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Abstract: Marine bacteria are key drivers of ocean biogeochemistry. Despite the increasing number
of studies, the complex interaction of marine bacterioplankton communities with their environment
is still not fully understood. Additionally, our knowledge about prominent marine lineages is mostly
based on genomic information retrieved from single isolates, which do not necessarily represent these
groups. Consequently, deciphering the ecological contributions of single bacterioplankton community
members is one major challenge in marine microbiology. In the present study, we reconstructed 13
archaeal and 46 bacterial metagenome-assembled genomes (MAGs) from four metagenomic data
sets derived from the North Sea. Archaeal MAGs were affiliated to Marine Group II within the
Euryarchaeota. Bacterial MAGs mainly belonged to marine groups within the Bacteroidetes as well
as alpha- and gammaproteobacteria. In addition, two bacterial MAGs were classified as members of
the Actinobacteria and Verrucomicrobiota, respectively. The reconstructed genomes contribute to
our understanding of important marine lineages and may serve as a basis for further research on
functional traits of these groups.

Dataset: The metagenome-assembled genomes have been deposited in NCBI GenBank under the
accessions QXXR00000000-QXZX00000000 (submission id SUB4359442). For further details see
Supplementary Table S1.

Dataset License: CC-BY.
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1. Summary

The present data set comprises of 59 archaeal and bacterial metagenome-assembled genomes
(MAGs). These MAGs were reconstructed from four metagenomic data sets derived from the
North Sea. Four seawater samples were taken at three different sites in the North Sea at 3 and 350
m, respectively. Free-living planktonic communities were harvested from these samples by serial
filtration. Environmental DNA was extracted from harvested microbial communities and subjected
to next-generation sequencing. The obtained sequencing data were quality filtered and scanned
for contaminations prior to metagenome assembly. MAGs were reconstructed from the assembled
metagenomic datasets using two independent binning approaches and a subsequent refinement. A
total of thirteen archaeal MAGs affiliated to Marine Group II (MGII) and 46 bacterial MAGs mainly
assigned to marine groups within the Bacteroidetes as well as alpha- and gammaproteobacteria were
extracted. All MAGs have been deposited in Genbank. They provide a basis for further studies aiming
at understanding the complex interaction of important marine lineage with their environment.
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2. Data Description

Here, we report 59 MAGs extracted from 4 marine water samples taken in the North Sea (Figure 1).
The North Sea is a typical coastal shelf sea. Coastal shelf seas of the temperate zone are highly
productive because of the continuous nutrient supply by rivers. The North Sea is connected to the
Atlantic Ocean via the English Channel in the South and the Norwegian Sea in the North. The southern
part has a water depth of less than 50 m and is subjected to strong tidal currents. Nutrient suspension
from the sediment and loss of water stratification are results of these currents. The northern part of the
North Sea is deeper (up to 725 m) and strong tidal currents do not occur. The southern region has
especially undergone high nutrient loading and warming during the last 40 years [1,2].
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Figure 1. Map of the North Sea showing the three sampling sites. Seawater samples were taken at 3 
m (2, 13, 14) and 350 m depth (13). Note that numbering follows ship stations. The map was generated 
in R using the maps and mapdata packages [3–5]. 
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A total of 13 archaeal MAGs were reconstructed from the four seawater metagenomes 
(Supplementary Table S1). Completeness and contamination varied between 54.3% and 84.39% 
(average 70.84%) and 0% and 8.33% (average 1.39%), respectively. Classification with GTDB-Tk [6] 
placed all genomes within Marine Group II (MGII; Euryarchaeaota). Members of this group have 
been frequently observed in various marine ecosystems [7,8]. For instance, Pernthaler et al. observed 
blooms of MGII archaea during spring and summer in the German Bight with >30% of the total 
picoplankton abundance [7]. Although frequently observed, our understanding of this abundant 
marine lineage is still rudimentary [9].  

Figure 1. Map of the North Sea showing the three sampling sites. Seawater samples were taken at 3 m
(2, 13, 14) and 350 m depth (13). Note that numbering follows ship stations. The map was generated in
R using the maps and mapdata packages [3–5].

2.1. Archaeal Metagenome-Assembled Genomes

A total of 13 archaeal MAGs were reconstructed from the four seawater metagenomes
(Supplementary Table S1). Completeness and contamination varied between 54.3% and 84.39%
(average 70.84%) and 0% and 8.33% (average 1.39%), respectively. Classification with GTDB-Tk [6]
placed all genomes within Marine Group II (MGII; Euryarchaeaota). Members of this group have been
frequently observed in various marine ecosystems [7,8]. For instance, Pernthaler et al. observed blooms
of MGII archaea during spring and summer in the German Bight with >30% of the total picoplankton
abundance [7]. Although frequently observed, our understanding of this abundant marine lineage is
still rudimentary [9].
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2.2. Bacterial Metagenome-Assembled Genomes

A total of 46 bacterial MAGs were reconstructed (Supplementary Table S1). Completeness and
contamination varied between 50.86% and 97.52% (average 77.96%) and 0% and 9.73% (average 2.85%),
respectively. Classification with GTDB-Tk [6] affiliated most MAGs to important marine lineages
including the Roseobacter clade, the SAR92 clade, as well the OM60/NOR5 clade. Interestingly,
four MAGs were assigned to Planktomarina temperata within the Roseobacter RCA cluster, which is
abundant in temperate and polar regions [10–13]. The first published genome belonging to the RCA
has been published recently, highlighting the global abundance of this marine pelagic group [14].
Five genomes were affiliated to the marine SAR92 clade, an important gammaproteobacterial marine
lineage, which has been frequently observed in the North Sea [15,16]. Five genomes were assigned to
the genus Luminiphilus, a genus within the OM60/NOR5 clade, which is abundant in coastal marine
ecosystems [11,17].

Deciphering the functional traits of prominent marine lineages is a major challenge in marine
microbiology. Information on biogeochemical and functional traits of prominent marine bacterial
lineages is often missing and is mostly based on genomic information that is retrieved from single
isolates [14,18,19]. These isolates do not necessarily represent abundant marine lineages. This is
exemplified by the unexpected discovery of respiratory nitrate reductases in members of the SAR11
clade [20], contributing to an anoxic lifestyle. Here, we present 59 genomes belonging to important
marine lineages, such as the marine Roseobacter lineage [14] as well as the SAR 92 clade [18]. These
genomes may serve as a basis for further research on functional traits of important marine clades and
their contribution to ecosystem services.

3. Methods

3.1. Sampling and Sample Preparation

Seawater samples were collected in the North Sea at three sites on board of the RV Heincke in
July 2011 (Figure 1). Three samples were taken in 3 m depth (2, 13, 14) and one sample was taken
at 350 m depth (13). Sampling and filtration were performed as described previously [21]. In brief,
samples were prefiltered with a glass fiber filter (Whatman GF/D, GE Healthcare, Freiburg, Germany).
Bacterioplankton was subsequently harvested from a prefiltered 10 L sample using a filter sandwich
consisting of a glass fiber filter (Whatman GF/F, GE Healthcare) and a 0.2-µm polycarbonate filter
(Whatman Nuclepore, GE Healthcare). Filter samples were stored at −80 ◦C or on dry ice during
transport from ship to laboratory.

3.2. DNA Extraction and Sequencing

DNA was extracted and purified according to Weinbauer et al. [22]. DNA was subsequently
purified, employing the peqGOLD gel extraction kit (Peqlab, Erlangen, Germany). The Göttingen
Genomics Laboratory determined the sequences of the extracted DNA using an Illumina Genome
Analyzer IIx (San Diego, USA).

3.3. Assembly and Genome Reconstruction

Generated metagenomic datasets were processed as follows: fastq files derived from Illumina
sequencing were processed employing the Trimmomatic tool version 0.36 [23]. Processing included
the removal adapter sequences and low-quality regions (settings: ILLUMINACLIP:adaptor.fa:2:30:10:2
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36). Processed reads were assembled
using metaSPAdes version 3.12.0 [24]. To determine the coverage for each contig, unassembled reads
were mapped on obtained scaffolds using bowtie2 version 2.3.2 [25]. Sam files were converted to
sorted bam files using samtools version 1.7 [26]. The depth was calculated with jgi_summarize_depth
supplied with MetaBAT [27]. MetaBAT version 0.32.5 [27] and MyCC version 2017 [28] were used to
reconstruct archaeal and bacterial genomes with a minimum input sequence length of 2500 bp. In
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order to increase the overall accuracy and to remove potential contaminations, obtained genomes
were refined using binning_refiner [29]. The completeness and contamination were determined using
CheckM version 0.7 [30]. Genomes were taxonomically classified using GTDB-Tk version 1.0.2 and the
GTDB release 86 [6,31].

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/5/1/15/s1,
Table S1: Submission details and genome characteristics.
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