trusted [17,29].

2.2. Ionic Liquid Library

The library spans a wide range of functionalities, from simple alkyl-functionalized cations to more
exotic structures. Moieties were selected based on ease of synthesis i.e., those that can be readily prepared,
such as the availability of halide precursors for SN2-reaction preparation. Amine, ether and alcohol groups
are able to coordinate to metals. Alcohols and amines can engage in H-bonding, allowing for selective
interactions with hydrophilic compounds. Amines with different levels of basicity were incorporated
into the database, facilitating more application-specific tuning of IL pKa, e.g., selective probes for acid
gases [30].
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Figure 1. Fragments and other functional moieties used in the construction of the ionic liquid library.

The customized cation libraries were built using combinatorial enumeration (using the software
SmiLib [28]) of building blocks attached to different scaffolds (see Table 1). The counterions were selected
among common anion groups for ILs, as well as organic anions, which possess several interesting
properties. For instance, acetates have a high cellulose solubility and phenolates can efficiently be
used for extraction of acids [31,32]. Different carboxylates allow for the tuning of the IL properties.
Acetylacetonate-based ILs could be used for selective metal extraction [33,34]. Sulfonate anions allow for
the extraction of hydrocarbons [35], and have potential applications in batteries [36].

Table 1. The second column shows the number of cations obtained using combinatorial library enumeration.
The final column gives the number of ionic liquids obtained.

Cation #Molecules # Ionic Liquids

ammonium 179466 6819708
azepanium 5460 207480

imidazolium 5460 207480
morpholinium 5460 207480
phosphonium 7914 300732
piperidinium 5460 207480
pyridinium 1040 39520

pyrrolidinium 5460 207480
sulphonium 3576 135888

2.3. Graphical Summary of the Data Set

The variation in the values for the ML-predicted properties are shown in Figures 2–4. Values for
Cp, η, ρ, κ, λ, xCO2 are estimated at standard room temperature and pressure. For many properties,
the estimated values mirror the trends observed in literature. For instance, the Tm for phosphonium- and
ammonium-based ILs are higher than those based on the imidazolium scaffold [37–39]. These differences
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are related to the highly symmetric nature of the tetraalkylammonium and tetraalkylphosphonium cations.
The compounds in the library are thermally stable, with phosphonium-based ILs in particular showing
higher values of Td compared to the other cationic cores (see Figure 2). This is attributed to the difference
in the thermal degradation mechanisms [40]. In contrast, sulphonium based ILs show poorer stabilities
owing to the unstable nature of the sulphur atom [41].
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Figure 2. Violin plots showing the distribution of the ML predictions for thermophysical properties.
Predicted values for Cp and λ are calculated at standard room temperature and pressure.

Low melting ILs are expected to have low viscosities. Analysis of the data suggests that less than
2% of the ILs have η < 300 cP and Tm < 30 ◦C. It has been reported that the viscosities of imidazolium
and sulphonium ILs are on the lower side because of the asymmetric nature of the imidazolium cation
and bulky nature of the sulphur atom [41,42]. The predicted viscosities show similar trends (shown
in Figure 3). High refractive index ILs (nD > 1.60) are much needed in optical microscopy studies of
minerals [43]. While the predictions of nD, in particular for imidazolium and pyridinium ILs, are in
accordance with experimentally observed data for similar compounds [44,45], none of the predictions
exceed 1.60. Imidazolium-based ILs generally have higher electrical conductivities compared to other
ILs based on other cationic cores, owing to their lower viscosity [46]. In the predicted data, over 100
low-viscosity imidazolium ILs show promise as electrolyte materials in battery applications.
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Figure 3. Violin plots showing the distribution of the ML-predictions for volumetric properties.
The predicted values are calculated at standard room temperature and pressure.

In all cases, anions play a crucial role in determining the behaviour of the ionic liquids. Fluorinated
anions (PF6, NTf2, hfac), for instance, show higher CO2 solubilities [47] (see Figure 4). Although considered
environmentally friendly, many ILs are soluble in water which can be hazardous to aquatic organisms,
if released into the aqueous system [48,49]. It has been shown that toxicity increases with the length
of the alkyl chain (varying between 2 and 12 carbon atoms) attached to the cationic cores. The effect
of anions has not been investigated broadly to allow a conclusive analysis. The graph for cytotoxicity
shown in Figure 4 suggests that, of the 8.33 million combinations examined, only 0.2% of the ILs showed
log10 EC50 > 3.4 µM) [50].
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Figure 4. Distribution of the predicted CO2 mole fractions and log10EC50 with respect to the anion groups.

3. Methods

3.1. Machine Learning

Each structure was subjected to geometry optimization at the semi-empirical PM6 level using
MOPAC [51]. Although fragment/group contribution descriptors have been popular, models trained
on such variables often fail when presented with new fragments for which they were not trained.
We have therefore chosen molecular descriptors that focus on charge distributions and geometrical
indices which have been shown to yield good predictive performances for IL properties such as melting
points [17], thermal decomposition temperatures [15], refractive indices [18] and CO2 solubilities [52].
The variables were calculated independently for each cation and anion using the software KrakenX [53,54].
The top ranked variables (ranked according to the contribution of the variable to the response) in the
models included the charged partial surface area descriptors (summarize the charge distribution in
the ion), chemical reactivity parameters such as the HOMO/LUMO energies that are closely related
to electrophilic/nucleophilic attack and the charge distribution in the ion, and softness (inverse of the
HOMO-LUMO gap) which are indicative of the cation-anion electrostatic (nucleophilic-electrophilic)
interactions. Experimental data for the properties was taken from various literature sources [13,17,18,52,55].
Machine learning models were evaluated for 12 different properties: melting points (Tm), glass transition
temperatures (Tg), thermal decomposition temperatures (Td), viscosities (η), densities (ρ), heat capacities
(Cp), CO2 capacity (xCO2 ), electrical (κ) and thermal conductivities (λ), cytotoxicities towards the leukemia
rat cell line IPC-81 (log10(EC50), surface tension (σ) and refractive indices (nD). The models were trained on
67% of the available data and a 5-fold cross validation technique was used to obtain performance statistics.
Three different ML models were employed: generalized boosted regression models (GBM), random forests
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(RF) and Cubist methods. For each property, the best performing model across both calibration and test
data was determined based on standard evaluation metrics and used for further predictions.

For the obtained models, performance metrics including the squared coefficient of correlation
(R2), root mean square error (RMSE) and the mean absolute error (MAE) are reported in Table 2.
The supplementary material lists the performances of all the ML models used for prediction. For most IL
properties, the experimental and predicted values are in agreement with reported studies [14,15,17,18,52].
The larger deviations for Tm, Tg and η can be attributed to experimental variations, presence of impurities
and water [56]. Model applicability domain methods often rely on the chemical similarity of a test set
structure to members of the training set [57]. Here, we have chosen to associate each prediction with a
bootstrapped uncertainty estimate [17,18]. In bootstrapping [58], for example, the training set is randomly
sampled with replacement, and a model is built for each bootstrapped sample. For computational
expediency, a total of 100 models were built, and each model was applied to a given test set compound to
obtain a distribution of predictions. The uncertainty associated with the prediction was then calculated
as the standard deviation of the distribution [29]. Working on the assumption that ILs with small
uncertainties are likely to have small prediction errors, one can exclude compounds with moderate
to high prediction uncertainties.

Table 2. Summary of the ML model performances for 12 different properties. In each case, the number of
data points available for calibration and testing are provided. The metrics are reported the best performing
model. EC50 values correspond to Rat cell line toxicities. NC and NA are the number of cations and anions,
respectively.

Property NC NA ML
Calibration Validation

Ncal RMSE (MAE) R2
cv Nval (MAE) R2

cv

Tm (◦C) 1369 141 RF 1486 44 (15) 0.67 726 45 (33) 0.66
Tg (◦C) 327 109 Cubist 442 21 (2) 0.62 202 19 (12) 0.62
Td (◦C) 538 192 RF 833 39 (12) 0.77 455 35 (25) 0.8

log10(η) (mPa·s) 847 227 GBM 4658 0.17 (0.06) 0.94 3994 0.35 (0.23) 0.76
ρ (kg/m3) 333 120 RF 9225 12.23 (2.65) 0.99 7731 49.10 (28.34) 0.93

ln(Cp) (J/K/mol) 115 48 GBM 6320 0.042 (0.012) 0.99 2763 0.28 (0.19) 0.91
γ (N/m) 131 68 GBM 1863 0.001 (0.0002) 0.97 1117 0.004 (0.0027) 0.79

nD 237 85 GBM 1646 0.006 (0.002) 0.97 1456 0.017 (0.011) 0.83
xCO2 78 74 GBM 6084 0.03 (0.01) 0.98 4839 0.09 (0.06) 0.86

log10(EC50) µM 114 25 Cubist 157 0.52 (0.05) 0.79 70 0.40 (0.30) 0.86
κ (S/m) 158 80 GBM 1433 0.05 (0.01) 0.98 1251 0.15 (0.10) 0.79

λ (W/m/K) 28 28 GBM 326 0.005 (0.002) 0.95 147 0.009 (0.006) 0.89

3.2. COSMO-RS Evaluation

COSMO-RS, a quantum chemistry based method, was used to evaluate selected properties [59].
For each cation and anion, geometry optimizations using the density functional theory (DFT) functional
B88-PW86 with a triple zeta valence polarized basis set [60] (TZVP) and the resolution of identity standard
approximation were performed. Values of η, ρ, Cp, xCO2 , κ and Tm were calculated using the COSMOtherm
software with the parameterization set BP_TZVP_C30_01601) [61].

4. Database Exploration and Use

An interactive graphical user interface written in the Java programming language is provided as a
way to query the library (see Figure 5). All data including machine learning and COSMO-RS predictions
have been compiled into an SQLite database [62]. Structures can be searched (exact or substructure)
as SMILES strings and IUPAC names of moieties. Alternatively, structure files in MOL format can be
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uploaded. For conversion of IUPAC names to SMILES representations, the functionality in the OPSIN [63]
library has been used. Filtering of compounds according to select property cut-offs allows for a targeted
search. Query results may be additionally saved as a sortable HTML table for future inspection.

Figure 5. Interface to the Ionic Liquid Property Explorer is through a graphical user interface that allows
for searching the database. Where available, COSMO-RS values are displayed as tool tips. The results can
also be exported to a sortable HTML table.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/4/2/88/s1.
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IL Ionic Liquids
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DFT Density Functional Theory
RF Random Forest
GBM Generalized Boosted Models
COSMO-RS Conductor like Screening Model for Real Solvents
hfac Hexafluoroacetylacetonate
DCA Dicyanamide
NTf2 Bis(trifluoromethanesulfonyl)imide
PF6 Hexafluorophosphate
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
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