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Abstract: The electrocardiogram (ECG) signal produced by the human heart is an emerging biometric
modality that can play an important role in the future generation’s identity recognition with the
support of machine learning techniques. One of the major obstacles in the progress of this modality
is the lack of public datasets with a long interval between sessions of data acquisition to verify the
uniqueness and permanence of the biometric signature of the heart of a subject. To address this
issue, we put forward Heartprint, a large biometric database of multisession ECG signals comprising
1539 records captured from the fingers of 199 healthy subjects. The capturing time for each record was
15 s, and recordings were made in resting and reading conditions. They were collected in multiple
sessions over ten years, and the average interval between first session (S1) and third session (S3L) was
1572.2 days. The dataset also covers several demographic classes such as genders, ethnicities, and
age groups. The combination of raw ECG signals and demographic information turns the Heartprint
dataset, which is made publicly available online, into a valuable resource for the development and
evaluation of biometric recognition algorithms.

Dataset: https://figshare.com/articles/dataset/Heartprint_A_Multisession_ECG_Dataset_for_
Biometric_Recognition/20105354/3.

Dataset License: CC BY 4.0

Keywords: biometrics; electrocardiogram signal; machine learning; multisession dataset; identifica-
tion; authentication

1. Summary

Biometric recognition is a well-established method of identifying an individual using
her/his physiological or behavioral characteristics. The importance of biometric recognition
is increasing rapidly in the contemporary era of e-commerce and e-services in many appli-
cations such as information security, access control, gender, and ethnicity recognition [1].
However, traditional biometric modalities such as fingerprint, face, iris, etc. have proved to
be vulnerable, as they can be easily replicated and used fraudulently [2]. For instance, the
face is vulnerable to artificial masks, a fingerprint can be recreated by latex, the voice can
be mimicked easily, and an iris can be faked using contact lenses with copied iris features
printed on it.

In recent years, there is a growing interest in electrocardiogram (ECG) signal produced
by the heart as a biometric modality [3–5]. In fact, ECG signals have been studied and
presented as a biometric modality for the last two decades, and it has been proven that
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this modality has the required properties for a reliable modality, such as universality,
performance, uniqueness, robustness to attacks, liveness detection, collectability, and
acceptability [5,6]. The main advantage of this emerging modality is that the heart is
confined inside the body’s structure, making it secure against tempering, and it is also
difficult to be simulated or copied. Besides, it has liveness properties, as ECG signals can
be captured from living subjects only, making the heart a biometric modality suitable for
continuous and remote authentication. Furthermore, good-quality ECG signals can be
easily captured from fingers [7,8] making this modality more acceptable for commercial
and public applications. Fusion of this modality with traditional modalities, especially the
fingerprint, could play an important role in developing a reliable, secure, and acceptable
biometric recognition system as well [9,10].

Although the biometric characteristics of heart signals seem promising, the perma-
nence of the unique signature of this modality over a reasonably long period of time has
not yet been tested. The lack of a publicly available multisession dataset restricts the
progress in this field beyond the demonstration of the exceptional performance of machine
learning-based methods on medical ECG records or private datasets [5,11]. Most of the
medical databases used for the experimental analysis are generally acquired in a single
session and, therefore, excellent recognition performance is not an indication of the per-
manence of the biometric signature. Existing purpose-built open datasets of ECG signals
for biometric recognition consist of signals from only a small number of subjects, and the
interval between capturing sessions is a maximum of six months, as shown in Table 1. To
unleash the potentiality of the signal produced by the heart, or what we call Heartprint, the
permanence of the unique signature of this modality should be tested over an extended
period of time.

We aim to address the issues of permanence and uniqueness and to reduce this re-
search gap by putting forward Heartprint [12], a multisession biometric dataset of ECG
signals with long intervals of up to ten years between the sessions of data capturing with
a reasonable size of subjects. The dataset comprises 1539 single-lead ECG records of 15 s
each, captured from 199 subjects in four different sessions. The capturing of raw ECG
signals, transfer of the raw data into a structured database, and its curation, along with
the development of corresponding biometric recognition algorithms, was a long-term
project supported by the National Science, Technology, and Innovation Plan (MAARIFA).
These efforts resulted in a number of publications [13–18], but access to the dataset re-
mained restricted until now. We decided to share the dataset with the broader research
community with the belief that it could be helpful to develop sophisticated methods to
make this modality practically useful for various applications of identity recognition and
information security.

To highlight the uniqueness of the Heartprint dataset, we have compared the existing
public ECG biometric datasets in Table 1 based on the number of ECG records, capturing
the location of the body, the number of sessions, the maximum interval among sessions, and
the duration of a record. For each person, we have collected a good number of ECG records,
making the Heartprint a valuable resource for the training and evaluation of biometric
recognition algorithms in a real-world setting, where machine learning (ML) based methods
have to work reliably to extract the unique signature of the ECG signal affected by various
physiological factors over a long period of time. Apart from the outstanding interval among
sessions of data capturing, the dataset is distinguished by the distribution of demographic
properties, such as age, gender, and ethnicity, rarely found in an ECG dataset constructed
for biometric recognition. In particular, this combination of raw signals and demographic
information makes Heartprint unique in different types of biometric recognition.

The rest of this paper is organized as follows. In Section 2, we present the signal
acquisition tools and discuss the data collection process. In Section 3, we describe the
database with detail information about metadata and row signals. We also presented the
results of the technical validation of the database for two possible applications in Section 4.
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Then notes for the usages of the database are presented in Section 5. Finally, discussions
about the database, validation results, and conclusion are given in Section 6.

Table 1. Publicly available multisession ECG biometric datasets.

Name of
Database

Location of
Body Availability No. of

Subjects
Number of

Sessions
Average
Interval Total Records Duration of a

Record

UofTDB [19] Fingers Upon Request <100 6 6 Months - 2–5 min
ECG-ID [20] Hands Public 90 1–20 6 Months 310 20 s
CYBHi [21]
(Long-term) Fingers Public 63 2 3 Months 126 2 min

Heartprint
(Our database) Fingers Public 199 4 1572.2 days

(S1–S3L) 1539 15 s

2. Data Collection Process

In order to test the uniqueness and permanence of the biometric features of ECG
signals, it is important that data is captured in multiple sessions with sufficiently long
intervals. We captured signals for each individual in different sessions for a period of ten
years from 2012 to 2022. The Institutional Review Board approved the process of database
construction by integrating the newly captured data with the existing data captured earlier
and sharing it for research purposes. The database construction process is divided into
three main phases: (i) registration, (ii) signal acquisition, and (iii) database organization.
The whole process is illustrated in Figure 1.

Figure 1. Three stages of database construction process.
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The raw signal data underlying the Heartprint dataset was recorded by a hand-
held ECG device known as ReadMyHeart by DailyCare BioMedical, Inc., Taoyuan, Tai-
wan, (https://dailycare.en.ec21.com/ReadMyHeart_-_Handheld_ECG_Recording--976
239_976240.html, accessed on 18 October 2022), as shown in Figure 2. This is a single lead
device that captures a heartbeat signal for fifteen seconds at a sampling frequency of 250 Hz
from the thumbs of both hands using two dry conducting electrodes. We set up a probable
device consisting of ReadMyHeart and a laptop. The device captures a signal, digitalizes it,
and exports the ECG record to the computer as a text file (.txt).

Figure 2. Data acquisition with ReadMyHeart handheld ECG device.

2.1. Registration

Initially, we randomly selected 220 apparently healthy subjects from various walks of
life, aged 18 years and older for ECG signal collection. The research team contacted each
of them and explained the purpose of the research and the process of data collection. As
the purpose of the dataset is biometric recognition, we did not ask any person about their
cardiac or health condition. When a person agreed to participate by signing the consent
form, they were registered into the system by assigning a unique ID. Simple demographic
metadata related to biometric recognition, such as year of birth, gender, and ethnicity, were
collected at this stage.

2.2. Signal Acquisition

One of the team members reached the subject in a pre-agreed location and time with
the mobile data collection set-up. During the first session, at least two records of ECG
signals (15 s each) were collected while the person was in resting condition sitting on a
chair. At this stage, the next date, time, and location were agreed upon to collect data for
the second session. In the second session, with an average interval of 47.5 days, at least
two ECG records were collected again in resting condition (sitting on a chair) for all the
subjects. To test the effect of common activities, such as talking during data acquisition, on
biometric recognition, a good portion of the subjects were also asked to read from a book
while data was being captured. For the collection of data with long intervals, the subjects
were contacted again after one to ten years after the first session for the third session of
data collection. In this session, data from available subjects were collected in resting and
reading conditions.

2.3. Database Organization

When a subject participated at least in two sessions, her/his data was included in the
database. Several IDs with insufficient data were excluded, and the resulting database
included 199 subjects.

https://dailycare.en.ec21.com/ReadMyHeart_-_Handheld_ECG_Recording--976239_976240.html
https://dailycare.en.ec21.com/ReadMyHeart_-_Handheld_ECG_Recording--976239_976240.html
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The collected data was organized into different sessions to build a multisession biomet-
ric database with a long interval in reading and resting conditions so that the performance
and robustness of an authentication system can be evaluated. The collected signals were
divided into four sessions: Session-1 (S1), Session-2 (S2), Session-3R (S3R), and Session-3L
(S3L), as shown in Figure 3. S3R contains data with the reading condition, while S3L
contains data with long intervals from the first session. A folder is created for each session.
Each of these folders contains subfolders with the ID number (padded by 0 to make it three
digits) of each subject and contains data for their particular session.

Figure 3. Database organization showing folders for different sessions and subfolders under them.

3. Data Description

For each of the subjects, all collected ECG records were converted into text files and
stored in the right sub-folder identified by the ID without any preprocessing. The metadata
is provided together with the raw data in CSV format so that different types of processing
and classification tasks can be performed.

3.1. Metadata

Gender, age, and ethnicity identification and their effects on the authentication process
are two important research domains in ECG biometrics [22,23], and as a new modality,
the suitability of ECG signals for these tasks has yet to be explored. Considering their
importance, we have included this metadata in our database. The distribution of gender
and ethnicity are shown in Figure 4a,b, respectively. Among the 199 subjects, there were
130 male and 69 female subjects. Data were collected from two main ethnic groups: Arab
and South-Asian (briefly Asian). Only three subjects were outside of these two groups. The
age distribution at the time of the first session is shown in Figure 5.

Figure 4. Distribution of the subjects according to (a) gender and (b) ethnicity.
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Figure 5. Age distribution of all the subjects at the first session with 10 years as bin size.

3.2. Raw ECG Signal

Each of the ECG records contains samples (mV) of the ECG signal written in a new line
of the text file. The sampling rate is 250 samples/s, and the signal was captured for 15 s,
and there are exactly 3747 samples per record followed by some additional information
inserted by the device. Table 2 shows the figures for the number of subjects participating
in each session and the number of records. The database consists of 1539 ECG records
altogether. Table 3 shows the average interval between the first session and the other
sessions. Figures 6 and 7 show sample ECG records of two different subjects. For each
figure, the ECG records are taken from S1, S3R, and S3L, showing the ECG signal of the
same person in three different sessions.

Table 2. Statistics of Number of Records for each sessions including number of subjects, total number
of records, maximum and minimum number of records per subjects.

Session Number of Subjects Total Records for All Subjects Maximum Number of
Record pre Subject

Minimum Number of
Record pre Subject

S1 199 476 6 2
S2 199 464 5 2

S3R 109 365 6 3
S3L 78 234 3 3

Table 3. Average, maximum and minimum intervals between the first session and other sessions.

Session Average Interval from S1 (in Days) Max Interval from S1 (in Days) Min Interval from S1 (in Days)
S2 47.5 241 5

S3R 1054.7 3432 36
S3L 1572.2 3432 71
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Figure 6. Three ECG records of the first subject (ID 001) taken from Session−1, Session−3R,
and Session−3L.

Figure 7. Three ECG records of the second subject (ID 002) taken from Session−1, Session−3R,
and Session−3L.

4. Technical Validation Method

The data was collected by all members of the research team and carefully upload
to the database in the proper subfolders of the data organization. Technical validation
of the collected data was carried out to check the integrity of the data collection process
and the suitability of the data in biometric recognition. For this purpose, we carried
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out authentication experiments using a conventional feature-matching approach [15] and
biometric identification using deep learning techniques.

In the preprocessing step, we used a band-pass Butterworth filter of order four with
cut-off frequencies of 0.25 and 40 Hz to remove the noises. Then an efficient curvature-
based method is used to detect the R-peaks of each record [24,25]. We segmented the whole
record into windows of ECG signal around each R-peak with a fixed length (e.g., 0.5 s) as
shown in Figure 8. Such a window is used as an instance (sample) for the authentication
system [26,27].

Figure 8. A fragment of ECG signal and the segmented windows (shown by the rectangles) around
the R-peaks (shown by the small triangles).

4.1. Biometric Authentication

Biometric authentication is the process of accepting or rejecting a person by matching
a probe sample with a gallery sample. A feature-engineering-based method known as
Wavelet Distance Measure (WDM) [28] has been used for biometric authentication. This
method was based on the fact that the wavelet transform of a signal simultaneously
provides both time and frequency information. The Daubechies scalar wavelet (Db3) was
used with a five-level decomposition, which was empirically found to be optimal for ECG
compression. Detail coefficients of the discrete wavelet transform are computed for each
signal, and an absolute difference of the wavelet coefficients from the unknown signal and
the enrolled data was used as the distance measure.

In this work, the average of all the segmented windows around the R-peaks of an
ECG record was used as a biometric temple [15]. WDM computes the detail coefficients
of the discrete wavelet transform providing temporal and morphological features of the
average windows and representing them as a feature vector yielding the template. For all
ECG records in the database, WDM templates were extracted.

For biometric authentication, we need two sets of samples: gallery and probe samples.
Gallery samples are generally stored in a database, and a probe sample is used to compare
with the gallery sample of the claimed identity. We carried out different types of experi-
ments by using samples from different sessions as the gallery and probe sets, as shown in
Table 4. In the same-session scenario, one of the samples from a particular session was used
as the gallery sample the rest were used as probe samples. In cross-session experiments,
gallery and probe samples were taken from two different sessions, and we reported the
results of all possible combinations of matching.
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Table 4. Validation results such as error and accuracy for biometric authentication using same-session
and cross-session protocols for the use of different gallery and probe sets.

Authentication Protocol Gallery Set Probe Set Error (%) (EER) Accuracy (%) (100–EER)

Same Session

S1 S1 5.57 94.43
S2 S2 4.65 95.35

S3R S3R 6.02 93.98
S3L S3L 5.12 94.88

Cross Session

S1 S2 16.42 83.58
S2 S1 16.36 83.64

S1 S3R 53.31 46.69
S2 S3R 50.00 50.00

S1 S3L 53.87 46.13
S2 S3L 50.00 50.00

A biometric authentication method can make two types of errors: false match and false
non-match. A method’s false match rate (FMR) and false non-match rate (FNMR) depend
on the operating threshold. The equal error rate (EER) of false matches and false non-
matches is considered as the standard for measuring the performance of an authentication
method [29]. We also calculated the accuracy at the threshold of computing the EER so
that it could be a baseline for future comparison with performances of other machine
learning-based techniques. It could be observed from Table 4 that we can achieve good
authentication accuracy for same-session data (average 94.66%), the performance degrades
for cross-session authentication, especially for data with long intervals and reading activity.

4.2. Biometric Identification

Biometric identification is the process of classification of a test sample in one of the
categories defined by the number of individuals in the system. In this subsection, we present
identification results for the proposed Heartprint dataset based on deep convolutional
neural networks (CNN). Nowadays, there is a great focus on developing data-driven
models for useful artificial intelligence applications. Recently, deep neural networks have
seen tremendous success in the classification of ECG signals [30,31]. The main advantage
of deep learning techniques is the ability to learn from raw data directly with automatic
feature extraction algorithms. However, ECG signals are non-stationary, complex, and
prone to noise and some signal processing may still provide great help in improving
classification performance.

Continuous Wavelet Transform (CWT) is a signal processing technique that is very
efficient in determining the damping ratio of 1D signals and is also very resistant to the
noise in the signal. In an interesting work, Alrahhal et al. [30] used three types of wavelets
to generate three different CWT time-frequency representations from ECG heartbeats. Then,
they merged them into one 3D matrix that forms a kind of RGB image of size 224 × 224 × 3.
Then, they fine-tuned a pre-trained VGGNet CNN model on these CWT images [30]. In a
more recent work, Ammour et al. [32] used neural network convolutional layers to convert
the ECG 1D signal into a 2D feature map, which was then fed into a pre-trained CNN
model. The layers used for this conversion process were appended to the start of the CNN
model, and then the new combined model was trained end-to-end using deep learning
training techniques. Thus, in this approach, the filters used in the conversion process were
learned from the data through training.

The scalogram is a 2D time-frequency representation that can be extracted from ECG
signals using the CWT algorithm. It is the absolute value of the CWT of a signal, plotted
as a function of time and frequency. It is similar to the spectrogram, which is obtained
by windowing the input signal with a window of constant length that is shifted in time
and frequency. The window used in the spectrogram has a fixed size, and because of
that, the time-frequency resolution of the spectrogram is fixed. On the other hand, the
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scalogram uses a window with variable size, which means it can provide better time
localization for short-duration and high-frequency events and better frequency localization
for low-frequency, longer-duration events. By visually representing signals at various scales
and various frequencies through CWT, hidden features can be seen in the frequency-time
domain. It can be more useful than the spectrogram for analyzing real-world signals with
features occurring at different scales. Furthermore, a scalogram is a 2D matrix, which
means that the CWT algorithm effectively converts the 1-D ECG signal is converted to a
2-D signal. Therefore, we can make use of transfer learning techniques which exploit the
power of image pre-trained CNN models.

The CWT (c) of the signal f (x) is computed at different scales and time positions using
the following equation:

c(scale, position) =
∫ +∞

−∞
f (x) ∗ψ(scale, position) dx (1)

where ψ is the mother wavelet. More formally, CWT is computed as follows:

c(s, t) =
1√
a

∫ +∞

−∞
f (x) ∗ψ

(
x− t

s

)
dx (2)

where s and t are real numbers representing the scale and time position parameters with
s >0. The result of the CWT is a 2D matrix filled with wavelet coefficients located by scale
and position.

Figure 9 shows three examples of mother wavelets: (1) the Mexican hat wavelet, (2) the
Morlet wavelet, and (3) the Gaussian wavelet. The Python package “PyWavelets”, which
is used in this work, provides more mother wavelets that are compatible with CWT. One
initial observation we can make is that the wavelet’s shape is similar to an ECG heartbeat
shape (especially the Gaussian wavelet), which is strong motivation for using CWT as an
ECG analysis tool.

Figure 9. The plots for the most common mother wavelets. (a) Mexican hat wavelet, (b) Morlet
wavelet, and (c) Gaussian wavelet.

Figure 10b–d shows the scalogram of a sample ECG heartbeat in Figure 10a, while
Figure 10e shows how to merge three CWT matrices as the RGB bands of one CWT image.
Finally, the resultant CWT image is visualized in Figure 10f. It is important to note here
that unlike RGB images, which have pixel values ranging between 0 to 255, the pixel values
in the CWT images are real numbers with a much larger range. In other words, the CWT
pixel values are transformed in order to produce the visualization in Figure 10f. Finally,
we show in Figure 11 a sample image representation produced by our CWT algorithm
pertaining to sample ECG heartbeats from the subjects/classes with ID 060, 174, 211, and
219. The similarity of the CWT images of a class (person) and differences between classes
could be observed.
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Figure 10. The scalogram of a sample ECG heartbeat: (a) ECG heartbeat sample, (b) Mexican hat
wavelet, (c) Morlet wavelet, (d) Gaussian wavelet (size 5), (e) merging scalograms in (b–d) as RGB
bands of an image, and (f) merged image result.

Figure 11. Image representation produced by our CWT algorithm pertaining to sample ECG heart-
beats from four different subjects/classes such as (a) ID 060, (b) ID 174, (c) ID 211, and (d) ID 219.

We built the deep CNN model, as shown in Figure 12, for the Person identification
problem under consideration. We name it the HeartprintCNN. The HeartprintCNN takes
in as input the CWT image extracted in the previous step. Then, it applies two consecutive
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convolutional blocks, composed of a convolutional (Conv) layer followed by a MaxPooling
(Mpool) layer. In the first block, the Conv layer has 32 filters with a 5 × 5 kernel and the
ReLU activation function. The Mpool layer uses a kernel size of 2 × 2. The first Conv
block outputs a feature map of size 32 × 32 × 32. Thus, in the second block, the Conv
layer increases the number of filters to 64, giving a feature map of size 16 × 16 × 64.
Next, it flattens the feature map to a 1D vector and then compresses the size of the feature
vector through two consecutive fully connected (FC) layers with 256 neurons, followed by
BatchNormalization (BN) and ReLU activation functions.

Figure 12. Proposed CNN model consisting for input, Convolution, MaxPooling and Fully Connected
(FC) Layers for ECG biometric identification.

HeartprintCNN is initialized with random network weights. We used the Adam
optimizer to train the model with a learning rate set to 0.001 for the first 20 epochs; then,
we reduced the learning rate to 0.0001 and trained with early stopping. The early stopping
criteria is when the loss no longer improves with a patience period of five epochs. In other
words, if the loss is not lower than the best so far for a consecutive five training epochs,
then we stop the training. Finally, the batch size was set to eight samples per batch.

We trained and tested the HeartprintCNN with different training and test sets as
shown in Table 5. For the mixed-session protocol, we mixed all the samples (segmented
heartbeats) of S1 and S2 for each individual and then divided them into training and test
data for the individual. Then we gathered training and test data from all individuals to
make the training and test sets, respectively. In the cross-session protocol, training and
test data for each individual came from different sessions without mixing data between
training and test sessions.

Table 5. Identification performances for mixed and cross-session experiments for the use of different
gallery and probe sets.

Identification Protocol Train Set Test Set Accuracy Error

Mixed Session 80% of s1 + s2 20% of s1 + s2 100.00% 0.00%

Cross Session 100% of s1 + s2 100% of S3R 69.35% 30.65%
100% of s1 + s2 100% of S3L 56.67% 43.33%

100% of S1 100% of S2 54.15% 45.85%
100% of S1 100% of S3R 45.66% 54.34%
100% of S1 100% of S3L 38.22% 61.78%

100% of S2 100% of S1 50.38% 49.62%
100% of S2 100% of S3R 52.99% 47.01%
100% of S2 100% of S3L 35.72% 64.28%
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The results for different train-test setups are shown in Table 5. First, we observe from
the mixed session experiment that HeartprintCNN achieves an impressive 100% accuracy
when the training and testing sets belong to the same dataset or domain in the deep learn-
ing lingo. HeartprintCNN is able to learn perfect features from the dataset, allowing it
to classify the Heartprint signal of the correct subject. However, in all other experiments,
when the training and testing sets belong to different sessions, the identification accuracy
degrades significantly. Although the machine-learning-based method improved the bio-
metric recognition performance using a specially prepared training set (mixed session), it
still failed to achieve acceptable accuracy when the data used for the training and test set
came from different sessions. This is a known limitation of deep learning models, especially
for biometric datasets such as Heartprint. Domain adaptation approaches [33] could be
explored in these cases to improve identification accuracy.

5. User Notes

In this section, we provide instructions on possible usages of Heartprint to train and
validate biometric recognition processes. Generally, in traditional biometrics, two sets of
samples are used as gallery and probe sets, as shown in Table 4. Cross-session validation
is more appropriate to check the permanence of the biometric signature. However, with
the increasing interest in machine learning for biometric recognition, data can be utilized
in two different validation processes, such as mixed-session validation and cross-session
validation, as shown in Table 6.

Table 6. Possible usage of the Heartprint database for experimental evaluation using different
training, validations and test sets.

Validation
Process

Training and Validation Testing (Short Interval & Resting) Testing (Reading Effect) Testing (Long Interval Effect)

Session Data Session Data Session Data Session Data

Mixed Session S1, S2 (80–90%) S1, S2 (20–10%) S3R 100% S3L 100%

Cross Session
S1 100% S2 100%

S3R 100% S3L 100%S2 100% S1 100%

5.1. Mixed-Session Validation

In the mixed-session validation, data (e.g., segmented heartbeats) from the first two
sessions could be mixed and divided into training, validation, and test sets. An n-fold
cross-validation process can be used to train a model. Then, the trained model can be
further tested by the data in the other two sessions, such as S3R and S3L, for testing the
effects of reading and long intervals between sessions, respectively.

5.2. Cross-Session Validation

In the cross-session approach, data from one of the first two sessions can be used
for training and validation, while the other is used for testing. In this way, 2-fold cross-
validation could be used to obtain a model by using data from one of the two sessions
as training and validation, while the remaining session for testing by data with a short
interval and in resting condition. Then, the trained model can be further tested by the data
in the other two sessions, such as S3R and S3L, for testing the effects of reading and long
intervals between sessions, respectively.

5.3. Code for Interfacing the database

The database [12] could be downloaded and utilized for various biometric recognition
and analysis. The database divided into folders and subfolders (as shown in Figure 2) is
uploaded as a WinRAR archive (Heartprint.rar), which must be downloaded and uncom-
pressed before use. The metadata is also uploaded as ‘Heartprint Metadata.xlsx’. Figure 13
gives an example of code to obtain the data from the Heartprint database organization.
This simple MATLAB function illustrates how to read data from a text file based on the
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session, the user’s ID, and the record number. The function also includes code to plot raw
data to display the signal.

Figure 13. Example MATLAB function for reading an ECG record from the Heartprint database.

6. Discussions and Conclusions

In this paper, we have presented Heartprint, which is a large biometric database of
multisession ECG signals captured from the fingers of 199 healthy subjects. The signals
were collected in multiple sessions over a period of ten years in reading and resting
conditions. The collected data was organized into different sessions to build a multisession
database with a long interval so that the performance and robustness of the biometric
modality can be evaluated. The dataset also presents valuable demographic information
about the participants, such as genders, ethnicities, and age groups, which could be utilized
for different biometric applications.

We have presented the results of the technical validation process of the dataset for
two different applications, namely biometric authentication and identification. In the
authentication process, we implemented a feature-engineering-based method and tested it
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in an authentication setting. Here, we found that the authentication performance dropped
when the train and test sets are from different sessions, and the performance decreased
further when the interval between sessions increased. We also developed a deep learning
model for biometric identification and tested it on the multisession database. Although
we achieved a 100% recognition rate when we mixed data from different training and test
sessions, the performance dropped significantly when training and test data came from
different sessions, especially for sessions with longer times between them. Our results
show that ECG signals recorded in different sessions under different subject conditions or
after long periods of time suffer from the data shift problem.

Although ECG signals have been studied and presented as a biometrics modality for
the last two decades, one of the major obstacles in the progress of this modality is the lack
of public datasets with a long interval between sessions of data acquisition to verify the
uniqueness and permanence of the biometric signature of the heart of an individual. We
aim to address this issue and reduce the research gap by putting forward Heartprint. The
combination of raw ECG signals and demographic information turns the Heartprint dataset,
which is made publicly available online, into a valuable resource for the development and
evaluation of biometric recognition algorithms. It could be noted that the quality of the
captured ECG signals, such as the sampling frequency and bandwidth, was limited by the
hardware device used. Capturing higher-quality signals in a fourth session with a new
device could be a valuable contribution, and we want to leave it as a future work.
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