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Abstract: To achieve the optimal performance of an object to be heat treated, it is necessary to know
the value of the Heat Transfer Coefficient (HTC) describing the amount of heat exchange between the
work piece and the cooling medium. The prediction of the HTC is a typical Inverse Heat Transfer
Problem (IHCP), which cannot be solved by direct numerical methods. Numerous techniques are
used to solve the IHCP based on heuristic search algorithms having very high computational demand.
As another approach, it would be possible to use machine-learning methods for the same purpose,
which are capable of giving prompt estimations about the main characteristics of the HTC function.
As known, a key requirement for all successful machine-learning projects is the availability of high
quality training data. In this case, the amount of real-world measurements is far from satisfactory
because of the high cost of these tests. As an alternative, it is possible to generate the necessary
databases using simulations. This paper presents a novel model for random HTC function generation
based on control points and additional parameters defining the shape of curve segments. As an
additional step, a GPU accelerated finite-element method was used to simulate the cooling process
resulting in the required temporary data records. These datasets make it possible for researchers to
develop and test their IHCP solver algorithms.

Dataset: DOI:10.5281/zenodo.3237781.

Dataset License: CC-BY

Keywords: Inverse Heat Conduction Problem; Heat Transfer Coefficient; GPU; Machine Learning

1. Summary

Heat treatment operations are used to change the material properties of components.
The controlled input or extraction of heat is essential during the whole process. Quenching processes
are typically operated in different liquid or gaseous media to achieve the desired material properties
by following the adequate heat transfer rates. A commonly used industrial hardening procedure is
immersion quenching. In this process, the work pieces are heated to the desired temperature and then
immersed in the liquid quenching medium.

The heat transfer phenomena occurring during the quenching process may pass three different
boiling regimes [1]. In the first stage, the component is surrounded by a vapor film, which insulates the
work piece. The heat transfer is moderated in this stage and takes place by radiation and conduction
through the vapor film.

In the second stage, the surface partially gets in contact with the coolant when the temperature
reaches the Leidenfrost point and nucleate boiling occurs with the fastest cooling rate during the whole
heat transfer process. Then, the surface cools down below the boiling point (or range) and only pure
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convection occurs. In this stage, the heat transfer mainly is controlled by the quenchant’s specific heat
and thermal conductivity, and temperature differences between the surface and the fluid combined
with fluid flow.

To achieve the desired mechanical properties of the components, it is necessary to know the
characteristics of the Heat Transfer Coefficient (HTC) describing the heat exchange between the work
piece and the surrounding cooling medium. The prediction of the HTC is a typical ill-posed task, which
cannot be solved by direct numerical methods. In recent years, this Inverse Heat Transfer Problem
(IHCP) has been studied extensively [2–6], presenting various heuristic solutions based on Genetic
Algorithms (GA) [7,8] or Particle Swarm Optimization (PSO) [7,9]. There are also promising results in
the development of the sparse representation for ill-posed problems [10].

In the case of these population based methods, each instance (chromosome in GA/particle in
PSO) represents a HTC function candidate, and its fitness is calculated by the squared difference
between some real-world measurements and the results of the generated temperature data using the
HTC values encoded in the instances. There are promising results; however, these processes usually
need thousands of instances and iterations. The number of fitness function evaluations (which is the
most computationally intensive part of the search) is the multiplication of the population size and the
iteration count; for this reason, these methods are usually very time-consuming. A whole search takes
hours or days and (as is common for heuristic methods) hundreds of executions are necessary to have
stable results.

Artificial Neural Networks (ANN) were motivated by the already existing biological structures of
the brain [11], having powerful capabilities for tasks such as learning, pattern matching and adaptation.
As the real biological brain, the basic construction units of ANNs are artificial neurons connected by
weighted edges. In the simplest architecture, the input and output neurons are connected through
one or more layers of hidden ones. In the case of densely connected ANNs, all neurons of a given
hidden or output layer are connected to all neurons of the previous layer. There are several advanced
architectures (convolutional neural networks, etc.) and the choice between these needs a lot of research
and experiments. In the case of feed-forward neural networks, the information moves in only one
direction: from the input neurons to the output nodes through the hidden ones. If we know the
appropriate weight values for edges, the feed-forward operation of the ANN is given by Equation (1).

Y = f (X ∗W + b) (1)

where X is the vector of the input data; W is the matrix of edge weights; b is the vector of bias constant
values; f is an activation function; and Y is the vector containing the prediction of the network.

X and f are known but the values of the W and b variables needs some preprocessing. There are
various techniques to determine the values of these weights, one of the most widely used being the
back-propagation algorithm. It is a supervised training method, which means that it learns from
valid input and output data pairs, called the training data. The back-propagation algorithm starts
with random W and b values, feeds the network with the input data and measures the difference
between the prediction of the network (Y) and the known valid output (Y′). After that, the error is
propagated back to the previous layers recursively and the weights of edges are adjusted according
to this. This process is repeated until the loss (difference between the desired and actual output) is
satisfactory. After this learning process, it is possible to save the state of the ANN, and it is able to do
predictions for new inputs.

ANNs have already been used by researchers of the field, and there are superior results in reducing
the material parameters for selected material functions [12]. Our presented feed-forward network is
applicable to do the reverse engineering task of the IHCP. Feeding the measured temperature records
to the network as an input, it may be able to predict the main characteristics of the HTC. Both the
temperature and the HTC series are based on time, therefore the input and the output of the network
should be quite large. Nowadays, the availability of modern GPUs makes it possible to design quite
large dense networks, and train them in a tolerable time.
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Modern GPUs can be considered as general purpose architectures with a large number of simple
processing cores. Nowadays, these devices are the key factors to solving highly computing-intensive
tasks. GPU hardware has two particular strengths: high number of cores and memory bandwidth.
This new programming model forces the programmer to divide the problem into a block of threads
and running thousands of these. A problem is suitable for GPU acceleration only if it is able to adapt
to these requirements and utilize the benefits. Focusing on the topic of this paper, there are two areas
where it is possible to take advantage of these: running complex simulations with Finite-Element
Method (FEM) and training ANNs.

Beyond the computational demands, the other constraint for the efficient training process is the
availability of enough training data. To train a network with hundreds/thousands of hidden neurons,
millions of training data pairs are required. Although there are several real-world measurements,
the number of them is far from satisfactory. The only way to have enough data is through the generation
of corresponding HTC/temperature series pairs. This also raises some problems:

• It is necessary to construct a model for building potential HTC series.
• The temperature history for a given HTC can be generated by a cooling simulation process, which

is very time consuming in the case of millions of inputs.

The rest of this paper is structured as follows: Section 2 contains the description of the database.
Section 3 presents the solutions for the raised problems (HTC generation model, GPU accelerated
simulations). Section 4 focuses on the conclusions and further development possibilities.

2. Data Description

The dataset includes more than 1 million records of Heat Transfer Coefficient and corresponding
Temperature value pairs. HTC is given by as a function of temperature; the temporal history is
given by as the function of time. HTC values are stored in the file named “xxx_htc_header.bin” and
“xxx_htc_data.bin”, while temperature values are stored in the file named “xxx_temp_data.bin”.

2.1. Heat Transfer Coefficient File

The format of the HTC header file is given by Table 1.

Table 1. Description of on record in the HTC header file.

Count Size Type Description Unit Min Value Max Value

1 4 byte float Number of control points 0

Number of control points
4 byte float ith control point temperature ◦C 0 850

4 byte float ith control point HTC W
m2K 0 12,000

4 byte float ith control point α −1.0 +1.0

The format of the HTC data file is given by Table 2.

Table 2. Description of one record in the HTC data file.

Count Size Type Description Unit Min Value Max Value
850◦C

∆T + 1 4 byte float HTC value for i ∗ ∆T temperature W
m2K 0 12,000

Additional notes concerning these files:

• All values are encoded as floats, even though some of them are integers (number of control points).
• The number of control points is always 5.
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• The value of ∆T is 10 ◦C. Therefore, the number of HTC values is 86, according to temperatures 0
◦C, 10 ◦C, 20 ◦C, ..., 850 ◦C.

• The size of one header record is 64 bytes.
• The size of one data record is 344 bytes.

According to the common patterns of neural network training, the database contains three
file pairs:

• Training set: The training database, containing 1,000,000 record pairs

– “train_htc_header.bin”: The header part of the training dataset (∼ 610 megabytes)
– “train_htc_data.bin”: The data part of the training dataset (∼ 3280 megabytes)

• Validation set: The validation database, containing 100,000 record pairs

– “valid_htc_header.bin”: The header part of the validation dataset (∼ 61 megabytes)
– “valid_htc_data.bin”: The data part of the validation dataset (∼ 328 megabytes)

• Test set: The test database, containing 100,000 record pairs

– “test_htc_header.bin”: The header part of the test dataset (∼ 61 megabytes)
– “test_htc_data.bin”: The data part of the test dataset (∼ 328 megabytes)

2.2. Temperature File

The format of the Temperature file is given by Table 3. As visible, it simply contains the
temperature records for a given simulation using ∆t s resolution. As it is a cooling process, it starts
with 850 ◦C and converges to room temperature.

Table 3. Description of one record in the temperature file.

Count Size Type Description Unit Min Value Max Value
60s
∆t 4 byte float Temperature value for time i ∗ ∆t ◦C 0 850

Additional notes about these files:

• The value of ∆t is 0.5 s. Therefore, the number of temperature values is 121, according to time
0.5 s, 1 s, ..., 60 s.

• The size of one data record is 480 bytes.

According to the common patterns of neural network training, the database contains three files:

• Training set: The training database, containing 1,000,000 records

– “train_temp_data.bin”: The temperature data of the training dataset

• Validation set: The validation database, containing 100,000 records

– “valid_temp_data.bin”: The temperature data of the validation dataset

• Test set: The test database, containing 100,000 records

– “test_temp_data.bin”: The temperature data of the test dataset

3. Methods

3.1. Model for HTC Generation

Considering the one-dimensional IHCP, the HTC is a one-dimensional function of temperature
given between 0 ◦C and 850 ◦C.
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The generation of HTC series is based on control points. Each HTC function is given by N control
points P1, P2, ..., PN . In the case of one-peak functions, it is enough to use three control points (N = 3);
in the case of two-peak functions, the number of required control points is 5 (N = 5). Each control
point has a temperature (Pi.temp) and a HTC (Pi.htc) coordinate, according to the constraints given by
Equations (2)–(4).

0◦C ≤ Pi.temp ≤ 850◦C ∀i ∈ {1, 2, ..., N} (2)

0
W

m2K
≤ Pi.htc ≤ 12000

W
m2K

∀i ∈ {1, 2, ..., N} (3)

P1.temp < P2.temp < ... < PN .temp (4)

Based on 300 real world measurements, Table 4 contains the additional value constraints.

Table 4. Limits for control points (N=5).

Temperature (◦C) HTC ( W
m2K )

Min Max Min Max

P1 200 400 200 500
P2 401 650 2000 12,000
P3 651 750 200 500
P4 751 820 500 800
P5 821 850 100 400

Figure 1 shows an example of how the control points describe the breakpoints of the function.
It is not visible in the figure, but there are two P0 (where P0.temp = 0 ◦C and P0.htc = P1.htc) and PN+1

(where PN+1.temp = 850 ◦C and PN+1.htc = PN .htc) virtual control points to handle the first and last
section of the function.
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Figure 1. P1, P2, ..., P5 control points of an example HTC function.

The shape of the curve of each segment between control points is controlled by a single floating
point number (αi), according to Equation (5).

− 1.0 ≤ αi ≤ +1.0 ∀i ∈ {1, 2, ..., N} (5)

The HTC value for a given T temperature between control points Pi and Pi+1 is given by the
following equations:

α′i =
1

αiCα
(6)
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δ(T) =
T − Pi.temp

Pi+1.temp− Pi.temp
(7)

γ(T) =
1− e

−δ(T)
α′i

1− e
− 1

α′i

(8)

HTC(T) = Pi.htc + γ(T)(Pi+1.htc− Pi.htc) (9)

where Cα is a scaling factor (usually 7); Pi is the control point before T; Pi+1 is the control point after T;
αi is the ith curve shape attribute; T is the temperature; and HTC(T) is the HTC value for the given
temperature.

Figure 2 shows the effect of different α parameters. The α = 0 selection leads to a division by zero
error. In this special case, the points of the linear curve are simply calculated by Equation (10).

HTC(T) = Pi.htc + δ(T)(Pi+1.htc− Pi.htc) (10)

Using the presented model, it is possible to randomly generate HTC series. Using the limits of
Table 4 and random α values between −1.0 and +1.0 for all control points, the shape of the HTC
function is specified by the given Equations (9) and (10). For further processing, we store the calculated
values of the HTC function for given temperature values, from 0 ◦C to 850 ◦C using 10 ◦C steps.
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Figure 2. Calculated γ values by δ for different α parameters.

3.2. Temperature History Generation

To solve the IHCP, the temperature history for given HTC series is also necessary. The presented
dataset is composed of information representing the quenching process from 850 ◦C to room
temperature of a cylindrical bar (diameter: 20 mm; and length: 60 mm) produced from Inconel
600 alloy. The physical properties of Inconel 600 alloy are summarized in Tables 5 and 6. Its density is
8420 kg/m3. The probe was equipped with one thermocouple located 30 mm from the bottom at the
centerline of the cylinder. Due to the position of the thermocouple, only radial exchange was assumed,
therefore a 1D axis-symmetrical Heat Transfer model was applied for the calculations [13]. The HTC
was considered as a function of the surface temperature. The cooling curves at the location of the
thermocouple were obtained by using HTC(T) function as input for the heat transfer model.
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Table 5. The heat conductivity of ISO 9950 alloy.

Temperature
T (◦C)

Heat Conductivity
k (W/mK)

27.00 14.8
95.45 15.8
195.95 17.4
205.15 17.5
346.75 19.8
554.15 23.1
596.15 23.8
662.15 24.9
796.45 27.1

Table 6. The specific heat of ISO 9950 alloy.

Temperature
T (◦C)

Specific Heat
Cp (kJ/kgK)

27.00 0.4440
95.45 0.4801

195.95 0.5038
205.15 0.5038
346.75 0.5041
554.15 0.5453
596.15 0.5536
662.15 0.5958
796.45 0.6817

The explicit finite difference method (FDM) presented by Smith was used to simulate the heat
movement. In the case of one-dimensional heat transfer simulation, it is necessary to solve the
following equations:

• For the middle line (i = 0) (Equation (11)):

A(t + 1, 0) = A(t, 0) + (dt ∗ α(T)) ∗ 1
dx2 ∗ 2 ∗ (A(t, 1)− A(t, 0)) (11)

• For the surface (i = N) (Equation (12)): f

A(t + 1, N) =A(t, N) + (dt ∗ α(T)) ∗ ( 1
dx2 ∗

2 ∗ (A(n, N − 1)− A(n, N)− dx
k
∗ (HTC(T)∗

(A(t, N)− Tcm)) +
1

N ∗ dx
∗ −1

k(T)

∗ (HTC(T) ∗ (A(t, N)− Tcm)))

(12)

• For the inner points (i = 1..N-1) (Equation (13)):

A(t + 1, i) =A(t, i) + (dt ∗ α(T)) ∗ ( 1
dx2 ∗

(A(t, i− 1) + A(t, i + 1) ∗ 2 ∗ A(t, i)) +
1

i ∗ dx
∗

1
2 ∗ dx

∗ (A(t, i + 1)− A(t, i− 1)))

(13)
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where A(t, i) is the temperature of the ith node of the finite element matrix at time t; α is the thermal
diffusivity (Equation (14)); k is the thermal conductivity; cp is the specific heat capacity; ρ is the
density of the material; HTC is the heat transfer coefficient; N is the number of points; and Tcm is the
temperature of the cooling medium.

α(T) =
k(T)

cp(T) ∗ ρ
(14)

The problem domain was discretized to approximate the solution to the given problem. It was
done by dividing the domain into a uniform grid, and the cross section of the object was substituted
with an N-sized vector.

Using the finite difference method, the heat transfer between the given areas was calculated
using one time step. To ensure accuracy, the sufficiently small time interval (dt) selection is essential
(dt = 0.01 s was used). The simulation needed to run a cycle of the calculations mentioned above
to generate the temperature values for each time step. The above-mentioned method is well-suited
for several situations; however, the calculation demand is quite high. We had to calculate the given
formulas for all nodes for all given time steps. In the case of N = 10 and 1 min simulation time,
the number of calculations was 10× 60/0.01 = 60, 000.

In normal circumstances, this is acceptable, because an average CPU can calculate the results in
some seconds. In this case, the goal is to generate a database from these; therefore, it is necessary to
run millions of simulations, which is very time consuming. Because it is a well parallelizable task,
the authors have already developed a novel GPU based acceleration for this process.

The main idea behind GPGPU (General-Purpose Computing on Graphical Processing Units) is to
use the architecture of a massive number of processing units to solve computationally intense cases.
There are already several successful research projects in this field [14–16]. The novel parallel algorithm
implemented by the authors is based on several optimization steps: launching multiple threads on
all multiprocessors, storing data in fast on-chip memory, eliminating warp divergence and memory
transfer latency, and using the host and device together [17,18]. It makes it possible to run all necessary
simulations in a tolerable time.

Figure 3 shows some examples for these generated HTC functions and temperature records.
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Figure 3. Cont.
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(c) 2nd HTC example
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(d) 2nd temperature example.
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(f) 3rd temperature example.

Figure 3. Examples for generated HTC functions and the corresponding simulated temporal history.

4. Usage Notes

This paper presents a database containing HTC functions and the corresponding temperature
records. The authors designed a novel method for generating valid HTC functions based on several
real-world measurements. The corresponding temperature function is the result of a simulation
process, which was accelerated by graphics cards, due to high computational demands. This database
makes it possible to design novel methods to solve the IHCP. In the case of machine-learning-based
approaches, the proposed database is directly usable for training, testing and validation of solutions.

The authors presented several methods to determine the HTC based on temperature data.
These are mostly based on time consuming, heuristic searches (genetic algorithms [19,20],
particle swarm optimization [21–23], fireworks [24], etc.). As an alternative, based on a similar
generated database, it was possible to develop another approach based on Universal Function
Approximator networks. The authors designed a simple feed-forward dense ANN to solve the
IHCP [25]. This model contains 120 input neurons and 101 output neurons. The activation function
was the sigmoid function and the loss function was designed as the mean squared error between
the prediction and the training output. The network used AdamOptimizer with learning rate 0.01.
The authors ran several tests with various hidden layer sizes, and the best results was given by the
layer of 50 neurons. This ANN was able to estimate the HTC based on the temporal data series
(Figure 4).
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Figure 4. Sample result given by a simple feed-forward network trained on a similar database.
The orange line is the original generated HTC. The blue line is the predicted HTC given by the neural
network based on the temperature curve. The network was trained by HTC-temperature function
pairs [25].

However, it is evident that the accuracy of this method is not satisfactory. It needs further
development to find the appropriate network architecture, the optimal number of nodes, etc. It is a
time consuming process, because training a network, with such a large amount of data, would take
multiple weeks, and this process is necessary to test each potential architecture. This was the reason
the authors decided to open the proposed database, for all of the researchers in this field.
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