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Abstract: Economics suffers from a blurred view of the economy due to the delay in the official
publication of macroeconomic variables and, essentially, of the most important variable of real GDP.
Therefore, this paper aimed at nowcasting GDP in India based on high-frequency data released early.
Instead of using a large set of data thus increasing statistical complexity, two main indicators of the
Indian economy (economic policy uncertainty and consumer price index) were relied on. The paper
followed the MIDAS–Almon (PDL) weighting approach, which allowed us to successfully capture
structural breaks and predict Indian GDP for the second quarter of 2021, after evaluating the accuracy
of the nowcasting and out-of-sample prediction. Our results indicated low values of the RMSE in the
sample and when predicting the out-of-sample1- and 4-quarter horizon, but RMSE increased when
predicting the 10-quarter horizon. Due to the effect of the short-term structural break, we found that
RMSE values decreased for the last prediction point.

Keywords: nowcasting real GDP; economic policy uncertainty; consumer prices index; mixed-data
sampling; almon weighting; structural break

1. Introduction

The official publication of many macroeconomic indicators (such as GDP) has been
delayed, especially in developing countries, by Central Statistics Offices. This is a prob-
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lem for economists and policy-makers who follow the state of the economy. GDP is the
most important indicator for policy-makers, and is similar in describing the state of a
country’s economy to satellites that describe weather on earth. While meteorologists have
today’s weather information and only need to predict tomorrow’s weather, economists
need to know today’s information.In the recent past, this has been described as nowcasting.
Nowcasting technology allows us to exploit the information in high-frequency data (daily,
weekly, monthly) to extract signals about the direction of change in low-frequency data
(seasonal, yearly).This technology is only useful in an environment where high-frequency
data are issued in real time. Nowcasting is used to generate real-time current GDP estimates
as a low-frequency variable (annual, quarterly) based on information from high-frequency
variables (monthly, daily) that are released early. Studies [1,2] gave the basis of nowcasting
by studying daily GDP developments based on high-frequency data in the US economy.
Giannone et al. [3] also developed a method for assessing the marginal impact of monthly
data releases that have a jagged edge on current quarter real GDP forecasts. The usual
methods used for forecasting rely on dynamic factor models that treat the underlying
low-frequency variable of interest as a latent process with high-frequency data observa-
tions. These models are inferred using likelihood-based methods and Kalman filtering
techniques [4]. Correspondingly, in order to nowcasting GDP, many studies have relied
on a large set of high-frequency data using the MIDAS model according to a weighting
function that fits the data [5–7]

For nowcasting low-frequency variables, researchers rely on a wide range of high-
frequency early-release financial economic variables [8]. Among the most frequently used
variables are exchange rates, price indices, retail trade, average income [9,10]. Macroeco-
nomics relies on increasingly non-standard data extracted using machine learning (textual
analysis) methods, with the analysis involving hundreds of time series. Some studies [11,12]
investigated GDP growth forecasting in the U.S.A. using standard high-frequency time
series and non-standard data generated by textual analysis of financial press articles and
proposed a systematic approach to high-dimensional time regression problems.

In India, there are many studies of nowcasting GDP. Lyer and Gupta [13] used a
dynamic factor model to forecast GDP growth in India on a quarterly basis from January
2000 to December 2018. The analysis included 6 quarterly indicators and 12 monthly
high-frequency indicators derived from the monetary, financial, and real sectors of India.
A work [14] built single-index dynamic factors (DFs) using a sequentially expanding list of
6,9, and 12 high-frequency indicators. Another study [15] used, for nowcasting India’s GDP
growth, a dynamic factor model that incorporates a series of USA and Euro zone outputs
in order to improve forecasts.A new framework was suggested [14] to forecast India’s
Gross Value Added that incorporates information of mixed-data frequencies and other data
characteristics. Evening-hour luminosity was added as a crucial high-frequency indicator.

In this paper, we present a framework for the nowcasting of GDP growth in India
using a Mixed-Data Frequency Model. Instead of relying on a large number of indicators
in forecasting, which often leads to statistical complexity, we relied on two indicators as
high-frequency data, in line with the economic theory:first, the economic policy uncertainty
index for India [16] as a non-standard indicator based on textual analysis, and second,
the consumer price index for India as a standard indicator. The main aim was to assess
the extent to which the model is able to anticipate the significant negative effects of the
Covid19 pandemic on economic growth in India, as most statistical models collapse during
crises (global financial crisis) [17]. Studying the effects of uncertainty on India’s economic
growth is difficult because, as far as we know, these effects have not been studied before.
At the same time, the proposed model provides real-time GDP growth nowcasting and
continuous updates to the GDP growth in India, given that the data of Economic Policy
Uncertainty index and Consumer Price Index are issued in real time, which gives a great
benefit to trackers of the state of the economy.
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2. Materials and Methods

The term MIDAS refers to regression analysis by sampling data measured at dif-
ferent frequencies. As a remedy to the problem of variation in statistical versions in
economics, the methodology [18–20] addresses the situation where the dependent vari-
able in the regression is sampled at a lower frequency than that of one or more of the
regressors. The aim of the MIDAS approach is to incorporate the information present
in the higher frequency data into the lower frequency regression in a parsimonious, yet
flexible, fashion. An additional advantage of these models is that some additional value
for the high-frequency variables may be available after observing the latest value of the
low-frequency dependent variable sample. In this case, these additional observations can
be used to update the predictions, which is called nowcasting. The following is the general
form of the MIDAS regression equation:

Yt = βXt +
S−1

∑
p=0

XH
(t−p)/Sθp + εt (1)

where Yt is the variable low frequency during the period (t), Xt isthe set of regressors
sampled at the same low frequency Yt,XH

(t−p)/S idthe set of regressors sampled at a higher
frequency with S values for each low-frequency value, p isthe high-frequency lag at t, θ
indicates the partial effect parameters for each frequency interval S, and εt is the error term.

This approach estimates a distinct θ for each S high-frequency lag regression. The
MIDAS model estimation provides various weighting functions that reduce the number of
parameters in the model by placing constraints on the effects of high-frequency variables
to suit their properties and according to some assumptions.

2.1. Step Weighting

According to this function, the notation of Equation (1) becomes as follow [19]:

Yt = βXt +
k−1

∑
p=0

XH
(t−p)/Sθp + εt (2)

where k: is the number of lagged high frequency, and p is the step length; the number of
high-frequency coefficient increases with the number of lags. A linear trend between the
variables is preferred when using this function.

2.2. Almon (PDL) Weighting

For each high-frequency lag up to k, the regression coefficient is modeled as a q
dimensional lag polynomial in the MIDAS parameters θ. Equation (1) follows [19]:

Yt = βXt +
k−1

∑
p=0

XH
(t−p)/S

q

∑
j=1

pjθj + εt (3)

where q is the almon polynomial order and the chosen number of lag k. This function
isused if the data have multiple trends (quadratic, cubic).

2.3. Beta Weighting

Ghysels et al. [19] suggest a normalized beta-weighting function, according to the equation:

Yt = βXt +
k−1

∑
p=0

XH
(t−p)/S

 iL
λ1−1(1 − iL)

λ2−1

∑k
j=0 iλ1−1

j
(
1 − ij

)λ2−1 + λ3

γ + εt (4)

where λ1, λ2, λ3 are hyperparameters governing the shape of the weighting function, γ is
a slop coefficient that is common across lags, kand is the number of lags. This function can
be used when the shape of the distribution of the variables is unknown or distorted.
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3. Data and Theory

Our efforts for nowcasting real GDP growth in India as a low-frequency variable were
based on the quarterly data available in the Federal Reserve Economic Data database from
2012 through the first quarter (Q1) of 2021. For the high-frequency (monthly) variables as
independent variables, we used the India economic policy uncertainty index as a proxy for
the non-standard indicators calculated according to a previously reported methodology [16].
The data are available from 2012 to July 2021 on the website [21]. The index is based on
newspaper articles. Seven Indian newspapers are included: The Economic Times, The
Times of India, the Hindustan Times, the Hindu, The Statesman, The Indian Express, and
The Financial Express. The news articles containing at least one of the terms indicative of
economic policy uncertainty were counted and classified into three groups: the first group
included uncertain, uncertainties, or uncertainty. The second group included economic
or economy. The third category included policy terms such as regulation, central bank,
monetary policy, policymakers, deficit, legislation, and fiscal policy. The monthly Economic
Policy Uncertainty article count was reduced by subtracting the number of all articles in
the same newspaper and month. Each paper-specific series was normalized to standard
deviation 1 prior to 2011. Once normalized, the seven newspaper-specific indices were
then summed. The resulting series was normalized to mean 100 prior to 2011. Empirical
studies [16,22–26] have confirmed that high levels of uncertainty lead to a slowdown in
economic growth. Whereas uncertainty can lead companies to postpone hiring decisions,
it affects workers’ decisions, making them less willing to search for job opportunities, and
it accompanies high volatility in macroeconomic variables, which makes the economic
policy uncertainty index capture the slowdown in India’s economic growth. The second
high-frequency indicator as a standard index that we considered was the consumer price
growth (inflation rate, total of all items) of India during the monthly period from 2012 to
June 2021, drawn from the Federal Reserve Economic Data database. The rise in consumer
prices can be a driver of economic growth and can have a negative impact on economic
growth. Large and continuous rises in prices could lead to a decrease in the return on
capital and weak real spending, which leads to a decrease in the confidence of investors
and consumers in the economy and thus a decrease in growth. On the other hand, if
price growth is controlled at acceptable levels, real consumer spending will increase, and
thus the economy will achieve expulsion growth. Accordingly, the importance of these
indicators is reflected in the current and future forecast of the trends of the Indian economy.

4. Methodology

With our methodology, for nowcasting the Q2 of 2021 of India’s economic growth, we
divided the GDP growth data in India into two sets: the data from Q1 of 2012 toQ4 of 2018
for training, and the data from Q1 of 2019 to Q1 of 2021 to test the validity of the forecasts
and the model ability for the nowcasting of developments in economic growth in India
during 2019 and 2020.

Accordingly, our methodology included several stages. To visualize the data features
(patterns, unusual observations, changes over time), we first plotted the data, then trans-
lated them with descriptive statistics and the normal distribution of the data using the
following statistic:

Jarque − Bera =
n
6

(
S2 +

1
4
(K − 3)2

)
(5)

where n is the number of observations, S is skewness, K is kurtosis.Because most economic
variables show a stochastic trend and may be exposed to shocks that do not allow them
to return to their pre-shock average, economic time series may undergo discrete changes
at a particular date or gradual changes over time called “breaks”, often associated with
economic policy or structural changes in the economy. We need to study the extent to
which these variables are affected by using the Breakpoint Unit Root test previously
proposed [27–30]. Assuming that breaks follow the dynamic course of innovations, we
tested the stationarity of our variables according to the following equation:
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yt = c + αt + θDUt(Tb) + γDTt(Tb) + ωDt(Tb) + δyt−1 +
p

∑
i=1

ϕi∆yt−i + εt (6)

where α, θ, γ, ω are trend and break parameters, c is a constant, p is the lag order of
the autoregressive process.The test was carried out under the null hypothesis δ = 0 (not
stationary with or without break) against the alternative of δ < 0 (stationary with or
without break). In the next step, in order to avoid the problem of multicollinearity, we
tested the degree of a linear relationship between the high-frequency independent variables,
which was obtained according to:

r = ∑ X1X2 − nX1X2

(n − 1) ∗ σX1σX2
(7)

where X1, X2 are independent variables, σX1, σX2 indicatethe standard deviation. With no
multicollinearity problem, we estimated the MIDAS model for nowcasting the Q2 of 2021
and used the fourth-degree Almon PDL weighting for capturing volatility in the data and
giving an appropriate slowdown period for each high-frequency variable according to the
Akaike Information Criterion (AIC), which is given as follow [31]

− 2log L
(
θ̂
)
+ 2k (8)

where θ̂ is the maximum value of the likelihood function, k is thenumber of variables.
We also included in the model the AR(p) term for the low-frequency variable in order
to benefit from the historical information of the variable in addition to the information
of the high-frequency variables in forecasting, which is an advantage for these models
(AR-MIDAS) over the dynamic factor model. After estimating the model, we evaluated
the model forecast ability by testing the random error term εt: the error term values
must be distributed in a normal distribution, according to the testing Equation (5). In
addition, the error term values should not be self-correlated; we tested this using the auto
correlation function:

ρ(p) =
Cov

(
εt, εt+p

)
σ2 (9)

where p is the number of lags. The random error term series must be stationary, and we
tested this with the augmented dickey fuller (ADF) equation [32]:

∆εt = c + α.t + δεt−1 + βp−1∆εt−p+1 (10)

where c is a constant, α is a coefficient on a time trend, p is the lag order of the autoregressive
process. The ADF test was carried out under the null hypothesis δ = 0 (not stationary)
against the alternative hypothesis of δ < 0 (stationary). After obtaining the predictions, the
accuracy of the predictions was confirmed in- and out-of-sample and on the short and long
term, depending on Root Mean-Square Error (RMSE):√

∑n
t=1(ŷt − yt)

2

n
(11)

where ŷt is the forecast value, yt is the actual value, n is the number of fits observed. The
closer the value of this indicator is to zero, the more expected values are identical to the
actual one [33].

5. Empirical Results

We created a monthly (high-frequency) visualization of India’s quarterly real GDP
growth, economic policy uncertainty (EPU), and consumer price rate (CPI).As an advantage
over the literature reviews that used nowcasting models, the use of indicators of uncertainty
and consumer prices may provide important and quick results in picking up signals of
change in GDP growth, but because of the overlapping patterns and factors affecting GDP
growth, the use of only two variables is a limit that affects the nowcasting results. Figure 1
shows that the margin of GDP volatility before 2020 (Stationary) was less than afterwards;
it was the largest, at 2.9%, in 2016 Q1 and the lowest, at 0.8%, in 2017Q1. Then, there was a
sharp decline in 2021 Q2 at a rate of −26%. This was due to the effects of the COVID-19



Data 2021, 6, 113 6 of 15

pandemic and the great leap achieved by the economic growth during the third quarter of
2021, driven by the decline in the quarter before it [22–32]. This made forecasting of the
growth rate more difficult, especially after the second wave of the COVID-19 pandemic.
Figure 1 also shows that the largest increase in consumer prices, which reached 2013 M2,
was due to the increase in the prices of vegetables and fruits. We also note that the growth
rate of consumer prices took an upward trend from the beginning of 2018 until the end of
2019 and remained at high levels during the subsequent period due to the rise in prices
in various economic and health sectors. We note from Figure 1 that the economic policy
uncertainty index reached high levels in 2012 and 2020.
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Figure 1. Evolution of the quarterly real GDP growth (2012 Q1–2021 Q1), the monthly economic policy uncertainty index
(2012 M1–2021 M7) (EPU), and the monthly consumer price rate (2012 M1–2021 M6) (CPI) inIndia.

The data visualization shows that when (EPU) (CPI) rises, GDP falls, and thus our
current 2021 Q2 forecast suggests an improvement. The following table reports the most
important descriptive statistics and normal distribution of the variables:

The Table 1 shows that both GDP growth and economic policy uncertainty are not
distributed according to the normal distribution. Considering GDP, the large difference
between the maximum and the minimum values that occurred during 2020 caused the
distribution to become significantly kurtosis and skewed to the left with strongly nega-
tive growth. We also note the significant difference between the maximum (283.68) and
the minimum (32.88) values of the EPU index, which occurred in 2012M6 and 2016M6,
respectively. This also led to a high kurtosis greater than 3 (normal). We notice that the
outlier value in 2012M6 skewed the distribution to the right. As for the CPI rate, the data
present a normal distribution, and the average during the studied period was 6.73% with a
standard deviation of 2.37, which indicates am increase in price in general for the study
period [19–31]. To find the extent of the impact of these values on the variable, we used the
Breakpoint unit root test and obtained the following results.
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Table 1. Descriptive statistics and normal distribution of the variables.

Variables
Normality

Mean Standard Deviation Maximum Minimum Skewness Kurtosis
J-B

GDP% 343.6 *** 1.64 5.98 23.12 −25.29 −1.39 17.66

EPU 61.6 *** 94.09 46.82 283.68 32.88 1.37 5.31

CPI% 2.89 6.37 2.57 12.06 1.08 0.32 2.54

*** Indicates significance at 1%. ** significance at 5%. * significance at 1%.

Table 2 shows that the date of 2020 Q2 was set as a point of structural break.We
determined the significance of all parameters of the model. The break occurred at the
intercept and trend levels. We also found that t-statistics stationary is significant at 1%,
and therefore, we concluded that the point structural break caused a short-term change in
GDP and was stationary at that level. To complete our steps before building the model, we
estimated the correlation matrix for high-frequency variables to make sure that there was
no multicollinearity.

Table 2. Breakpoint Unit Root Test for GDP.

GDP Stationary GDP (−1) C TREND INCPT
BREAK

TREND
BREAK BREAKDUM Integrated

t-statistics −54.25 *** −4.9 *** 10.76 *** −1.97 * 23.23 *** −16.95 *** −46.80 *** I(0)

Break Date 2020 Q2

*** Indicates significance at 1%. ** significance at 5%. * significance at 1%.

The results of the correlation matrix estimationshowed that the degree of linear
correlation (0.544) was low among the variables, and thus we ruled out a problem of
multicollinearity. We then built the model and obtained the following results, presented in
Table 3, divided into three main sections. The first section represents the AR (1) equation
for the low-frequency variable. We note the significance of the parameters and the negative
impact of GDP on their previous values. The second and third sections show the polynomial
coefficient for high-frequency variables. We note that two lag periods were subtracted
from high-frequency variables, since we needed two months out of each quarter to predict
the low-frequency variable. Table 3 shows that 5 lag periods were selected for EPU, and
15 lag periods were chosen for CPI according to the AIC that achieved the least values for
model sum of squared residuals (Figure 2). We note the significant effect of the partial
coefficient of the monthly variables in each quarter of GDP. Table 4 shows that the effects
of EPU varied but had a negative impact on the growth of GDP in each quarter, while
the impact was positive for the growth of CPI (see Appendix A). The Durbin Watson stat
indicates no first-order autocorrelation between the residuals [19,29]. Here, we needed to
test autocorrelation between residuals of more than one degree, due to the use of lags.

Table 3. Residuals test results.

Test
Normality

ACF2
ADF

J-B Non Constant–Non Trend

Residuals (PROB) 0.824 0.645 000 ***
*** Indicates significance at 1%. See Appendix A for statistical details.
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Figure 2. Choosing the model that achieves the lowest values sum of squared residuals.

Table 4. Estimation using Mixed-Data Sampling.

Dependent Variable: GDP (2013Q4 2018Q4)

Variable Coefficient Std. Error t-Statistics

C 2.80203 0.41732 6.714348 ***

GDP (−1) −0.583927 0.186453 −3.131770 ***

EPU(−2) Lags: 5

PDL1 −0.092474 0.021263 −4.348970 ***

PDL2 0.110246 0.026672 4.133369 ***

PDL3 −0.039758 0.009813 −4.051492 ***

PDL4 0.004328 0.001083 3.996321 ***

CPI(−2) Lags: 15

PDL1 0.47354 0.076658 6.177316 ***

PDL2 −0.232206 0.040478 −5.736635 ***

PDL3 0.028698 0.005617 5.109536 ***

PDL4 −0.001012 0.000226 −4.475439 ***

Adg. R-Squared 0.580478 Log Likelihood 2.022063
*** Indicates significance at 1%. ** Significance at 5%. * Significance at 1%.

Before issuing nowcasting, we checked that the standard assumptions for the residuals
were correct:

The results showed that the residuals were distributed according to a normal distribu-
tion, and we noted that there was no autocorrelation between different orders.We found that
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the residual series was stationary. Now, according to the previous results, we performed
multi-step ahead nowcasting to forecast 2021 Q2 and obtained the following results.

The visual representation showed (Figure 3) that the expected values using the model
were close to the actual data points. The most prominent observation is that the model
succeeded in capturing the point of structural change in 2020 Q2, but not the actual value
that it reached, as indicated in Figure 4.
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The presence of such large changes makes any statistical model invalid, but our
model accurately predicted when the structural Break would occur. We calculated the
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RMSE (Table 5) to evaluate the predictions in and out of sample on the horizon (short,
medium, long):

Table 5. Evaluating the performance of the model in and out of sample.

In of Sample (Training Data) Out of Sample (Testing Data)

Horizon (Quarter) H = 1 H = 4 H = 10 H = Last Point

RMSE 0.258 0.778 0.937 11.51 1.24

We see from the table that RMSE values [32] were less than 1 for in-sample forecasting,
the model achieved satisfactory results for out-of-sample forecasting at the horizons of
1 and 4 quarters, and the RMSE value became large for forecasting during 2020, as the
value included the structural break that GDP growth was exposed to during 2020, but the
results of Table 2 show that the structural break was short-term, as the model achieved a
lower value of RMSE at the last forecast point. According to our expectations that GDP
growth will achieve 2.1% in 2021 Q2, affected by an increase in CPI and a decrease in EPU,
we were able to include in the forecast the month of July, in which the level of the index
increased, which might herald a new decline in 2021Q3.It is possible to include any new
data for indicators and update the forecasting based on that. This model can also be used
to understand the effect of targeting a variable on GDP growth. For example, suppose that
the economic policy in India aims to stabilize the CPI (i.e., zero growth) for the next three
months. This information can be included in the model and obtain GDP growth forecasts
for the third quarter; this indicated a drop in growth of −0.64%.

6. Conclusions

This paper presents a framework for nowcasting India’s GDP using the MIDAS–
Almon (PDL) weighting model, relying on the information in high-frequency data, instead
of including a large number of variables that lead to statistical complexity. Two indicators
were relied on, namely, Economic Policy Uncertainty (EPU) for India as a proxy for non-
standard indicators and the Consumer Price Index (CPI) as a proxy for standard indicators.
The model showed a negative effect of EPU and a positive effect of CPI on GDP growth,
as high periods of EPU correspond to a decrease in GDP growth, and high periods of
CPI correspond to a rise in GDP growth in accordance with the economic theory. In
addition to the information in the high-frequency variables, we made use of the historical
information in the low-frequency variable and performed the estimation on the training
data. The prediction results showed low values of the RMSE in the sample and when
predicting the 1- and 4-quarter horizon for out of sample, but the RMSE increased when
predicting the 10-quarter horizon. Due to the effect of a short-term structural break, we
found that the RMSE values decreased for the last prediction point. The nowcasting results
indicated that GDP growth will achieve 2.1% in 2021 Q2, affected by an increase in CPI and
a decrease in EPU. Compared with the results of the literature reviews for nowcasting India
GDP growth, the models previously used did not allow capturing the structure break in
GDP growth during the COVID-19 pandemic, despite the large number of high-frequency
variables used, which suggests that future studies should include EPU when nowcasting
changes in India GDP growth. This exercise is expected to be useful to India’s economic
planners and policy-makers in institutions and sites that are concerned with economic
forecasts for the present and the near future of economic growth, which can be obtained
with specific constraints.
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Figure A1. Breakpoint unit root test results.
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Figure A6. Augmented Dickey–Fuller test results for MIDAS Model residuals.
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