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Abstract: Cold tolerance in seeds is not well understood compared to mechanisms in aboveground
plant tissue but is crucial to understanding how plant populations persist in extreme cold conditions.
Counter-intuitively, the ability of seeds to survive extreme cold may become more important in the
future due to climate change projections. This is due to the loss of the insulating snow bed resulting in
the actual temperatures experienced at soil surface level being much colder than without snow cover.
Seed survival in extremely low temperatures is conferred by mechanisms that can be divided into
freezing avoidance and freezing tolerance depending on the location of ice crystal formation within
the seed. We present a dataset of alpine angiosperm species with seed mass and seed structure defined
as endospermic and non-endospermic. This is presented alongside the locations of temperature
minima per species which can be used to examine the extent to which different seed structures are
associated with snow cover. We hope that the dataset can be used by others to demonstrate if certain
seed structures and sizes are associated with snow cover, and if so, would they be negatively impacted
by the loss of snow resulting from climate change.

Dataset: Submitted as Supplementary Materials to this manuscript.

Dataset License: CC-BY

Keywords: endosperm; intracellular ice formation; climate change; temperature minima; seed mass;
snow bed

1. Summary

Alpine ecosystems encompass approximately 10% of the global landscape and harbor about
10,000 plant species. Temperature is a major environmental factor limiting the altitudinal and
latitudinal distribution of plants [1,2]. With increasing altitude, temperature decreases by 5–10 ◦C km−1,
and this is accompanied by a concomitant decline in plant diversity and density [3,4]. The severity of
weather conditions becomes critical above certain altitudes, such that tree growth is limited and these
high-altitude mountain slopes give way only to long-lived dwarf herbaceous perennials and very few
annuals [3,5]. This tree-less landscape, termed ‘alpine tundra’ supports plant species that are capable
of completing their life-cycle in extremely short growing seasons characterized by high variability of
duration and uncertainty in weather [3]. The upper boundary of plant growth in alpine landscapes is
difficult to define, but in terms of species adaptation it relates to the permafrost areas on mountains
where there is no growing season [3].

One of the distinct features of these high-altitude landscapes is the occurrence of low-temperatures
of 0 to −2 ◦C on a daily basis, even during the growing season. However, within the growing
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season, diurnal temperature can fluctuate between the optimal range of 10–30 ◦C facilitating rapid
plant development, and occasional nocturnal temperatures below −15 ◦C [3,6,7]. During the winter,
most alpine landscapes remain permanently frozen with air temperatures as low as −40 ◦C [8].
Therefore, plants endemic to high-altitudes are required to tolerate sub-zero temperatures and have
adaptations to enable survival in these harsh conditions.

Alpine plant coping strategies include the evolution of freezing tolerance mechanisms in various
plant parts, including xylem vessels, leaves, hardy wood tissues, and reproductive structures [9–13].
However, plants have evolved two complex mechanisms to tolerate low temperatures: freezing
avoidance by supercooling and freezing tolerance by extracellular freezing, which in turn removes
intracellular water through vapor pressure differences [14,15]. Even within a single plant, it is possible
that some parts avoid ice formation whilst other tolerate freezing. For example, vegetative organs of
alpine cushion plants tolerate ice in the extracellular regions, whereas inflorescences avoid freezing [16].

In contrast to the considerable interest in understanding freezing tolerance in plants [9,17],
the mechanisms by which seeds might survive alpine conditions have received far less attention.
Seed-set occurs in the autumn for spring germination and dense snow cover during winter provides a
thermal buffer for the soil seed bank, thus preventing the seeds from being exposed to the harshest
winter temperatures [18]. This benign environment maintains temperatures close to 0 ◦C for three
to six months, and can facilitate the loss of seed dormancy (cold-stratification), thus widening the
temperature requirement for germination and reducing the light dependency of emergence [19].

Most seeds on the soil surface are in an imbibed state late in the winter due to snow melting [7]
and the freezing of this internal water becomes the most likely cause of seed death. Water in seeds
can, however, supercool to many degrees below the melting point without freezing [20,21] and this
constitutes a method of freezing avoidance. The ice formation in supercooled water begins when
the temperature is reduced to −18 ◦C and substances in the seed (e.g., bacteria) become the points
of heterogeneous ice nucleation. When such nucleation is absent, the freezing of supercooled water
is delayed to −39 ◦C, a process known as homogenous ice nucleation. Although this latter scenario
is possible, heterogenous ice nucleation is more likely because in seeds and other living entities,
water does not occur in its pure form and often exists in macromolecular structures [22].

During freezing avoidance, the location of ice formation determines whether viability is lost.
Thus, ice in the endosperm and other external structures can be survived, but formation of ice in
the intracellular region (IIF), i.e., the embryo, marks the death of seeds [23,24]. We hypothesize that
the presence of internal seed structures may make a difference to the proximity of ice formation
to the embryo, and therefore may affect seed mortality at extremely cold temperatures. A further
consideration is that the cooling rate might be important: the occurrence of freezing avoidance is
associated with a faster cooling rate (Jaganathan, unpublished).

Although freezing avoidance has been studied in seeds of some species, even rudimental
observations of freezing tolerance by freeze desiccation do not exist for seeds. In freezing tolerance,
the formation of extracellular ice is tolerated (similar to freezing avoidance), but intracellular ice
formation (IIF) is precluded. Unlike freezing avoidance, the formation of extracellular ice in seeds that
undergo freezing tolerance decreases the mole fraction and vapor pressure of the extracellular water
and when lowered sufficiently below that of the intracellular water, the water present in the embryo is
desiccated to extracellular ice [23]. Because the water content of the embryo is reduced below critical
level, ice formation in the embryo is prevented at low temperatures.

In alpine systems, the investigation of freezing tolerance might not seem to be a priority research
agenda given the predictions for warming temperatures and the expected amelioration of growth
constraints. Indeed, alpine plants are predicted to respond negatively to future climate change with
implications for species persistence and the plant community composition of montane systems [25,26]
meaning that an understanding of freezing tolerance could be dismissed as an academic pursuit.
According to Foden et al.’s [27] scheme for identifying species endangered by climate change, alpine
plants are at risk due to their specialized microhabitat requirements and rarity, limited dispersal to
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newly-available habitat, and the high likelihood of exceeding physiological tolerances. All of these
mechanisms may be contributing to the current loss of alpine species in line with shifting minimum
temperature isotherms [28,29], and the predictions for the European Alpine climate suggest that these
responses are likely to continue: 3.3 ◦C of warming is projected by the end of the 21st century [30].
A specific mechanism of community change may be through the loss of competitive advantage [31];
tolerance to very harsh conditions will become redundant as the warming climate alleviates the
selective pressures dictating the vegetation composition at high altitudes. The amelioration of climate
subsequently allows species associated with lower altitudes to colonize montane systems.

For seeds in alpine environments specifically, a changing climate is likely to have more complex
impacts upon seed survival than those associated purely with the loss of stress-tolerant competitive
advantage under warmer conditions. This is because the temperatures experienced at the soil surface
are strongly influenced by the presence of snow, and the response of snow is very variable at different
temporal and spatial scales. Firstly, warming temperatures will make snow bed cover patchy at smaller
spatial scales leading to greater probability of seed dispersing to intolerably cold conditions after
short-range dispersal events. For example, seeds dispersed onto wind-blown ridges or other similarly
exposed patches may experience soil temperatures lower than −25 ◦C and air temperatures as low as
−30 ◦C [8,32,33]. Secondly, during the onset of the growing season the risk of seeds being exposed to
regular freeze–thaw cycles is increased, as the insulation effect of the snow cover is lost. Such scenarios
are expected to prevail in most alpine landscapes and earlier snow-melt in the future means that the
seeds are at extreme risk of this [2,34]. Thirdly, even where snow beds persist, climatic warming is
expected to reduce the thickness of snow cover and expose the seeds to lower air temperatures [35].
Given these varying impacts, it is imperative that we understand which species might survive and
how invasive species respond to climatic changes in order to identify species in need of proactive
conservation measures.

We have produced a dataset of seed structure in terms of the presence or absence of an endosperm,
seed mass, and the locations in which alpine species experience extremely low temperatures, hereafter
referred to as ‘temperature minima locations’. We hope that others may utilize the data to investigate
the impacts of reduced snow cover by (i) using the temperature minima locations to determine the
strength of association of alpine species with snow cover, (ii) integrate these with predictions of snow
bed loss, reduced snow thickness and earlier snow melt timings under climate change projections,
and (iii) highlight regions where seeds might be at risk of unprecedented exposure to extremely cold
temperatures. We also hope that this dataset might facilitate experimental work on the endosperm’s role
in conferring resilience to extremely low temperatures by extracting ecologically-relevant temperatures
at which freezing response can be tested. We predict that the projected loss of snow cover in high
altitude regions will result in the exposure of seeds to extremely low temperatures not typically
experienced in the evolutionary history of alpine species. We also predict that seed structure and mass
will play a part in the ability of the seeds to cope with extreme cold. However, at this moment, we can
only link seed structure and mass to the ambient air temperatures interpolated from global climate
databases, rather than the soil surface temperatures seeds actually experience, and to really understand
if seed traits are linked to survival in extremely cold conditions, we need assistance to incorporate the
insulating effects of snow. The dissemination of our dataset will facilitate the collaboration of seed
physiologists and those with expertise in the study of climate change and the cryosphere. Describing a
link between seed structure, its role in freezing avoidance and/or freezing tolerance, and the impacts of
loss of snow bed cover will be an important breakthrough in predicting vegetation response to climate
change in high altitude environments.

2. Data Description

The data is provided in tabular form entitled “alpine_seed_traits_and_temperature_minima.txt”
in the Supplementary Materials File1 appended to this document. Each row constitutes data for a single
species with no duplication. The citation for each temperature minima location derived from online
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distributional records is given in a second Supplementary Materials File2 entitled “GBIFcitations.txt”
and is provided in several formats as generated by the “rgbif” package (see below for more details on
the methods of data extraction and manipulation).

2.1. Structure of Dataset

The first column (entitled “Species”) lists the species as named in the Global Biodiversity
Information Facility (GBIF) ‘backbone’, i.e., the authorized names recognized in GBIF [36]. The second
column lists the key or unique numerical identifier (“GBIF_key”) which allows for precise
cross-referencing with GBIF occurrence data.

The following three columns are specific to the location at which each species distribution reaches
its coldest temperatures according to the Worldclim database of global climatic data [37] and are
entitled “country”, “decimalLongitude”, and “decimalLatitude”. The description of how this location
was derived is presented in the following section. Figure 1 shows the spread of this location data and
is encoded according to the presence of an endosperm in the seeds of each species.
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Figure 1. Global distribution of locations at which species attain the coldest temperatures in
their respective ranges. Blue circles denote endospermic species occurrences, red crosses denote
non-endospermic species occurrences.

The final two columns detail the reported presence of endosperms for each species whereby
species are listed as endospermic or non-endospermic (column entitled “seed_structure”) and the mass
of single seeds are reported in the column entitled “Mean_seed_mass”.

2.2. Descriptive Analyses of Seed Data

Our dataset contains 840 species known to occur in (but not necessarily restricted to) alpine
regions and their status as endospermic (562 species) or non-endospermic (278) with regards to seed
structure. Only 285 species have published seed mass data, of which the endospermic seeds are on
average 0.116 g each (n = 183) and the non-endospermic seeds are 0.119 g (n = 102) with the spread of
data after natural log transformation displayed in Figure 2.
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Figure 2. Seed mass (g) after natural log transformation for species with endospermic and non-
endospermic seeds.

2.3. Exploration of Climatic Data Associated with Temperature Minima Locations

The locations of temperature minima were used to explore climate data downloaded from the
Worldclim database and extracted at point locations where each species attained the temperature
minima. These climatic variables expressed extreme cold (minimum temperature of the coldest
month), or measures of temperature fluctuation that could infer rate and range of temperature
change experienced by the seeds (specifically, mean monthly diurnal range, isothermality, temperature
seasonality, and temperature annual range; see Section 3 below for fuller description of variables).
Our motivation behind these outputs was to see if different measures of extreme cold and temperature
fluctuation might be linked to the structure of seeds. If, for example, endospermic seeds were found in
colder sites than those at which non-endospermic species were found, it would support our hypothesis
that this type of structure conferred a benefit at extremely low temperatures. However, as the following
figures show (Figures 3–7) there are no differences in the ambient climate at locations associated with
temperature minima between species with and without endospermic seeds. Although apparently
uninteresting, we present this data because it highlights our prediction that snow cover will make a
substantial difference to temperature minima and temperature fluctuations at relatively small scales.
We selected these climatic variables because they encapsulated the absolute minimum temperatures
but also, daily, seasonal, and annual variability. Given that we are looking for explanatory mechanisms
to enable the prediction of alpine vegetation response, our ‘lack of results’ serves to highlight our
requirement to explore the crucial component of alpine systems which this data cannot convey, i.e.,
the snow cover.
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3. Methods

We collated data from published literature by searching ‘Web of Science’ with keywords “alpine
plants” and/or “alpine vegetation” to find the plant species occurring in alpine ecosystems. Species were
also included from Körner [3] upon consulting the taxonomic index outlined. These inclusions resulted
in 2621 species. However, as many species of alpine vegetation reproduce asexually, we checked our
database and screened for species that are known to produce seeds either by directly consulting the
literature or by contacting the authors of original manuscripts. In the cases where we could not do
either of the above, we used online sources such as Kew Seed Information Database and Mabberley’s
plant book [38].

Seed mass data were either directly sourced from literature, when they are given, or from Kew
Seed Information Database. Weight of single seed (averaged) is given. Where seeds were expressed
as mass per given number of seeds, we standardized this value to express the mass per seed (g).
One limitation of the data is that seed mass is expressed as a single value but whilst some reported
values included indicators of variance around the mean, not all authors did so and we have just
presented the average seed mass. In addition, seed mass is not available for all species in the dataset.

For the morphology assessment, species or genus was verified based on information given in
Martin [39] and Mabberley [38]. In most cases, we consulted both. Seeds with only perisperm were
included in the non-endospermic category.

The taxa identified as alpine and for which endosperm presence was derived, contained many
obsolete binomials due to more recent taxonomic reclassifications. These were checked for presence
and synonyms in the GBIF backbone [36] and updated as necessary. The occurrence data were extracted
from GBIF [36] using the package “rgbif” [40] in the R user environment [41] via RStudio [42]. The code
for data extraction is available at https://github.com/SarahEDalrymple/seeds_and_cold where the code
used at the time of data analysis can be downloaded along with any further refinements (see Section 4
below for further notes on using and adapting this script). A limit on the number of occurrences
downloaded was set at 30,000 records in order to provide a pragmatic cut-off that enabled download
sizes that were feasible using the available computing resources. This resulted in the omission of
118 taxa from the dataset but given that 840 remained and the limit had the effect of omitting very
cosmopolitan species rather than ‘true’ alpines, this was not perceived to alter the utility of the dataset.
Once occurrence records were downloaded for each species, the minimum temperature of the coldest
month (◦C) was extracted for each occurrence point and the coldest of these singled out to represent
the temperature minima location. Following this, a suite of other climatic variables were extracted for
the temperature minima location only (Figures 3–7). The data extracted from the Worldclim bioclim
dataset [37] cannot be redistributed in its raw form but was used above to highlight the properties of the
data at the temperature minima locations as discussed above. These constitute the following variables:

https://github.com/SarahEDalrymple/seeds_and_cold


Data 2019, 4, 107 8 of 10

Minimum temperature of the coldest month (t_min), mean monthly diurnal range (diurnal_range),
the mean monthly diurnal range divided by the annual temperature range and multiplied by 100
(isothermality), temperature seasonality, or, the standard deviation of mean temperature multiplied
by 100 (seasonality), and temperature annual range (annual_range). All reported data derived from
temperature in degrees Celsius. The notched boxplots were generated in the R user environment [41]
and represent the median (centre line), 95% confidence intervals (the notch), 25th and 75th percentiles
(bottom and top of box, respectively) and minima and maxima (lower and upper ‘T’ bars), with possible
outliers displayed as individual points.

The Worldclim data was downloaded at the highest available resolution of 30 arcseconds
(approximately 1 km2) but this is acknowledged to be quite coarse relative to the scale of the
microclimate variation in many alpine regions especially given the influence of microtopography
on wind exposure and drainage. However, the minimum ambient temperatures derived from the
interpolated Worldclim dataset are likely to be a dependable indicator of extremely low temperatures
experienced at these sites, and the impact of adiabatic lapse rate over such areas is not great enough to
detract from the overriding patterns in seed freezing tolerance that we identified. There are, of course,
many local topographical features that might also change the temperatures experienced by seeds but
this reinforces the value of our key finding in light of current attempts to model the impacts of climate
change: these large-scale climate patterns can only tell part of the story when it comes to predicting
biological losses.

4. User Notes

The code available on Github is a complete record of our climate data extraction, GBIF distribution
collation and determination of the location at which each species is expected to incur its temperature
minima, and can be easily adapted to extract other Worldclim climatic variables at a range of resolutions.
The script relies on having a list of species saved as a single column in a text file (ending with “.txt”)
with which the R package “rgbif” [40] operates to identify occurrences of each of the listed taxa.
The code employs a looping function known as a “for” loop in conjunction with an “if-else” conditional
statement. The loop takes each taxa in turn and sequentially applies each of the data manipulation
steps described above. If our dataset is to be expanded, we recommend that the taxa to be analyzed
are thoroughly checked against the GBIF ‘backbone’, i.e., the taxonomic listings for all GBIF entries.
If this is not done, error messages will be generated by unrecognized taxa. Even in cases where the
taxonomic name does feature in the GBIF backbone, there are instances of taxa having no validated
occurrences in the GBIF dataset and therefore generate a message as follows: “Error: $ operator is
invalid for atomic vectors”. Other causes of error messages returned and cessation of progress in
the looped script were exclusively due to limitations in Wi-Fi connectivity and bandwidth, and we
recommend that future attempts to use our code are only entered into where the internet is reliable
and consistently maintains good signal strength.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/4/3/107/s1,
File1: alpine_seed_traits_and_temperature_minima.txt; File2: GBIFcitations.txt.
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