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Abstract: Taita Taveta County (TTC) is one of the world’s biodiversity hotspots in the highlands with
some of the world’s megafaunas in the lowlands. Detailed mapping of the terrestrial ecosystem of the
whole county is of global significance for biodiversity conservation. Here, we present a land cover
map for 2020 based on satellite observations, a machine learning algorithm, and a reference database
for accuracy assessment. For the land cover map production processing chain, temporal metrics from
Sentinel-1 and Sentinel-2 (such as median, quantiles, and interquartile range), vegetation indices from
Sentinel-2 (normalized difference vegetation index, tasseled cap greenness, and tasseled cap wetness),
topographic metrics (elevation, slope, and aspect), and mean annual rainfall were used as predictors
in the gradient tree boost classification model. Reference sample points which were collected in the
field were used to guide the collection of additional reference sample points based on high spatial
resolution imagery for training and validation of the model. The accuracy of the land cover map and
uncertainty of area estimates at 95% confidence interval were assessed using sample-based statistical
inference. The land cover map has an overall accuracy of 81 ± 2.3% and it is freely accessible for land
use planners, conservation managers, and researchers.

Dataset: https://data.mendeley.com/datasets/xv24ngy2dz/2.

Dataset License: CC-BY.

Keywords: Taita Taveta; land cover; reference database; machine learning; Sentinel-1; Sentinel-2

1. Summary

With ever-growing human–environment interactions, monitoring of terrestrial ecosys-
tems is crucial for sustaining environmental and economic benefits of biodiversity and
ecosystem functioning. In this regard, land use and land cover maps provide vital infor-
mation to land use planners and conservation managers for informed decision making.
This is particularly important in a multifunctional landscape consisting of biodiversity
hotspots and wildlife conservation areas, as they host unique flora and fauna of scientific
and conservation interest.

Taita Taveta County (TTC) in southern Kenya is such an area that is rich in biodiversity,
comprising Taita Hills and surrounding lowlands, covering an area of around 17,000 km2.
The Taita Hills are part of the Eastern Arc Mountains, known for their rich endemism, and
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representing one of the world’s biodiversity hotspots [1]. The hilltops are covered with
indigenous evergreen montane forest, forest plantations, agroforestry, and croplands [2].
The lowlands are characterized by Acacia-Commiphora thickets and shrublands, croplands,
sisal farming (including one of the world’s biggest sisal estates), grassland, and wildlife
conservation areas harboring megafauna (e.g., elephants, giraffes, rhinos, buffalos, etc.) [3].
Previous local mapping efforts in TTC have mainly been based on optical multispectral
data [3–6]. All these studies cover smaller areas (either the highland or a small portion of
lowlands surrounding Taita Hills), are outdated (e.g., the recent map available for Taita
Hills is for the year 2011 based on commercial SPOT imagery), and lack detailed classes.

Despite an increase in the spatial and temporal resolution of freely available satellite
data, global mapping products derived from these data lack the accuracy [7] and level
of detail required by decision makers for planning and conservation in the areas of high
biodiversity. For example, in the TTC lowlands, global land cover products are highly
homogeneous and strongly disagree with respect to land cover types (i.e., the MODIS
MCD12Q1 500 m land cover product shows around >90% of the lowland covered by
grassland, while the European Space Agency (ESA) Climate Change Initiative Land Cover
(CCI-LC) Sentinel-2 20 m land cover map of Africa shows around >75% of the lowlands
covered by shrubland). Similarly, the Copernicus Global Land Cover (CGL-LC) based on a
PROBA-V sensor at 100 m resolution shows lowlands dominantly covered by shrubland.
This grassland-shrubland confusion in global products was also well noted in a recent study
in Africa [7]. In the highlands, discrepancies have been even stronger among products
where, for instance, agroforestry was mapped as woody savanna in a MODIS product, as
croplands in an ESA CCI-LC product, and as forest in a CGL-LC product including the
sisal plantation in the lowlands. Hence, an up-to-date, detailed, and accurate mapping of
the TTC, as well as an efficient monitoring method are very important to understand the
state of the terrestrial ecosystem.

Although high spatial and spectral resolution airborne imaging spectroscopy (i.e., air-
borne hyperspectral remote sensing) data can provide good results for land cover clas-
sification, they are not suited for regular monitoring of large areas due to the high cost
of data acquisition. In this regard, freely available radar, optical, and topoclimatic data
offer an advantage through providing wider feature space for land cover classification
using machine learning (ML) algorithms. Radar backscatter is sensitive to the size, shape,
water content, and texture (i.e., smoothness or roughness) of a surface and compliments
optical sensors, which mainly provide information about vegetation biophysical properties
or greenness, as well as surface reflectance and albedo. As topography and climate play
important roles in the distribution and biodiversity of vegetation, they provide additional
information for training ML classification models [8,9].

In this paper, we present a land cover map of TTC, for the year 2020, at 20 m resolution.
Along with the map, a reference database comprising 3628 points collected from field
observations and interpretation of high-resolution imagery is provided. The mapping
approach uses Sentinel-1 radar, Sentinel-2 optical, and topoclimatic data, together with a
machine learning algorithm. Accuracy and area uncertainty of the classification is assessed
based on probability sampling inference at 95% confidence interval. The approach is based
on open data and fully implemented in Google Earth Engine (GEE) and can be used for
production of a land cover map for a desired year and monitoring of land cover changes
whenever Sentinel data are available. This allows land use planners and conservation
managers to routinely monitor the state of the ecosystem in this unique biodiversity hotspot.

2. Data Description

The land cover map and reference dataset can be accessed from Mendeley Data
(https://data.mendeley.com/datasets/xv24ngy2dz/2) (accessed on 20 January 2022) [10],
which is an open research data repository. The dataset contains a land cover map in raster
GeoTiff format with associated style information in QGIS software in QML format, and
two reference databases in shapefile format, one for classification and the other for sample-
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based accuracy assessment. Detailed data description and map visualization are presented
in the following sections.

2.1. Land Cover Map

The land cover map was prepared, for the year 2020, as displayed in Figure 1 and a
closer view of Taita Hills is also provided in Figure 2. The map was produced using tempo-
ral metrics from Sentinel-1 and Sentinel-2 satellites, and topoclimatic metrics (Section 3.2.1).
These data were used as input in the gradient tree boost (GTB) classification algorithm
(Section 3.2.2). The map has a sample-based overall classification accuracy of 81 ± 2.3%.
Class level accuracy ranges from 37% in riverine forest to 96% in sisal plantation. In total,
the map comprises 14 classes with shrubland (49 ± 4.4% of area) and grassland (37 ± 5.3%
of area) being the dominant land cover classes, while the remaining classes represent small
fractions (Section 3.2.3). The data are available for downloading in GeoTiff raster format
with geographic coordinate system and WGS84 reference ellipsoid or EPSG 4326.
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Figure 1. Land cover map of Taita Taveta County for the year 2020. Conservation areas are marked
with a green broken line which shows the Tsavo West and Tsavo East national parks and boundaries
of the Taita Hills Wildlife Sanctuary (THWS) from the World Database on Protected Areas (WDPA).
The box at the center shows the location of the Taita Hills.
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Figure 2. A closer view of Taita Hills (see location in Figure 1), showing the extent of montane forest
fragments and other land cover classes.

2.2. Land Cover Nomenclature

The classification legend and class names follow earlier studies in the area [2–5] (Clark
and Pellikka 2009, Pellikka et al., 2009, Heikinheimo 2015, Pellikka et al., 2018) (Table 1).
The legend is also in line with land cover and vegetation types in [11], as described in
the World Agroforestry Centre Land Degradation Surveillance Framework [12]. Detailed
classes are provided for different types of forest (montane, plantation, and riverine forest)
and cropland (agroforestry, sisal, and cropland). Field photographs of vegetation classes are
displayed in the Appendix A (Figure A1). In contrast to earlier studies [3], the woodland
class was omitted as it included mainly riverine forest, agroforestry, and plantation forests,
which are now classified as separate classes.

Table 1. Land cover classification scheme for the Taita Taveta County land cover map.

Land Cover
Class Name Description

Montane forest

Closed-canopy montane forest with native tree species, such as
Tabernaemontana stapfiana, Albizia gummifera, Phoenix reclinata, Xymalos
monospora, and Macaranga capensis; mean tree height ranges from 17 to 28 m in
Taita Hills

Plantation
forest

Relatively homogenous plantation forests of exotic eucalyptus (Eucalyptus
spp.), pine (Pinus patula), and cypress (Cupressus lusitanica) trees; mean tree
height ranges from 8 to 29 m in Taita Hills

Riverine forest Native forest and woodland along waterways. Typical tree species include
Newtonia hilderbrandtii and Vachelia xanthophloea
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Table 1. Cont.

Land Cover
Class Name Description

Agroforestry
Combination of herbaceous crops, such as maize and bananas, and native and
exotic trees. Typical tree species include silky oak (Grevillea robusta), Mango
(Mangifera indica), eucalyptus, and Ficus thonningii

Thicket
A closed stand of bushes and climbers usually between 2 and 7 m tall. Includes
both native Acacia-Commiphora thickets in the plains and exotic black wattle
(Acacia mearnsii) plantations

Shrubland An open or closed stand of shrubs up to 3 m tall. Mostly native
Acacia-Commiphora vegetation

Grassland Open savanna grassland dominated by grasses, either without woody
vegetation or with scattered woody cover of less than 10%

Cropland Open cultivated land with annual or perennial crops. Common crops include
maize, cassava, and legumes

Sisal Sisal (Agave sisalana) plantation

Waterbody Lakes and reservoirs

Wetland Herbaceous freshwater swamp and aquatic vegetation

Bare land Bare soil and other unconsolidated material but excluding built-up areas and
bare rock

Bare rock Consolidated material, rock surfaces

Built-up Built-up areas such as roads and housing areas

2.3. Reference Database

A reference database in ESRI shapefile format consists of 3628 sample points and
represents various land cover classes in TTC. Among these, 806 sample points were col-
lected from the field using a consumer grade handheld GPS (Garmin GPSMAP64) and
the GPX waypoint files were organized in shapefile format using the QGIS 3.20.0 software
(www.qgis.org) (accessed on 20 January 2022). The remaining 2822 points were inter-
preted using high-resolution Google Earth imagery. Spatial distribution of these points
is given in Figure 3. The reference database was used to train and cross-validate the GTB
classification algorithm.
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3. Methods
3.1. Input Data and Preprocessing
3.1.1. Sentinel-1 and Sentinel-2 Imagery

Sentinel-1 and Sentinel-2 data were provided by the European Space Agency (ESA)
under the Copernicus program. Sentinel-1 C-band synthetic aperture radar (SAR) data
were available in different spatial resolutions, polarizations, and instrument modes. We
used interferometric wide swath mode at 10 m spatial resolution and ascending orbital
pass. Short-dry season (January and February) 2020 composite in co-polarization (VV) and
cross-polarization (VH) were selected to minimize the impact of precipitation on the SAR
signal [13].

The backscatter coefficient (σ◦) provided in decibel (db) on the Google Earth Engine
(GEE) computing platform [14] was radiometrically calibrated and corrected for thermal
noise and terrain effects using ESA Sentinel-1 toolbox. We included additional processing
steps involving speckle filtering and radiometric terrain normalization to produce analysis-
ready data (ARD) [15].

Sentinel-2 with its twin satellites (S2A and S2B) provides 13 bands with temporal
resolution of 5 days and spatial resolution range of 20–60 m. We used Level-2 (L2) surface
reflectance consisting of 9 bands (2–8, 8A, and 12) in the visible to shortwave infrared
spectral range with spatial resolution ranging from 10 m to 20 m. Band 11 was discarded
due to its high correlation with Band 12. Clouds were masked using a maximum cloud
probability threshold of <20% and used for calculating temporal metrics.

To harmonize the spatial resolution, Sentinel-1 and Sentinel-2 data were resampled to a
common spatial resolution of 20 m. Furthermore, all the other data (DEM and precipitation,
Section 3.1.2) were also resampled to the same resolution.

3.1.2. Topoclimatic Data

The digital elevation model (DEM) at 30 m resolution was obtained from the NASA
Shuttle Radar Topography Mission (SRTM). We used the version 3 SRTM void-filled product
for extracting topographic metrics (elevation, slope, and aspect). The rainfall data were
obtained from the University of California (WorldClim BIO Variables V1). It was prepared
from interpolation of weather station data at 1 km resolution considering elevation and
geographic location [16].

3.2. Land Cover Classification Workflow

There were three steps to the land cover classification workflow (Figure 4). First,
input data from Sentinel-1, Sentinel-2, topoclimatic variables (DEM and rainfall data), and
training data (field and high-resolution imagery) were used to run the GTB classification
algorithm. Second, the classification map was used for stratification and generation of
reference random sample locations. Third, the accuracy and uncertainty of classification
and area estimates were done using reference random samples independently collected and
interpreted based on very high spatial resolution imagery (Google Earth imagery), earlier
land cover and vegetation mappings made in the area [2,15], and the authors’ knowledge
regarding the land cover of the area. Details of each processing step are provided below in
Section 3.2.1, Section 3.2.2, Section 3.2.3. and Section 3.2.4. Land cover classification was
done in GEE, the code is provided in Supplementary Material. Map layout and production
were performed using the QGIS software.
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3.2.1. Temporal and Topoclimatic Variables Used for Classification

Several spectral-temporal metrics, vegetation indices, and topoclimatic data were used
as predictors (Table 2). From the total of 54 predictors, 13 metrics were from Sentinel-1,
39 metrics were from Sentinel-2 (including vegetation indices), and the remaining two
metrices were from DEM and rainfall, respectively. Band 11 was discarded from the model
due to its high correlation with Band 12 and other predictors.

Table 2. Temporal and topoclimatic predictors derived from satellite observation (Sentinel-1, Sentinel-
2), DEM, and rainfall data. VV, vertical-vertical; VH, vertical-horizontal; NIR, near infrared; SWIR,
shortwave infrared; NDVI, normalized difference vegetation index; TCG, tasseled cap greenness;
TCW, tasseled cap wetness. TCG and TCW were computed following Lastovicka et al. (2020).

Predictors Metrics/Formula

Radar backscatter
(Sentinel-1)

Dry season median, 25 percentile (Q1), 75 percentile (Q3), interquartile
range (Q3-Q1) of co-polarization (VV), cross-polarization (VH), and ratio
between the two (VV/VH)

Surface reflectance
(Sentinel-2)

Annual median, 25 percentile (Q1), 75 percentile (Q3), interquartile range
(Q3-Q1) of Blue (Band 2), Green (Band 3), Red (Band 4), Red Edge 1
(Band 5), Red Edge 2 (Band 6), Red Edge 3 (Band 7), NIR (Band 8), Red
Edge 4 (Band 8A), and SWIR2 (Band 12) reflectance

NDVI NIR–Red/NIR + Red, using annual median

TCG −0.2941 × Blue—0.243 × Green—0.5424 × Red + 0.7276 × NIR + 0.0713
× SWIR1—0.1608 × SWIR2

TCW −0.28482 × Blue—0.24353 × Green—0.54364 × Red + 0.72438 × NIR +
0.084011 × SWIR1—0.180012 × SWIR2

Topography Elevation (m), slope (degree), and aspect (degree)

Climate Mean annual rainfall (mm/year)

3.2.2. Gradient Tree Boost Classification

The gradient boosting machine algorithm was used for land cover classification.
We selected the GBM as it showed better prediction performance than other machine
learning algorithms (e.g., random forest and CART). GBMs are ensemble machine learning
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algorithms that use decision trees as weak learners to make predictions [17]. Trees are
iteratively added one at a time to the ensemble and fit to correct prediction error in the
prior model for improving overall model performance. A total of 3628 sample points were
used for training (70%) and validation (30%) of the model. The final model was run using
100 decision trees. The model had an out-of-bag classification accuracy of 84%.

3.2.3. Accuracy Assessment and Uncertainty Analysis

Accuracy and area uncertainty at 95% confidence interval were assessed following
good practice recommendations based on sample-based statistical inference [18]. Random
stratified class-proportional reference sample locations (1140 samples) were generated by
fixing the target standard error at 0.01. Distribution of the sample location is provided in
Figure 5. For montane and exotic forest stratum, reference samples were identified from
field-verified tree species maps prepared using aerial photographs [2] and hyperspectral
imagery [19]. For the remaining reference samples, land cover types were interpreted
from Google Earth imagery, which were cross-checked with Bing Maps imagery. Details of
class level accuracy and class area uncertainty are provided in Table 3. Furthermore, the
classification error matrix is provided in Table 4.
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Figure 5. Distribution of reference sample points for accuracy assessment.

Table 3. Class level accuracy and area uncertainty matrix. Classes: 1, montane forest; 2, plantation
forest; 3, riverine forest; 4, agroforestry; 5, thicket; 6, shrubland; 7, grassland; 8, cropland; 9, sisal; 10,
built-up; 11, waterbody; 12, wetland; 13, bare soil; and 14, bare rock.

Land Cover Classes

Statistics 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Area (ha) 5299 3901 6836 28,061 69,152 841,985 652,791 57,767 10,342 3142 7653 9802 22,787 3848
95% CI (ha, ±) 5145 2304 4828 8967 13,761 37,525 34,794 14,513 4196 3459 5282 5036 11,411 4461
Area
proportion 0.3% 0.2% 0.4% 1.6% 4% 48.9% 37.9% 3.4% 0.6% 0.2% 0.4% 0.6% 1.3% 0.2%
Producer’s
accuracy 0.750 0.650 0.333 0.40 0.761 0.810 0.856 0.750 0.885 0.818 0.667 0.773 0.52 0.769
User’s
accuracy 0.563 0.867 0.375 0.778 0.587 0.881 0.811 0.465 0.958 0.692 0.889 0.773 0.722 0.667
Overall
accuracy 81 ± 2.3%
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Table 4. Land cover classification error matrix. Classes: 1, montane forest; 2, plantation forest; 3;
riverine forest; 4, thicket; 5, shrubland, 6, grassland; 7, agroforestry; 8, cropland; 9, sisal; 10, built-up;
11, waterbody; 12, wetland; 13, bare soil; and 14, bare rock.

Land Cover Class

1.
M

on
ta

ne
Fo

re
st

2.
Pl

an
ta

ti
on

Fo
re

st

3.
R

iv
er

in
e

Fo
re

st

4.
T

hi
ck

et

5.
Sh

ru
bl

an
d

6.
G

ra
ss

la
nd

7.
A

gr
of

or
es

tr
y

8.
C

ro
pl

an
d

9.
Si

sa
l

10
.B

ui
lt

-u
p

11
.W

at
er

bo
dy

12
.W

et
la

nd

13
.B

ar
e

So
il

14
.B

ar
e

R
oc

k

To
ta

l

U
se

r’
s

A
cc

ur
ac

y

1 9 4 0 1 0 0 1 0 0 0 1 0 0 0 16 0.563
2 1 13 0 1 0 0 0 0 0 0 0 0 0 0 15 0.867
3 0 0 3 2 1 1 0 0 0 0 1 0 0 0 8 0.375
4 0 1 5 54 8 4 13 3 0 0 0 1 1 2 92 0.587
5 2 0 0 8 378 28 1 6 0 0 1 1 3 1 429 0.881
6 0 0 0 0 64 309 0 1 0 0 1 0 6 0 381 0.811
7 0 1 0 1 0 0 14 1 0 0 0 1 0 0 18 0.778
8 0 0 1 1 14 11 4 33 3 2 0 1 1 0 71 0.465
9 0 0 0 0 0 0 1 0 23 0 0 0 0 0 24 0.958
10 0 0 0 0 1 1 0 0 0 9 2 0 0 0 13 0.692
11 0 0 0 0 0 1 0 0 0 0 16 1 0 0 18 0.889
12 0 0 0 1 0 1 1 0 0 0 2 17 0 0 22 0.773
13 0 0 0 0 1 4 0 0 0 0 0 0 13 0 18 0.722
14 0 1 0 2 0 1 0 0 0 0 0 0 1 10 15 0.667

Total 12 20 9 71 467 361 35 44 26 11 24 22 25 13 1140
Producer’s accuracy 0.750 0.650 0.333 0.761 0.809 0.856 0.400 0.750 0.885 0.818 0.667 0.773 0.520 0.769

3.2.4. Post-Processing and Map Production

Isolated pixels in the classified map were removed and the map was smoothed by
applying morphological smoothing in GEE. A circular kernel radius of 1.5 was used for
smoothing to minimize its impact on classification.

4. Discussion
4.1. Importance of Using Multi-Source Data for Improved Classification

The combined use of feature spaces from radar, optical, and topoclimatic data yielded
a classification accuracy of 81 ± 2.3% based on independently collected reference random
samples. The use of multi-source data improved the accuracy of the gradient tree boost
(GTB) classification model as compared with single source data. For example, using
only optical data, the classification accuracy on the testing dataset was only 65%. When
radar data were included in the model, the accuracy increased to 77%, which was a 12%
increment. When topoclimatic variables were included, the accuracy increased from 77% to
85%, which improved the performance of the model by 8%. Based on variable importance
score, topoclimatic data (elevation and precipitation), radar data (the 75 percentile or Q3
ratio between VV and VH polarization and 25 percentile VV polarization), and optical data
(tasseled cap wetness, 25 percentile red band, and NDVI) were the most important variables.

In heterogeneous landscapes, achieving sufficient classification accuracy using only
optical satellite imagery is challenging, and as a result, auxiliary data (e.g., topography) are
used to improve classification [20]. Topography and climate have a direct or indirect control
on the distribution and types of vegetation through their impact on temperature, moisture,
and radiation regimes, as well as soil development and nutrient availability [8,21]. The
biogeography of vegetation in the study area also shows a closer link with topoclimatic
gradient as can be inferred from the distribution of montane forest in the highlands, thick-
ets mainly along the slopes and foothills of the Taita Hills, and grassland and shrubland
in the semi-arid lowlands (Figure 1 and Supplementary Figures S1 and S2). Nonethe-
less, a detailed investigation is required in the future to quantify impacts of topographic,
edaphic, climatic factors, and human disturbances on the distribution of vegetation types
in the region.



Data 2022, 7, 36 10 of 12

4.2. Limitations of the Study

Our classification carries some limitations associated with the data source and algo-
rithm used. For example, the riverine forest class relatively has the highest omission and
commission errors, which can be explained by several reasons. Although we used a small
kernel size (1.5) for post-classification smoothing to remove isolated pixels and improve
the result, this will impact smaller area classes such as riverine forest that spans a few
Sentinel-2 pixels at 20 m resolution. Consequently, misclassification of riverine forest to
other nearby classes (e.g., thicket, shrubland, grassland, and waterbody) increased the
omission error. Spectral confusion with other forest classes in the highlands also causes
commission error in riverine forest. The agroforestry class, next to riverine forest, has a
high omission error. The misclassification of agroforestry to thicket occurs along the slopes
of the Taita Hills. The occurrence of trees, together with croplands, in agroforestry creates
spectral similarity with trees in thickets and can cause the omission error. Future studies
using multi-source high spatial and spectral resolution data, and testing different types
of machine and deep learning algorithms can shed more light on improving classification
accuracy in such heterogeneous landscapes.

5. User Notes

The map provides detailed spatial information on the distribution of land use and
land cover classes, such as montane forest, plantation forest, riverine forest, agroforestry,
cropland, sisal, shrubland, and grassland. It can be used, for example, to support land
use planning, natural vegetation conservation, watershed conservation, wildlife habitat
protection, rangeland management, and research in Taita Taveta County, Kenya. The
reference database can be used for validating land cover maps and testing new land cover
classification algorithms and mapping approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/data7030036/s1, GEE code, Figure S1: Elevation map of the
study area (JAXA DEM 30 m resolution). Figure S2: Probability density plot showing distribution of
natural vegetation across elevation gradient in the study area.
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Figure A1. Field photographs showing: (A) Montane forest, Taita hills, (B) plantation forest of eu-
calyptus, Taita hills, (C) riverine forest of Vachellia xanthophylla, Mwatate, (D) grassland, Taita Hills 
Wildlife Sanctuary, (E) highland agroforestry with Grevillea robusta trees, Taita Hills, (F) lowland 
agroforestry with mango trees (Mangifera indica), Mwatate, (G) Acacia-Commiphora thicket, Mwatate, 
(H) Acacia-Commiphora shrubland, Maktau, (I) cropland of maize (Zea mays), Maktau, (J) sisal (Sisal 
agave) estate, Mwatate, (K) water body, Taita Hills Wildlife Sanctuary, and (L) wetland, Taveta. Pho-
tos by Petri Pellikka, 2010–2021. 
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