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Abstract: Prostate cancer can be low- or high-risk to the patient’s health. Current screening on the basis
of prostate-specific antigen (PSA) levels has a tendency towards both false positives and false negatives,
both of which have negative consequences. We obtained a dataset of 35,875 patients from the screening
arm of the National Cancer Institute’s Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.
We segmented the data into instances without prostate cancer, instances with low-risk prostate cancer,
and instances with high-risk prostate cancer. We developed a pipeline to deal with imbalanced data
and proposed algorithms to perform preprocessing on such datasets. We evaluated the accuracy of
various machine learning algorithms in predicting high-risk prostate cancer. An accuracy of 91.5%
can be achieved by the proposed pipeline, using standard scaling, SVMSMOTE sampling method,
and AdaBoost for machine learning. We then evaluated the contribution of rate of change of PSA, age,
BMI, and filtration by race to this model’s accuracy. We identified that including the rate of change of
PSA and age in our model increased the area under the curve (AUC) of the model by 6.8%, whereas
BMI and race had a minimal effect.
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1. Introduction

Prebiopsy screening of prostate cancer is used because biopsies, which confirm whether there
is cancer present, are potentially harmful to patients who do not have prostate cancer since they
may cause infections in people who have them [1–3]. One very common screening method is the
measurement of prostate-specific antigen (PSA), which is a protein produced by cells of the prostate
gland. However, it has been shown that monitoring PSA levels has no significant impact on prostate
cancer mortality after a median follow-up of 10 years with those who had this monitoring [4,5].
The United States Preventative Services Task Force (USPSTF) originally issued a recommendation
against PSA screening for all ages in 2012 [6], but in 2017 revised that recommendation to say that the
decision to undergo PSA testing is an individual decision for men between 55 and 69 years of age,
with those over 70 still being recommended against PSA screening [1]. “Cancer Screening: Theory
and Applications” by Auvinen and Hakama presents a skeptical view of the efficacy of PSA screening,
claiming that it doesn’t save many years of life in the long run [7]. Negoita et al. find that decrease
in PSA screening following the aforementioned USPSTF recommendations has led to a flattening off

of mortality, although this could be due to other factors, and has also led to a higher incidence of
late stage disease [8]. Martin et al. see promise in developing “better screening tests (including free
(unbound) PSA and biochemical and genetic markers), clear protocols for active surveillance, better
focal treatments for localized diseases, and better treatments for advanced cancer” [5]. The defects in
PSA screening thus warrant investigation into new screening methods.

One screening method is magnetic resonance imaging (MRI), which has the potential to identify
that someone with raised PSA levels actually has a low-risk cancer and hence does not need to have

Data 2019, 4, 129; doi:10.3390/data4030129 www.mdpi.com/journal/data

http://www.mdpi.com/journal/data
http://www.mdpi.com
https://orcid.org/0000-0001-7792-2327
http://dx.doi.org/10.3390/data4030129
http://www.mdpi.com/journal/data
https://www.mdpi.com/2306-5729/4/3/129?type=check_update&version=2


Data 2019, 4, 129 2 of 15

a biopsy [9–11]. Rundo et al. have recently suggested automating the prostate segmentation component
of MRI by using a technique based on the fuzzy c-means clustering algorithm, which would improve
the time efficiency of MRI screening [11]. Several methods have also been suggested to improve PSA
testing, such as age-specific PSA testing, factoring in the ratio of free PSA (that is, PSA not bound to
other proteins) to total PSA (the total level of PSA, including both free and bound PSA), and factoring
the rate of change of PSA into screening, although the NCI reports that neither of these methods have
been conclusively proven to decrease the risk of death [3].

We aim to test the efficacy of machine learning methods for prostate cancer screening using
various clinical measurements. We also aim to determine the effect that variables such as BMI, race,
rate of change, and age have on the model’s accuracy.

2. Literature Review

In 2017, Shoaibi et al. used a PSA growth curve to predict high-risk prostate cancer, training their
model on the National Cancer Institute PLCO dataset, and using a dataset of 680,390 veterans as the
validation set [12]. They performed a statistical analysis on a non-linear mixed regression model built
with age, race, baseline PSA, and BMI as adjustment factors. In 2018, Roffman et al. developed an
artificial neural network (ANN) to predict the risk of prostate cancer on the basis of “age, BMI, diabetes
status, smoking status, emphysema, asthma, race, ethnicity, hypertension, heart disease, exercise
habits, and history of stroke,” using the National Health Interview Survey (NHIS) adult survey data as
training and validation set [13]. In the same year, PSA was used by Wang et al. together with age,
result of digital rectal examination and transrectal ultrasound, and prostate volume to predict both
significant, benign, and insignificant cancer (both significant vs. benign and insignificant and significant
vs. benign vs. insignificant) on a dataset of 1652 Chinese men with biopsies [2]. These variables
were used in four algorithms (support vector machine, random forests, least squares support vector
machine, and artificial neural network). All algorithms achieved >0.93 accuracy for the prediction of
significant versus benign and insignificant, and >0.79 for prediction of benign versus insignificant
versus significant prostate cancer.

Many other attempts to predict the outcomes related to prostate cancer diagnosis from clinical
data using machine learning methods are trained on severely imbalanced datasets because of the rarity
of prostate cancer, and do not use the rate of change of PSA as a feature [14,15]. We aim to apply
machine learning methods to predict the presence of prostate cancer based on variables available
in clinical data which may be attained without biopsies. Our work differentiates itself from other
studies in the following respects. First, we are applying a wide range of machine learning prediction
methods to a model featuring rate of change of PSA, which Shoaibi et al. did not do. Conversely,
we are applying the rate of change of PSA variable in prediction using machine learning methods,
which other machine learning methods for prostate cancer screening have not done. Moreover, we
apply imbalance correction methods to the dataset and evaluate these methods based on their impact
on the sensitivity and specificity of the classifiers.

3. Data Description

In this study, we built machine learning models on the screening arm of the prostate component
of The National Cancer Institute’s (NCI’s) Prostate, Lung, Colorectal, and Ovarian Cancer Screening
Trial (PLCO). We used the same inclusion and exclusion criteria as Shoaibi et al. The criteria used are
presented in Figure 1. The number of patients in the dataset, upon the different inclusion/exclusion
criteria, are displayed under the criteria in each box. It should be noted that the numbers they reported
having in the dataset did not align with ours, with them starting with 38,340 entries in the intervention
arm and, after applying the inclusion and exclusion criteria, having 20,888 entries in the dataset.
Furthermore, we could not find out how to determine whether patients had “suspicious screening
results that do not have correspondent complete diagnostic procedures and final results” [12].
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Figure 1. Population of National Cancer Institute’s Prostate, Lung, Colorectal, and Ovarian Screening 
Trial (NCI PLCO) dataset upon different inclusion/exclusion criteria and the positive instances been 
selected for analysis. 

Figure 1. Population of National Cancer Institute’s Prostate, Lung, Colorectal, and Ovarian Screening
Trial (NCI PLCO) dataset upon different inclusion/exclusion criteria and the positive instances been
selected for analysis.
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We have split this dataset into three groups: instances without prostate cancer, instances with
low-risk prostate cancer, and instances with high-risk prostate cancer. High-risk cancers are cancers
where the cancer cells spread at a fast rate, leading to a high possibility of mortality and therefore calling
for immediate treatment as opposed to the active surveillance that is often thought to be suitable for
low-risk cancer [16]. The definition of high-risk prostate cancer that we used, following Shoaibi et al.
was Gleason score > 7, PSA level ≥ 20 ng/mL, cancer invading the prostate capsule, or involving more
than one lobe [12]. It should be noted that only the first two of these criteria were reported in the
dataset. The segmentation of the data is represented in Figure 2.

We developed two machine learning models (i) testing the presence of cancer and (ii) testing
presence of high-risk cancer. For the two machine learning models we labelled the dataset in two ways.
In the first model, instances without prostate cancer were labelled negative and those with low-risk
or high-risk prostate cancer were labelled positive, and this labelled dataset was called presence
of prostate cancer (PoPC). In the second model, only instances with high-risk cancer were labelled
positive, and those without prostate cancer or with low-risk prostate cancer were labelled negative,
and this labelled dataset was called presence of high-risk prostate cancer (PoHRPC). As presented in
Figure 1, the dataset had 1130 entries diagnosed with PoPC, out of which only 190 met the criteria of
PoHRPC, meaning 0.89% of our dataset in PoHRPC was labelled positive, while 5.34% of our dataset
in PoPC was labelled positive.
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4. Method

After the initial preprocessing involving handling of misisng values and calculating the rate of
change, we determined optimal data imbalance methods and scaling methods by evaluating their
effectiveness on the PoPC-labelled dataset. These methods were then implemented on PoHRPC-labelled
data. The process of performing our analysis is described in detail here and is presented visually in
Figure 3.
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4.1. Data Preprocessing

One component of preprocessing was the calculation of Overall ROC and Recent ROC for the
patients in the dataset, along with the handling of missing values. The other step in preprocessing was
running imbalance correction and scaling methods.

4.1.1. Handling Missing Values

Rather than discard rows with missing values, we used the sklearn Iterative Imputer class with
a decision tree regressor to transform the missing value for that row into some value computed by
non-linear regression for that row [17]. For datasets that are imbalanced like the ones we are using,
this method is better than Simple Imputer, which assigns missing values by using the mean values
of columns.

4.1.2. Calculation of Rate of Change

There were six PSA measurements in the PLCO dataset (labelled P1-P6). In addition, we calculated
two rate of change features, the overall rate of change (Overall ROC) and the recent rate of change
(Recent ROC). Overall ROC was calculated by dividing the increase in total PSA level from the oldest
reading (P1) to the latest (P6) by the number of days that had elapsed between them:

Overall ROC =
P6 − P1

#Days
(1)

Second, Recent rate of change (Recent ROC) was the increase in PSA level from the second most
recent PSA reading (P5) to the latest (P6) divided by the number of days that had elapsed between them:

Recent ROC =
P6 − P5

#Days
(2)

4.1.3. Data Imbalance Methods

As shown in Figure 1, the number of negative instances in the dataset is much larger than the
number of positive instances. Classifiers built on such imbalanced data might be biased towards
negative prediction and therefore have a high proportion of false negative predictions and are unable to
generalize to new data. In order to solve this problem, a range of methods for handling data imbalance
should be used. The main methods for sampling-based imbalance correction can be broken into the
categories of oversampling (where the smaller class has more data added to it to make it the same size
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as the larger class, often by the data being created) and undersampling (where the larger dataset is
sampled from to build a representative set that is the same size as the smaller class) [18]. We used
a wide range of oversampling, under-sampling, and combination (featuring elements of both) methods
to evaluate which would be the best. All methods were implemented by imbalanced-learn [19]. The full
list of methods tested is:

No method, Cluster Centroids (CC), Random Under Sampler (RUS), Near Miss 1 (NM1), Near Miss
2 (NM2), Near Miss3 (NM3), Instance Hardness Threshold (IHT), Repeated Edited Nearest Neighbors
(RENN), Random Over Sampler (ROS), SMOTE [20], Borderline SMOTE 1 (BS1) [21], Borderline
SMOTE 2 (BS2), ADASYN, SMOTEENN [22], SVMSMOTE [23], SMOTENC, and SMOTETomek.

For each method, we first generated a range of distributions according to the scaling methods
listed in Section 4.1.4. We then determined the optimal scaling method for a given sampling method
by splitting the data into training and test sets with test size 0.25, running the sampling algorithm in
question on the training set, running every classifier in our suite on it, and reported the average area
under the curve (AUC) and average accuracy (avg_auc and avg_acc) attained across all classifiers.
Whichever scaling method produced the highest average of avg_auc and avg_acc was deemed the
optimal method (opt_scaling) for this sampling method, and to evaluate the sampling methods we
reported the opt_scaling (avg_auc) and opt_scaling (avg_acc) for it. These metrics were reported in
a table, and we also plotted, for each sampling algorithm, the avg_auc against the avg_acc attained
across classifiers on data scaled by the optimal scaling method for that sampling algorithm, and then
sampled by that sampling algorithm before training. We decided on which sampling method to use
from this plot.

When using oversampling and undersampling in cross-validation later on in the evaluation,
we performed the procedures “during” cross-validation: for each fold, sampling was performed on the
training data. This is regarded as the only way to test the effectiveness of the algorithm at generalizing-
from real-world data [24].

4.1.4. Scaling/Normalization

For data sampled using the optimal sampling method as selected by the procedure described in
Section 4.1.3 above, we ran a suite of sklearn normalization, scaling, and transformation methods [17]
and compared them with one another by averaging their accuracies and averaging their area under
the curve (AUC) receiver operating curve (ROC) scores from the machine learning methods listed in
Section 4.2. We then plotted average AUC ROC score vs. average accuracy and decided which scaling
method to use from this plot.

4.2. Building Classifiers

Our initial models were built using the features of the patient’s PSA levels (note that these are
total PSA, which is the addition of PSA bounded to other proteins and unbounded [3]) from multiple
screens (every patient had data from between 4 and 6 screens), Overall ROC, and Recent ROC.

We ran a suite of machine learning methods obtained from scikit-learn [17] on the dataset,
consisting of K-neighbors (KN), support vector machine (SVM), decision tree (DT), random forest
(RF), multi-layer perceptron classifier (MLPC), adaptive boosting (ADA), and quadratic discriminant
analysis (QD). The support vector machine used a radial basis function as a kernel function and had
a gamma value of 2.

4.3. Evaluating the Classifiers

Where training and test sets were from the same dataset, we evaluated the classifiers by using
holdout and 10-fold cross-validation [25]. The metrics used were accuracy, AUC ROC [26], confusion
matrices [10], sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
and F1 score (F1). Sensitivity measures the ratio of correctly predicted positives to the total number of
positives in the dataset, and the specificity does the same for negatives. Conversely, PPV measures the
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ratio of those that were correctly predicted positive to those that were positively predicted at all. NPV
does the same for negatives. F1 scores are correlated with a low rate of false positives and a low rate of
false negatives [10].

The ROC is a plot of 1—specificity on the x-axis against sensitivity on the y-axis, with each point
corresponding to a specific decision threshold. Therefore, the closer the curve is to the top left corner
(100% specificity and 100% sensitivity (since the x-axis is 1—sensitivity)) the greater the “overall
accuracy of the test” [26]. AUC ROC is a measurement of the area under that curve, which means that
it is directly correlated with the overall accuracy of a given classifier.

We measured accuracy and AUC in both holdout (0.25 test size) and 10-fold cross-validation,
generated and displayed the ROC curve and confusion matrix, and measured sensitivity, specificity,
PPV, NPV, and F1-score.

4.4. Evaluating the Predictability of Features

To evaluate the effect that Overall ROC and Recent ROC had on accuracy, we tested the difference
in holdout AUC for the optimal classifiers in each dataset when each of the two ROC features was
individually removed and when both were removed.

To test the effectiveness of age and BMI, we measured the increase in AUC holdout when age
alone, BMI alone, and both age and BMI were added to the model so far developed.

Since 90% of the patients are white Non-Hispanic people [27], we tested whether filtering by
race would have an effect on the accuracy by filtering out all the patients with races other than white
Non-Hispanic and seeing if the models built on the remaining data have a higher accuracy.

5. Results

5.1. Result for PoPC Training and Test

The first part of the pipeline, as explained in Section 4.1.3, was to evaluate the effectiveness of
each sampling method by running our suite of machine learning methods with each scaling method
after sampling the data with a given sampling method.

From Figure 4 and Table 1, it is not entirely clear which sampling method is optimal for PoPC.
In general, SVMSMOTE and BS1 could be the best options, being close to the top of the AUC
measurements without sacrificing too much in terms of accuracy. It can be seen from Table 1 that
SVMSMOTE achieves an average accuracy 0.032 higher than BS1′s, while BS1′s AUC is 0.019 higher
than SVMSMOTE’s. As a result, SVMSMOTE was chosen as the sampling method to be used in the
remainder of this section.

Table 1. Comparison of data imbalance methods on presence of prostate cancer (PoPC) data, evaluated
using the average accuracy (Avg Acc) and average AUC (avg AUC) across all classifiers for the scaling
method which achieved the highest average of those two metrics for a given sampling method.

No Method CC RUS NM1 NM2 NM3

Avg Acc 0.947 0.747 0.780 0.558 0.288 0.841
Avg AUC 0.558 0.774 0.743 0.703 0.587 0.747

IHT RENN ROS BS1 BS2 ADASYN

Avg Acc 0.417 0.905 0.818 0.823 0.822 0.794
Avg AUC 0.663 0.707 0.735 0.767 0.750 0.743

SMOTE SVMSMOTE SMOTETomek SMOTEENN

Avg Acc 0.813 0.855 0.812 0.765
Avg AUC 0.742 0.748 0.743 0.765
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We tested nine scaling methods and calculated the average accuracy and AUC across all classifiers
in our suite of machine learning methods (see Section 4.1.4).

It was observed from Figure 5 that a trade-off exists in AUC and accuracy: Robust achieves the
highest accuracy with around 0.87 while its AUC is the lowest of any method, whereas the uniform
pdf quantile transformation achieves an AUC of over 0.76, with the second lowest accuracy of 0.844.
In this study, we chose standard scaling as the method that was used in the analysis process, as both
the AUC and accuracy achieved by this method were acceptable.
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The evaluations of classifiers are presented in Table 2. In Holdout methods, 25% of the data were
used for testing and the rest were used to train the classifiers. The performance of classifiers varies for
accuracy and AUC score (Table 2). ADABoost was the best algorithm for this dataset, given that it had
the equal best AUC in holdout and is only 0.002 off the best in cross-validation. Its accuracy in both
was also no more than 0.076 from the top accuracy, and was higher than that of decision tree, which
was the only algorithm with better AUC. Therefore, ADABoost is the machine learning algorithm used
for this model in the remaining predictions on PoPC-labelled data.

The ROC curve of the model is presented in Figure 6 and its confusion matrix is demonstrated in
Table 3.

Table 2. Average accuracy and AUC score for each machine learning algorithm on PoPC training/test.

KN SVM2 QD DT RF MLPC ADA

Holdout accuracy 0.886 0.899 0.916 0.831 0.831 0.850 0.846

Holdout auc-score 0.683 0.653 0.577 0.777 0.772 0.791 0.777

10-fold cross validation
accuracy

0.876
(±0.009)

0.894
(±0.013)

0.919
(±0.009)

0.838
(±0.023)

0.835
(±0.024)

0.845
(±0.015)

0.843
(±0.014)

10-fold cross validation
auc

0.674
(±0.038)

0.662
(±0.049)

0.575
(±0.049)

0.778
(±0.030)

0.771
(±0.024)

0.771
(±0.037)

0.776
(±0.028)
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Table 3. Confusion matrix for decision tree on PoPC data training and test.

Disease Present Disease Absent

Predicted present 208 725
Predicted absent 75 4285

The detailed performance of this model is shown in Table 4.

Table 4. Specificity, sensitivity, PPV, and NPV for decision tree on PoPC data.

Evaluation Value

Sensitivity 0.735
Specificity 0.855

PPV 0.223
NPV 0.983

F1 0.342
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Table 5 shows the performance of classifiers trained using different feature sets. The addition
and exclusion were all based on the original feature set of 6 PSA levels, Overall ROC, and Recent
ROC. The AUC were evaluated by holdout instead of cross-validation; thus, there might exist slight
differences in the resulting AUC.

Table 5. AUC and decrease in AUC for optimal classifier on PoPC data when selected features are
added or removed.

AUC Difference in AUC by Different Feature Set

No exclusion (Same feature set as above model) 0.791 0
Recent ROC excluded 0.767 −0.024
Overall ROC excluded 0.787 −0.004

Overall ROC and Recent ROC excluded 0.774 −0.017
Age added 0.786 −0.005
BMI added 0.792 +0.001

Age and BMI added 0.786 −0.005
Filtered by race 0.785 −0.006

Table 5 demonstrates that Overall- ROC and Recent ROC both make contributions to the accuracy
of the model thus far developed, with Recent ROC making a greater contribution. In fact, when both of
them are excluded, there is less of a decrease in accuracy than when Recent ROC alone is excluded.
Age decreased accuracy, while BMI slightly improved it, and adding both together decreased accuracy.
Filtering by race had a negative effect on accuracy. Thus, the evaluation of features suggests that the
most effective feature set for this model contains only PSA levels, Recent ROC, and BMI.

5.2. Result for PoHRPC Training and Test

To predict high-risk prostate cancer, we used the previously developed pipeline in the last section.
From Table 6, we observed that ADABoost had the highest AUC according to cross-validation

and the third highest according to holdout. In terms of accuracy, it is within a reasonable margin of
all algorithms that are close to it in terms of AUC. Therefore, we used this method for the rest of the
evaluation in this section, and in the comparison with other papers at the end of the results section.

Table 6. Average accuracy and AUC score for each machine learning algorithm on PoHRPC training/test.

KN SVM2 QD DT RF MLPC ADA

Holdout accuracy 0.979 0.926 0.930 0.906 0.930 0.905 0.929

Holdout auc-score 0.551 0.674 0.630 0.687 0.653 0.618 0.664

10-fold cross validation
accuracy

0.979
(±0.007)

0.925
(±0.011)

0.941
(±0.011)

0.927
(±0.016)

0.915
(±0.028)

0.909
(±0.030)

0.894
(±0.013)

10-fold cross
validation auc

0.576
(±0.082)

0.686
(±0.108)

0.617
(±0.098)

0.669
(±0.086)

0.696
(±0.115)

0.675
(±0.114)

0.711
(±0.120)

The ROC curve for this model is presented in Figure 7 and its confusion matrix achieved by is in
Table 7. Note that the confusion matrix is evaluated using holdout instead of cross-validation.
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Figure 7. Receiver operating characteristic curve for ADABoost on PoHRPC data.

Table 7. Confusion matrix for ADABoost on PoHRPC data training and test.

Positive Negative

Predicted positive 28 457
Predicted negative 17 4791

The detailed performance of this model is shown in Table 8.

Table 8. Specificity, sensitivity, PPV and NPV for ADABoost on PoHRPC data.

Evaluation Value

Sensitivity 0.62
Specificity 0.913

PPV 0.057
NPV 0.996

F1 0.106

Table 9 shows the performance of classifiers trained using different feature sets. The addition
and exclusion were all based on the original feature set of 6 PSA levels, Overall ROC, and Recent
ROC. The AUC were evaluated by holdout instead of cross-validation; thus, there might exist slight
differences in the resulting AUC.

Table 9. AUC and decrease in AUC for optimal classifier on PoHRPC data when selected features are
added or removed.

AUC Difference in AUC by Different Feature Set

No exclusion (Same feature set as above model) 0.673 0
Recent ROC excluded 0.651 −0.022
Overall ROC excluded 0.661 −0.012

Both Overall ROC and Recent ROC excluded 0.643 −0.03
Age added 0.711 +0.038
BMI added 0.688 +0.015

Age and BMI added 0.690 +0.017
Filtered by race 0.669 −0.004
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It can be seen that exclusion of any of the PSA rate of change variables only decreases the
performance of the model. Meanwhile, for additions involving age and BMI, adding only the “age”
variable provides the most substantial increase in the performance. Although having BMI as a feature
can also provide a better performance than the original model, using age and BMI together cannot
produce a result that is comparable to using only age. Finally, filtering by race decreased the accuracy
by 0.004, indicating it has a negative effect on accuracy. Therefore, the optimal feature set for this model
contains PSA levels, Overall ROC, Recent ROC, and age. Given that without any of these features, the
AUC is 0.643 and with all of them the AUC is 0.711, together, they lead to an increase of 6.8% in AUC.

5.3. Comparison of the Results with Related Work

The classifiers discussed in this section are the optimal models for PoPC and PoHRPC as described
above (both have SVMSMOTE as their sampling method and standard scaling as their scaling method,
with PoHRPC having ADABoost as its machine learning method and PoPC decision tree as its machine
learning method), with the results we are reporting on having been calculated when they predicted
using the standard feature set of 6 PSA levels, Overall ROC, and Recent ROC.

As shown in Table 10, while our optimal classifier on the PoHRPC data set had a specificity of
0.913 which was better than Shoaibi et al.’s of 0.852, our sensitivity of 0.62 was far off theirs of 0.955.
Both our study and the study of Roffman et al. achieved poor sensitivity, while the specificity and
AUC are decent. Furthermore, we attained a high negative predictive value of 0.996 and a very low
positive predictive value of 0.057. What is notable about this is that it indicates, as does the confusion
matrix in Table 8, that the major source of error in our predictor was false positives, with us having
457 of those compared to 17 false negatives. This indicates that our imbalance correction method led to
a bias towards positive entries in prediction on this data set, relative to the small number of positive
entries in the dataset. Nonetheless, Figure 4 indicates that these sampling methods increase the AUC,
suggesting we should hold onto them. This is in line with what you would expect from an imbalance
correction method, but it does reflect that further optimization needs to be done, especially as false
positives are currently a problem with PSA tests [5].

Table 10. Comparison of our results with train/test on the same dataset and testing on a validation set
with Shoaibi et al., Roffman et al., and Wang et al.

PoHRPC
(ADABoost)

PoPC
(ADABoost)

Wang et al. ANN on
Training/Test Set from

Same Dataset

Shoaibi et al.
Validation

Roffman et al. ANN on
Training/Test Set from

Same Dataset

Sensitivity 0.62 0.735 0.9996 ± 0.0013 0.955 0.232 (0.195–0.269)
Specificity 0.913 0.855 0.9035 ± 0.0163 0.852 0.894 (0.89–0.897)

NPV 0.996 0.983
PPV 0. 057 0.223 0.265 (0.224–0.306)

Accuracy 0.915 (±0.016) 0.843 (±0.014) 0.9527 ± 0.0079
AUC 0.711 (±0.120) 0.776 (±0.028) 0.9755 ± 0.0073 0.72 (0.70–0.75)

All AUC scores for our data are the maximum achieved by any of the ensemble of classifiers. Training/test accuracy
and AUC are measured by 10-fold cross-validation.

Table 10 demonstrates a tendency of Roffman et al.’s predictor and our two predictors, both of which
predicted on imbalanced datasets, performing worse than Wang et al.’s, which predicted on a balanced
dataset. Of the four of these predictors (our two predictors, Roffamn et al.’s, and Wang et al.’s)
Wang et al.’s dataset had a positive percentage of 50.95%, while PoHRPC had 0.89%, PoPC had 5.34%,
and Roffman et al.’s had 1.67%. Wang et al.’s predictor performed the best in terms of every metric
shared between all the predictors aside from specificity, with its specificity being 0.0095 less than that
of our PoHRPC predictor. This is a negligible difference. Its sensitivity of 0.966 was 0.2366 higher than
the next highest sensitivity of the predictors, which was our PoPC predictor with 0.735. Its accuracy of
0.9527 was 0.0377 higher than the next highest, which was our PoHRPC predictor with 0.915. Its AUC
was higher than the next highest (our PoPC predictor with 0.776) by 0.1995.
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Nonetheless, Shoaibi et al.’s study is a counter-example to this trend, demonstrating a high
sensitivity despite predicting on imbalanced data (recall that they too predicted high-risk prostate
cancer in the NCI PLCO data set). This shows that it is possible to predict accurately on imbalanced
data, which Roffman et al.’s and our predictors failed to do.

6. Discussion and Conclusions

Our evaluation suggests that, for the predictors we have, rate of change does have a positive
effect on accuracy, given that Recent ROC contributed 0.024 to the AUC on PoPC, and both variables
together contributed 0.03 to the AUC on PoHRPC. Including age in the features set led to a further
increase of 0.038 in AUC. Therefore, adding rate of change of PSA variables and age to the feature set
of a machine learning predictor for prostate cancer led to an increase of 6.8% in AUC compared to the
AUC generated by predicting with PSA levels alone on PoHRPC-labelled data.

Although there are certain differences that exist in the performance between our model and
Shoaibi et al.’s model, our model and pipeline can be built easily with less requirement of the input
data, and for researchers with no professional statistical modelling experience, our model can be easier
to understand and implement, and the result we have achieved can provide a baseline for other studies
with similar purpose. Furthermore, the pipeline we have developed can be used as a guide for future
studies on the PLCO dataset.

Our models’ low PPV values indicate that our choice of an imbalance correction method could be
further investigated. The effect of imbalance correction should be measured by testing the variance
of attributes like sensitivity, specificity, NPV and PPV with changing methods. Furthermore, the
focus should be on lowering the rate of false positives that currently occur when we use imbalance
correction methods. A broad range of methods should be tested, including those in the latest literature.
An example of such a method is Ebenuwa et al.’s variance ranking attributes selection technique [18].

Advanced machine learning methods coupled with feature engineering and addition of more
features improve prediction models [28,29]. A clear one, as mentioned earlier, is using the ratio of
free:total PSA [3], but another option is measurement of androgen and estrogen steroids, since the role of
these hormones are acknowledged in other cancer-types [30]. There is research suggesting correlations
between these steroids and prostate cancer, such as decreasing androgens and increasing estrogen
increasing the likelihood of prostate cancer. When different kinds of estrogens are distinguished
between, however, the picture becomes more complicated as activation of the classical estradiol
receptors (α and β) have various effects on prostate cancer progression which, due to the sometimes
contradictory nature of the results and the present insufficiency of our models of prostate cancer and the
receptors involved in it, makes the role of estrogens (that is, whether they increase or decrease the spread
of prostate cancer) unclear [31,32]. Machine learning is therefore an area in which the correlations
which we believe exist can be used for prediction in clinical practice before more sophisticated models
have been developed.
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