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Abstract: Modern systems produce and handle a large volume of sensitive enterprise data. Therefore,
security vulnerabilities in the software systems must be identified and resolved early to prevent secu-
rity breaches and failures. Predicting security vulnerabilities is an alternative to identifying them as
developers write code. In this study, we studied the ability of several machine learning algorithms to
predict security vulnerabilities. We created two datasets containing security vulnerability information
from two open-source systems: (1) Apache Tomcat (versions 4.x and five 2.5.x minor versions). We
also computed source code metrics for these versions of both systems. We examined four classifiers,
including Naive Bayes, Decision Tree, XGBoost Classifier, and Logistic Regression, to show their
ability to predict security vulnerabilities. Moreover, an ensemble learner was introduced using a
stacking classifier to see whether the prediction performance could be improved. We performed
cross-version and cross-project predictions to assess the effectiveness of the best-performing model.
Our results showed that the XGBoost classifier performed best compared to other learners, i.e., with
an average accuracy of 97% in both datasets. The stacking classifier performed with an average
accuracy of 92% in Struts and 71% in Tomcat. Our best-performing model—XGBoost—could predict
with an average accuracy of 87% in Tomcat and 99% in Struts in a cross-version setup.

Keywords: prediction; security vulnerabilities; machine learning; source code; software metrics

1. Introduction

Security vulnerability identification is essential to implementing and operating secured
software systems. As such, the security of a system is also subject to the quality of its
underlying source code. Poor code quality may make the system vulnerable to third-party
access, i.e., introduce security threats. A previous study showed that an attack on the
Equifax system exposed 143 million user accounts, for which the open-source nature of the
Apache Struts system was at fault [1].

Previously, identification and prevention of security vulnerabilities or software bugs
were performed using manual reviews, which today is impossible for systems with a
large codebase. Thus, automatic code inspection tools (e.g., JSLint [2] or SonarQube [3])
were developed to identify vulnerabilities in software based on known code patterns or
structures. However, the challenge of automatically identifying security vulnerabilities as
early as possible in the software development lifecycle remains. In the literature, various
software testing methods for identifying vulnerabilities, e.g., fuzztesting or fuzzing, are
shown to be useful, however, at the later steps of the software development lifecycle [4].

NordVPN reported that without security patches installed, attackers may exploit vul-
nerabilities [5]. This study aimed to assist developers and security analysts by identifying
security vulnerabilities in software systems. To do similarly, we have studied security
vulnerabilities in two systems: a Jakarta servlet engine (Apache Tomcat, Forest Hill, MD,
USA) and an MVC framework for creating elegant, modern Java web applications (Apache
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Struts, Forest Hill, MD, USA). We chose Apache Tomcat and Struts2-core because they are
open-source systems with publicly available security logs.

The presence of security vulnerabilities in a system significantly increases the cost of
quality assurance. In particular, modern large systems have a large volume of codebase,
which makes it hard and time-consuming for developers to trace security vulnerabilities in
the source code. Security vulnerabilities in a system usually go unmarked until the system
is delivered and deployed. Therefore, in this study, intending to help developers and
security analysts, we construct several machine learning (ML) models to predict security
vulnerabilities in the source code, relying on static source code metrics that are easy to
gather from the source code. We rely on publicly available vulnerability information to
build two vulnerability datasets.

In this study, we answer the following four research questions:

• RQ1: How do the individual learners perform while predicting the security vulnerabilities?
• RQ2: Can we employ ensemble learning techniques to achieve a high predictive performance?
• RQ3: How does the best performing model perform in cross-version prediction?
• RQ4: How does the best performing model perform in cross-project prediction?

Our main contributions include:

• Two datasets comprising vulnerability information and static source code metrics from
two open-source systems: Apache Tomcat (7 versions—v4.x to v10.x) and Apache
Struts2-core (11 versions—six 2.3.x and five 2.5.x minor versions);

• The best feature set comprising static source code metrics to predict security vulnerabilities;
• A set of ML models to predict security vulnerabilities (type, severity, and title); and
• Evaluation of the best performing predictive model in the within project, cross-version,

and cross-project setup.

The rest of the article is organized as follows: Section 2 presents background informa-
tion relevant to the study, while Section 3 describes our research method. Section 4 presents
the results of the experiments, and Section 5 provides the related work which inspired
our study. We discuss results and additional experiments in Section 6. Finally, Section 7
concludes the article and outlines future plans.

2. Background

This section introduces security vulnerabilities in the two open-source systems (Section 2.1),
the list of source code metrics we employed for building our prediction models (Section 2.2),
and the machine learning (ML) algorithms used in this study (Section 2.3).

2.1. Security Vulnerabilities

Apache Tomcat has 22 distinct security vulnerabilities listed on the Apache Tomcat
https://tomcat.apache.org/security.html (accessed on 14 July 2022). The distribution of
vulnerabilities in Apache Tomcat is shown in Figure 1. Common vulnerabilities in Apache
Tomcat include Denial of Service [6], Remote Code Execution [7], and Information Disclosure [8].
In the version of Apache https://struts.apache.org/security/ (accessed on 14 July 2022) we
studied, there are eight unique security vulnerabilities. The distribution of vulnerabilities
in Apache Struts is shown in Figure 2. Below, we discuss common security vulnerabilities.

A resource is made inaccessible in the Denial of Service attack. When a service is loaded
with requests, authorized users cannot make requests [6]. In Remote Code Execution attack,
an automated script is written to provide remote access to a potentially compromised system
with an administrative privilege [7]. The Information Disclosure vulnerability occurs when a
service or website inadvertently reveals sensitive information (e.g., passwords or financial
details) to the users [8].

AJP Request Injection and Potential Remote Code Execution vulnerability occurs if AJP
(Apache Jserv Protocol) connections are trusted prior to validation [9]. The Arbitrary File
Deletion vulnerability occurs as a result of a Directory Traversal attack where an attacker,
using malformed input, removes files on the web application. The HTTP/2 request mix-up

https://tomcat.apache.org/security.html
https://struts.apache.org/security/
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vulnerability occurs when clients crowd the server with connections and the user requests
made in order become mixed up. As a result, clients see responses for the previous requests.
In the cross-site request forgery attack, a malicious operation is created to execute during the
session of an authenticated user [10].

Finally, a Request Smuggling vulnerability occurs with non-validated incoming HTTP
requests, thus, an attacker sends malformed requests resulting into, for example, an infor-
mation disclosure vulnerability or directory traversal attack [11].

Figure 1. Types of Security Vulnerabilities in Apache Tomcat.

Figure 2. Types of Security Vulnerabilities in Apache Struts-2-core.

2.2. Source Code Metrics

Table 1 provides definitions for the source code metrics considered (as features for
training the models) in this study.

2.3. ML Algorithms

This section describes the ML algorithms employed in this study.

2.3.1. Naive Bayes Classifier (NB)

Naive Bayes classifier works on the Bayesian probability. The models assume that all
features are independent of each other provided the class variable [13]. Suppose a class has
the following metrics, CBO (Coupling Between Objects) of 13, logStatementsQty of 42, and
TCC (Tight Class Cohesion) of 0.0298. Suppose this class is considered vulnerable. In that
case, the NB classifier considers each of these feature possibilities to contribute indepen-
dently to the probability that this class is vulnerable, regardless of any correlation among
CBO, logStatementsQty, or TCC features. This would, in turn, help us to identify which
individual feature would affect the occurrence of a security vulnerability. Additionally,
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these classifiers are particularly useful in large datasets such as ours. The Naive Bayes
formula is defined as follows.

P(c|x) = P(x|c)P(c)/P(x)

Naive Bayes is a conditional probability model. Given a classification problem, repre-
sented by a vector x = (x1, . . . , xn) representing n features (i.e., independent variables), it
assigns to this instance probabilities P(Ck|x) = (x1, . . . , xn) for each of K possible outcomes
or classes.

Table 1. List of static source code metrics [12].

Metrics Definitions

anonymousClassesQty Number of anonymous classes in a class.
assignmentsQty How often each variable was used inside each class.
CBO Coupling Between Objects. The number of dependencies in a class.
comparisonsQty Represent the comparison operators in a class.
defaultFieldsQty Number of fields of default types.
DIT Depth of Inheritance Tree. Number of fathers in a class.
fieldQty How often each local field was used inside each class.
finalFieldsQty Number of fields of final types.
HasJavadoc Whether the source code has JavaDoc or not.
innerClassesQty Number of inner classes in a class.
lambdsQty Number of lambda expressions in a class.
LCC Loose Class Cohesion. Same as TCC but also includes the number of indirect connections between visible

classes for the cohesion calculation.
LCOM Lack of Cohesion of Methods Count of the number of method pairs whose similarity is 0.
LOC Lines of Code. Total lines of code in a class.
logStatementsQty Count of log statements in a class.
loopQty Represent the number of loops in a class.
mathOperationsQty Represent the number of arithmetic symbols in a class.
maxNestedBlocksQty Max Nested Blocks. The highest number of blocks nested within each other.
Method Invocations Number of directly invoked methods, variations are local invocations and indirect local invocations.
NoSI Number of Static Invocations. The number of invocations to static methods but is limited to JDT

resolved methods.
numbersQty Represent the number of numeric literals in a class.
paranthesizedExpsQty Represent the number of parenthesized expressions in a class.
privateMethodsQty Whether a class is private
protectedFieldsQty Number of fields of protected types.
protectedMethodsQty Whether a class is protected.
returnQty Represent the number of return statements in a class.
RFC Response for a Class. The number of unique method invocations in a class but fails with

overloaded methods.
stringLiteralsQty Represent the number of string literals in a class.
synchronizedMethodsQty Number of synchronized methods in a class.
TCC Tight Class Cohesion. The cohesion of a class and results are delivered between 0 and 1.
totalFieldsQty Number of total fields.
totalMethodsQty Number of Methods. The number of methods of various return types and scopes.
tryCatchQty Represent the try and catch statements used in a class.
uniqueWordsQty Count of unique words in a class.
variablesQty Represent the number of variables in a class.
visibleMethodsQty Number of Visible Methods. The number of non-private methods.
WMC Weight Method Class. Also known as McCabe’s complexity, it counts the number of branch instructions

in a class.

2.3.2. Logistic Regression (LR)

Contrary to its nomenclature, Logistic Regression (LR) is mainly used to classify target
labels. Moreover, this model uses the Sigmoid function (logistic function) to predict or
classify the targets. Figure 3 displays the curve traced by the Sigmoid function.
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As explained in [14], Logistic regression is essentially just linear regression, but with a
Sigmoid activation function. Linear regression works based on the formula for the slope
of the line y = mx + b. Thus, in the case of Logistic Regression, the y value obtained from
Linear regression is passed as a parameter to the Sigmoid function. The function returns
a binary output (0 or 1). If the function goes toward positive infinity, then the output is
1. If the function goes toward negative infinity, the output becomes 0. The entire concept
of this model is based on probability, so it provides confidence in predicting the targets.
Additionally, this model can be used for binary and multi-class classification [14].

Figure 3. Sigmoid function curve [14].

2.3.3. Decision Tree Classifier (DT)

A decision tree model follows a tree-like structure with the root at its top node. The
tree branches are called edges, and each branch’s end is a leaf. The decision trees can be used
for both classification and regression purposes. However, since we have a classification
problem at hand, this section will focus only on decision trees as classifiers.

In theory, the decision tree splits each feature into a binary decision, and the result
of each decision is passed along to the next decision, influencing the final decision. Data
comes in records of the form:

(x, y) = (x1, x2, x3, . . . , xk, Y).

The dependent variable, y, is the target variable we are trying to classify or generalize.
The array x is composed of the features x1, x2, x3, and so on that affect the precision
of prediction.

A common problem in DT that needs to be addressed is overfitting. Overfitting occurs
when an ML model gets too comfortable with the training data and starts applying values
from the training data instead of predicting using the obtained knowledge [15]. In the
case of DT, overfitting is handled by pruning the tree. In layman’s terms, this translates to
intentionally snipping certain leaves of the DT to make the model fit the training data more
accurately [16].

2.3.4. XGBoost Classifier (XGB)

XGBoost employs the Gradient Boosting technique to acquire more precise predictions.
Usually, in ML predictions, errors are categorized into two kinds: bias and variance. Data
bias in ML is an error in which certain dataset elements are more heavily weighted or
represented than others. On the other hand, variance is an error from sensitivity to small
fluctuations in the training set. A high variance may result from an algorithm modeling the
random noise in the training data.

The bias-variance dilemma (or bias-variance problem) is the conflict in simultaneously
minimizing these two sources of error that prevent supervised ML algorithms from gen-
eralizing beyond their training set [17]. Gradient boosting is a technique to mitigate bias
errors in an ML model. The base estimator of this model is a one-level decision tree or a
decision stump, as mentioned in [18]. XGBoost classifier is a simpler version of AdaBoost
and other Gradient boosting algorithms.
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2.3.5. Stacking Classifier (STK)

Stacking is an ensemble learning technique using multiple predictions and processing
levels. A simple stacking classifier would have a level 1 of multiple classifiers. The
predictions from level 1 are then passed to a meta-classifier (or a level 0 classifier) which
gives the final prediction. The stacking classifier should be the last resort in most cases due
to its performance and demand for resources [19].

3. Research Methodology

Figure 4 illustrates our research method with five phases. In the following, we explain
each of the phases:

Tomcat  
(FF)

Struts 
(FF)

Machine learning

Phase 4: 
Machine Learning

RQ1: 
Individual learners 

(LL)

Tomcat 
(FF)

Struts 
(FF)

RQ2: 
Ensemble Learning 

(STK)

Struts  
(F*)

Tomcat  
(F*)

RQ3: 
Cross-version

prediction

Tomcat & Struts 
(L*F*)

RQ4: 
Cross-project  

prediction

Tomcat & Struts 
(L*F*)

NOTE: Cross-validation is
included in all steps except
RQ2.

Learners: 
1. Decision Tree (DT) 
2. Logistic Regression (LR) 
3. Naive Bayes (NB) 
4. XGBoost Classifier (XGB) 
Ensemble learner: 
1. Stacking Classifier (STK) 

Data Manipulation

Phase 1: 
Data Collection

Phase 2: 
Data Cleanup

Phase 3: 
Feature engineering 

(SFS & RFE)

Research Methodology

Phase 5: 
Testing and Evaluation

APR

Legend 
F* - Best feature set. 
L*F* - Best feature set + Best learner 
LL - All learners. 
FF - All feature sets 
APR - Performance metrics

Figure 4. Research Method.

3.1. Phase 1: Data Collection

The first phase concerns gathering the security vulnerability information from the
Apache Tomcat and Struts2-core security logs. This is accomplished by downloading
the HTML files for each version and using a Python package called BeautifulSoup https:
//www.crummy.com/software/BeautifulSoup/bs4/download/4.0/ (accessed on 14 July
2022) to extract the GitHub links that point to the files impacted by a vulnerability. For
each security vulnerability, we collect the type of vulnerability (22 titles of vulnerability),
the severity of the vulnerability (four severity levels—High, Important, Moderate, and
Low), and the Java classes in Apache Tomcat affected by the vulnerability. This way,

https://www.crummy.com/software/BeautifulSoup/bs4/download/4.0/
https://www.crummy.com/software/BeautifulSoup/bs4/download/4.0/
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a CSV (Comma-separated values) file is generated with all the affected classes and the
vulnerability affecting them for both systems. Similarly, for the Struts2-core system, a total
of 45 vulnerable classes was obtained, with eight unique vulnerability titles.

Afterwards, we gathered the Java source code of each relevant Apache Tomcat and
Struts version. Using these source codes, we computed class-level static source code metrics
for all the Java classes for each version of the two systems using the CK tool [12]. This
step resulted in 43 source code metrics (as listed in Table 1) stored in two CSVs for two
systems. Finally, for each of the two systems, the two CSVs (i.e., vulnerability information
and source code metrics data) are merged using right join, resulting in 12,214 rows in the
raw dataset of Apache Tomcat and 19,372 rows for Apache Struts.

3.2. Phase 2: Data Clean-Up

The second phase concerns dataset cleanup, i.e., handling nonessential information
that might affect the performance of our predictive models. Aside from the data cleaning
strategies, we also have the issue of class imbalance, as shown in Figure 5. Thus, to mitigate
this issue, oversampling techniques were introduced. The dataset underwent a step of
Random oversampling before being put to prediction. Undersampling techniques were
also considered for the experiment. However, the results are discussed in Section 6 because
this did not give us the expected prediction accuracy compared to oversampling technique.

Figure 5. Positive to negative instance differences in both datasets.

3.3. Phase 3: Feature Selection

The tool in [12] can compute 43 source code metrics at the class level. Individual
metrics are regarded as features. A subset of features with a higher impact on the predictor
variable will be selected by applying feature selection techniques. In this study, we applied
two feature selection techniques:

• Sequential Forward Selection or SFS that starts with an empty model and fits the model
with a unique feature at a time and selects the feature set with minimum p-value [20];

• Recursive Forward Elimination or RFE, which, in contrast, relies on greedy optimization
and eliminates the less relevant features one by one [21].

Thus, we experiment with two opposite feature selection methods and explore their
vulnerability prediction ability.

3.4. Phase 4: Building ML Models

The study focuses on classification problem, where the target variable is the security
vulnerabilities. The dataset was observed to be imbalanced; hence, accuracy proved to be
a poor metric for evaluation. Thus, precision and recall were chosen to be the metrics
for evaluation.
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We build the classifiers using three supervised ML algorithms: Naive Bayes (NB),
Logistic Regression (LR), and Decision Tree (DT). The decision rule in NB is based on the
Bayes’ theorem [22]. The LR, an extension of linear regression, works better for discrete or
categorical outcomes, where probabilities accompany predicted values. In DT, observations
about an item are followed by conclusions about its target feature using a choice/selection
tree. In the tree, the leaves serve as category labels, and the branches produce category
labels according to the available alternatives or values of the features [23].

We make sure that the ML models are optimized independently. For the DT, we prune
the model to compensate for over-fitting [15]. Moreover, thus, our pruned DT could predict
with higher accuracy instead of a hyper-accurate outcome, which helped to predict the
vulnerability of a class—whether a class had a security vulnerability or not. It is worth
mentioning that the DT-based model was not sufficient to predict the severity (level of the
vulnerability) and the title (name of the vulnerability), i.e., the DT-based classifier cannot
handle multi-class prediction well.

Moreover, the other three models did not yield decent results while predicting the
other two target variables. Hence a new ML model (XGBoost Classifier) was introduced.
The introduction of this model proved fruitful as this model outperformed the other models.

RQ1 (Performance of Individual Learner)

For RQ1, both the feature selection algorithms were put to use. So the algorithms will
select two sets of features (one for each dataset). This study compares ML models to select
the optimal model among the classifiers and the feature set, which performs better when
the models are run. It will be conducted by fitting both the datasets in the ML models and
letting them predict all the target variables.

RQ2 (Performance of an Ensemble Learner)

RQ2 explores whether we could improve prediction performance using ensemble
learning techniques. For this and further RQs, only the better-performing feature set is
selected. The experiments are conducted, and the performance metrics are recorded.

RQ3 (Cross-version Prediction)

RQ3 explores the performance of the best-performing model (among the four models)
from RQ1 as it attempts to predict vulnerabilities within a dataset with different versions
or combinations of versions as the training and test datasets. The data separation takes
place as follows:

1. Total number of versions (n) is extracted from the dataset. For example, n for Tomcat
is 7, and for Struts, it is 11;

2. One version v1 ∈ n and another version v2 ∈ n are selected as the training and test
set for the first iteration. For instance, in the first iteration for Tomcat, version 4 is
used to train, and the models are tested on version 5;

3. For the next iteration, v1 + v2 ∈ n and v3 ∈ n are selected as the training and test set,
respectively. Thus, the model is trained on versions 4 and 5 and is tested on version 6.
This process continues until the final version, with the training set with one or more
versions and the models being tested on the subsequent version.

RQ4 (Cross-project Prediction)

RQ4 explores whether the data points of one system (Tomcat) can be used to train the
models and be tested on the other system (Struts) to observe how well the best-performing
model (among the four models) performs in a different system. This experiment is per-
formed with Tomcat as the training dataset and Struts as the test dataset and vice versa.
The better-performing feature set recorded from RQ1 is used here.
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Cross Validation

For cross-validation, in this study, we applied Stratified k-fold technique. As a re-
sampling procedure, stratified k-fold can be employed to evaluate ML models on limited-
sized data. Stratified k-fold technique needs a parameter, k, to determine the number of
folds, i.e., k = 10, leads to 10-fold cross-validation. Thus, we divided the dataset into k
groups, considered each group as a hold-out and the remaining k− 1 groups as the training
set, and repeated this process k times. It is important to mention that we did not apply
Stratified k-fold cross-validation technique for ensemble learning because it would be highly
resource demanding in terms of time and computational power.

3.5. Phase 5: Testing and Evaluation

Precision is the ratio between true positives and all positives. Recall is the ratio of
true positives our models correctly predict among all the positives. Accuracy refers to the
weighted arithmetic mean of precision and inverse precision, and the weighted arithmetic
mean of recall and inverse recall. The formulas of precision, recall, and accuracy are shown
in Equations (1)–(3). With precision and recall, we tried to evaluate the performance of the
metrics by tuning the ’average’ method. For multi-class classification, we observed the
weighted average and macro and micro performances, to be discussed in Sections 4 and 6.
We aim to produce results that have lower False Positives.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
. (3)

In the above equations, TP, TN, FP, and FN refer to the counts of true positive, true
negative, false positive, and false negative, respectively. Therefore, TP ∈ W, TN ∈ W,
FP ∈ W, and FN ∈ W. The following section presents results obtained from model
evaluations and answers our four research questions.

4. Results

Java classes that are affected by security vulnerabilities are treated as positive classes
(labeled as 1) in both datasets. The unaffected classes are the negative classes (labelled as
0). Once we collected all the vulnerability information from the security logs, the Apache
Tomcat dataset had 10,084 rows (8485 negative and 1719 positive) and Apache Struts2-core
had 19,384 rows (19,328 negative and 44 positive) of relevant data. The raw dataset and the
model implementation are available online https://github.com/palmafr/MDPIData2022
(accessed on 14 July 2022).

In the first experiment, we predicted whether the individual Java classes were asso-
ciated with security vulnerabilities (yes or no). Then, in the following experiments, we
attempted to predict the types and severity of the vulnerabilities.

4.1. Prerequisites: Model Tuning

We performed some ML model tuning. As written by the CFI team, overfitting is a
common issue in Decision Trees [15], especially with a dataset with over 10,000 rows. Thus,
the decision trees were pruned (as their leaves were snipped) to make the model not too
specific for the training data. The solvers in Logistic Regression were changed to obtain
a better performance. No changes were made to the Naive Bayes algorithm. Finally, for
the XGBoost classifier, the number of estimators was set to 500. The objective was set to
’binary:logistic’ in the case of vulnerable prediction and set to ’multi:softmax’ in the case of
severity and title prediction. After the prerequisites were achieved, the research questions
were answered.

https://github.com/palmafr/MDPIData2022
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4.2. Performance of Individual Learners (RQ1)

For RQ1, the feature sets generated by the algorithms are shown in Table 2. Further-
more, features selected by RFE are displayed in rank order in Figure 6. The binary averaged
metrics for predicting the vulnerable status of a class (0 or 1) are displayed in Table 3 for
Tomcat and Struts performance, respectively. A stratified K-fold cross-validation technique
with 10-folds was applied in this experiment for more accurate results.

Table 2. Features selected by SFS and RFE on both the datasets.

Apache Tomcat Apache Struts2-Core

SFS RFE SFS RFE

LCOM CBO CBO visibleMethodsQty
TCC WMC FanIn abstractMethodsQty
LCC RFC NOC finalMethodsQty
staticMethodsQty LCOM LCOM synchronizedMethodsQty
privateMethodsQty TCC TCC totalFieldsQty
protectedMethodsQty LCC LCC staticFieldsQty
defaultMethodsQty privateMethodsQty totalMethodsQty publicFieldsQty
visibleMethodsQty staticFieldsQty staticMethodsQty finalFieldsQty
abstractMethodsQty publicFieldsQty privateMethodsQty synchronizedFieldsQty
finalMethodsQty privateFieldsQty defaultMethodsQty NoSI
synchronizedMethodsQty protectedFieldsQty abstractMethodsQty LOC
staticFieldsQty defaultFieldsQty finalMethodsQty returnQty
publicFieldsQty finalFieldsQty synchronizedMethodsQty parenthesizedExpsQty
protectedFieldsQty NoSI privateFieldsQty stringLiteralsQty
defaultFieldsQty LOC protectedFieldsQty numbersQty
finalFieldsQty comparisonsQty defaultFieldsQty assignmentsQty
synchronizedFieldsQty parenthesizedExpsQty synchronizedFieldsQty mathOperationsQty
loopQty stringLiteralsQty loopQty variablesQty
anonymousClassesQty numbersQty parenthesizedExpsQty maxNestedBlocksQty
innerClassesQty variablesQty anonymousClassesQty anonymousClassesQty
lambdasQty uniqueWordsQty innerClassesQty innerClassesQty
modifiers modifiers lambdasQty lambdasQty

modifiers uniqueWordsQty
logStatementsQty modifiers

Table 3. Performance metrics for predicting vulnerable status (0 or 1).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 73.7 37.4 88.1 74.5 40.6 85.4
LR 85.7 55.6 74.1 83.5 53.5 72.5
NB 86.1 57.9 58.1 83.3 53.7 61.2
XGB 97.5 89.5 96.1 98.1 92 97.8

Struts

DT 78.1 0.9 72.7 81.7 0.5 57.1
LR 86.6 1.5 72.7 87.8 0.6 42.8
NB 59 0.5 81.8 89.6 0.2 14.2
XGB 99.5 26.6 36.3 99.6 28.5 28.5
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Figure 6. Features ranked by Recursive Feature Elimination.

The performance of the models is presented in Table 4. Since we handle the dataset
imbalance issue by oversampling, precision is calculated using a micro average. Finally,
the performance observed while predicting the title is presented in Table 5. The confusion
matrices for the learners in predicting the vulnerable status using RFE generated feature set,
are presented in Figures 7 and 8 and the same prediction using the SFS generated feature
set, is presented in Figures 9 and 10 for Tomcat and Struts, respectively. Additionally,
Figures 11–14 present the confusion matrices for the learners predicting the severity of the
vulnerability in both the datasets. The AUC-ROC curves produced from the experiments
are presented in Figures 15 and 16 for Tomcat and Struts, respectively.

Table 4. Performance in predicting the severity of the vulnerability.

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 71.8 45.3 55.6 59.9 45.5 64
LR 65.4 38.4 67.2 69.2 36.9 60.9
NB 30.6 33.4 47.7 36.7 39.1 50.3
XGB 93.9 75.9 88.3 93.8 74.9 85.6

Struts

DT 74.8 25.6 90.1 79 25.3 69.7
LR 75.8 25.6 90.3 84.9 25.4 54.5
NB 14.2 25.3 71.3 85.9 25.5 38.1
XGB 99.6 57.7 67.7 99.6 53 41.6
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Table 5. Performance in predicting the title (type) of the vulnerability.

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 2.4 0.01 4 2.69 1.1 9.5
LR 42.2 23.4 58.2 56.3 24.1 64.3
NB 16 26.7 46.2 13.8 25.2 48
XGB 94 58.5 73.5 93.4 55.5 69.1

Struts

DT 77.9 11.6 30.8 62.8 12.9 45.3
LR 86.7 12.8 23.5 88.6 12.2 43.5
NB 43.6 12.2 21.5 51.7 11.2 27.9
XGB 99.5 24.9 24.9 99.5 24.9 24.9

In answering RQ1, we can observe from Tables 3–5 that the XGBoost Classifier out-
performs every other model. The precision ratings for XGBoost classifier on the best feature
set is 92% in Tomcat and 28.5% in Struts for predicting vulnerable (0 or 1). The perfor-
mance in predicting severity is better in Struts with a 53% precision and a 74.9% precision
in Tomcat.

Finally, in predicting the title of the vulnerabilities, the model produced a 55.5%
precision in Tomcat and 24.9% precision in Struts. The lower performance in Struts is
observable, and it is because of fewer vulnerability data in the security logs. The class
imbalance is presented in Figure 5, which shows the positive and negative classes present
in both datasets. Beyond the class imbalance issue, XGBoost Classifier is the best among
the individual learners, thus, answering RQ1. From the confusion matrices mentioned
above, it is observed that the number of false positives is low in XGBoost Classifier 34 and
29, respectively, while maintaining the right number of true positives.

Summary on RQ1: From the results, it can be observed that the XGBoost classifier
performs better than other learners in predicting the relevant target variables in both
datasets. Thus, XGBoost is regarded as the best classifier.

Apache Tomcat (RFE)

Figure 7. Confusion matrix for all learners in predicting vulnerable status (Tomcat–RFE).
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Apache Struts

Figure 8. Confusion matrix for all learners in predicting vulnerable status (Struts–RFE).

Apache Tomcat

Figure 9. Confusion matrix for all learners in predicting vulnerable status (Tomcat–SFS).
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Apache Struts

Figure 10. Confusion matrix for all learners in predicting vulnerable status (Struts–SFS).

Apache Tomcat

Figure 11. Confusion matrix for all learners in predicting severity (Tomcat–SFS).
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Apache Struts

Figure 12. Confusion matrix for all learners in predicting severity (Struts–SFS).

Apache Tomcat

Figure 13. Confusion matrix for all learners in predicting severity (Tomcat–RFE).
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Apache Struts

Figure 14. Confusion matrix for all learners in predicting severity (Struts–RFE).

Apache Tomcat

Figure 15. AUC-ROC curve for all learners (Tomcat).

4.3. Performance of an Ensemble Learner (RQ2)

In RQ1, we observed the performances of the individual learners. In RQ2, we fur-
ther explored whether we could perform better using a Stacking classifier (a multi-level
ensemble learning classifier). Precision was calculated using micro average methods.

4.3.1. Feature Set

For this experiment, we choose the feature set that, when fitted, results in better
performance of the models. From the tables mentioned in Section 4.2, it is observed that
both the feature sets have similar performances. Although that is the case, RFE fitted
features tend to perform better than SFS fitted features in some cases. Hence, we select the
RFE feature set for this experiment.
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Apache Struts

Figure 16. AUC-ROC curve for all learners (Struts).

4.3.2. Stacking Classifier

Ensemble learning is achieved in this experiment using a Stacking Classifier. The
Stacking classifier has two levels: Decision Tree, Logistic Regression, and Naive Bayes at
level 0 and XGBoost Classifier at level 1. The performance metrics of the stacking classifier
are shown in Tables 6 and 7 for Tomcat and Struts, respectively. Additionally, the confusion
matrix for the stacking classifier in predicting the vulnerable status in both the datasets is
presented in Figure 17. Figure 18 presents the confusion matrix for both datasets, predicting
vulnerability severity. Finally, the AUC-ROC curves produced by the experiment are shown
in Figure 19.

Table 6. Stacking classifier performance in Apache Tomcat.

Tomcat Accuracy in % Precision in % Recall in %

Vulnerable 85.5 85.5 85.5
Severity 75.3 75.3 75.3
Title 53.1 53.1 53.1

Table 7. Stacking classifier performance in Apache Struts2-core.

Struts Accuracy in % Precision in % Recall in %

Vulnerable 85.8 85.8 85.8
Severity 94.1 94.1 94.1
Title 98.2 98.2 98.2

Apache Tomcat Apache Struts

Figure 17. Confusion matrix for Stacking classifier in predicting vulnerable status.
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Apache StrutsApache Tomcat

Figure 18. Confusion matrix for Stacking classifier in predicting severity.

Apache Tomcat

Apache Struts

Figure 19. AUC-ROC curve for Stacking classifier.

In RQ2, we employed the stacking ensemble learning technique to explore whether
predictive performance can improve. From RQ1, we could set a performance benchmark.
However, we can observe that ensemble learning did come close to the best-performing
individual learner (XGBoost). This performance, however, might not be promising because,
from the confusion matrix presented in Figure 17, it is clear that the stacking classifier
predicts high instances of false positive. On the other hand, the confusion matrices of the
XGBoost classifier, as seen in Figures 7, 8, 13, and 14, have almost negligible false positives
and more precise predictions. It is important to note that due to the lack of resources, a
proper fine-tuning of the Stacking classifier was not performed. Thus, it may be safe to say
that the Stacking classifier may provide better results under different conditions.

Summary on RQ2: We explored whether an ensemble learning technique can provide
better and more precise predictions than individual learners. The results show that the
Stacking classifier does not outperform the XGBoost Classifier (best learner) in predic-
tive precision.

4.4. Cross-Version Prediction (RQ3)

This experiment explores the performance of the best performing model from
Section 4.2 (i.e., XGBoost Classifier) as it attempts to predict vulnerabilities for one version
with the remaining versions as the training set.

Once we split the dataset, Apache Tomcat had six unique train and test dataset groups
for each target variable, while Apache Struts-2-core had ten. Similar to the experiments for
RQ1 (as explained in Section 4.2), Stratified 10-fold cross-validation was employed with
micro averaging for precision.
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The results for Tomcat are presented in Table 8 and for Struts in Table 9. The confusion
matrices generated for the experiments relevant to RQ3 are presented in Figures 20–22 for
Tomcat, and Figures 23–27 for Struts, with vulnerable and severity as the target variable to
be predicted. The confusion matrices for the title are presented in the GitHub repository as
it has many classes (if presented here would not be readable). Finally, the AUC-ROC curves
produced using Tomcat are presented in Figures 28–30 for Tomcat (all target variables) and
Figures 31–33 for Struts (all target variables).

Table 8. Cross-version prediction in Apache Tomcat.

Vulnerable

Exp. No. Accuracy in % Precision in % Recall in %

1 100 100 100
2 90.8 99.4 49.9
3 91.8 76.9 34.3
4 59.4 87.4 17.5
5 91.9 25.6 60
6 97.2 0 0

Severity

1 100 100 100
2 91.4 77.3 71.5
3 90.3 42.6 34.7
4 54.9 19.1 22.2
5 90.6 36.9 50.5
6 98.1 24.9 24.5

Title

1 100 100 100
2 89.9 51.5 61.5
3 92 34 32.4
4 51.7 4 7
5 88.9 7 8.9
6 97.7 97.7 97.7

The RQ3 is about observing the models’ performances when they are subject to
cross-version prediction. From Table 8 for Apache Tomcat, we can observe that the first
experiment for predicting each target variable has an accuracy, precision, and recall of
100%. This is due to the lack of an actual vulnerable class in either the train or test dataset.
Thus, the ML model predicts all of it to be 0 (i.e., not vulnerable). However, we see an
uneven distribution of performance throughout the various train and test datasets. A
similar argument applies for Struts (whose performances are displayed in Table 9), but in
this case, since the test dataset has a positive class. Without enough positive classes in the
training set, the model has a 0% precision and recall for most experiments. As mentioned
earlier, Struts has fewer positive classes than Tomcat, making it challenging to predict with
this dataset. Since Severity and Title are multi-class targets, their precision was averaged
using ’micro-average’, which is ideal for an imbalanced dataset such as ours.

Summary on RQ3: The results show the instability of prediction across different
versions due to the dataset imbalance. The dataset imbalance renders some splits with no
positive samples, which is less desirable for our experiments.



Data 2022, 7, 127 20 of 38

Table 9. Cross-version prediction on Struts2-core.

Vulnerable

Exp. No. Accuracy in % Precision in % Recall in %

1 99.8 0 0
2 100 0 0
3 100 0 0
4 99.3 0 0
5 99.8 0 0
6 99.2 0 0
7 99.4 30.7 100
8 99.5 0 0
9 99.5 28.5 50
10 99.4 0 0

Severity

1 99.8 99.8 99.8
2 100 100 100
3 100 100 100
4 99.3 99.3 99.3
5 99.7 99.7 99.7
6 99.3 99.3 99.3
7 99.4 99.4 99.4
8 99.5 99.5 99.5
9 99.5 99.5 99.5
10 99.4 99.4 99.4

Title

1 99.8 99.8 99.8
2 100 100 100
3 100 100 100
4 99.3 99.3 99.3
5 99.8 99.8 99.8
6 99.2 99.2 99.2
7 99.4 99.4 99.4
8 99.5 99.5 99.5
9 99.5 99.5 99.5
10 99.4 99.4 99.4

Figure 20. Confusion matrix for cross-version experiments in predicting vulnerable status (Tomcat (1)–(3)).
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Apache Tomcat

Figure 21. Confusion matrix for cross-version experiments in predicting vulnerable status (Tomcat (4)–(6)).

Apache Tomcat

(1) (2) (3)

(4) (5) (6)

Figure 22. Confusion matrix for cross-version experiments in predicting severity (Tomcat).
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(1) (2)

(3) (4)

Apache Struts

Figure 23. Confusion matrix for cross-version experiments in predicting vulnerable status (Struts (1)–(4)).

(5) (6)

(7) (8)

Apache Struts

Figure 24. Confusion matrix for cross-version experiments in predicting vulnerable status (Struts (5)–(8)).
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(9) (10)

Apache Struts

Figure 25. Confusion matrix for cross-version experiments in predicting vulnerable status (Struts (9)–(10)).

Apache Struts

(1) (4)

(5) (6)

Figure 26. Confusion matrix for cross-version experiments in predicting severity (Struts (1), (4)–(6)).
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Apache Struts

(7) (8)

(9) (10)

Figure 27. Confusion matrix for cross-version experiments in predicting severity (Struts (7)–(10)).

Apache Tomcat

Figure 28. AUC-ROC curve for Vulnerable (Tomcat).
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Apache Tomcat

Figure 29. AUC-ROC curve for Severity (Tomcat).

Apache Tomcat

Figure 30. AUC-ROC curve for Title (Tomcat).

Apache Struts

Figure 31. AUC-ROC curve for Vulnerable (Struts).
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Apache Struts

Figure 32. AUC-ROC curve for Severity (Struts).

Apache Struts

Figure 33. AUC-ROC curve for Title (Struts).

4.5. Cross-Project Prediction (RQ4)

RQ4 aims to explore the possibility of cross-project prediction while maintaining the
optimal performance of the models. In the current context, the two projects for cross-project
are Tomcat and Struts, respectively. This experiment also makes use of the feature set
acquired from RFE. Moreover, cross-validation is performed using Stratified 10-fold cross-
validation. The results of this experiment are presented in Table 10. The confusion matrices
produced in this experiment are presented in Figures 34 and 35, and the AUC-ROC curve
for this experiment is shown in Figure 36.

The best learner (XGBoost) was used with the best feature set for this experiment. The
results presented in Table 10 show that the best learner does not perform well with cross-
project predictions. However, there is a slightly better performance predicting vulnerable
status. As discussed earlier in this section, this is mainly due to the lack of a data standard
between the two systems. There are different vulnerability titles and labels for their severity
in both datasets. This proves to be a problem with cross-project prediction. However, this
can be mitigated using a data normalization procedure before prediction.

Summary on RQ4: Thus, we can infer that the best learner (XGBoost Classifier)
performs slightly better when trained on Struts and tested on Tomcat than vice versa.
Cross-project is, however, not practical without a data normalization procedure during
data manipulation.
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(1) (2)

Figure 34. Confusion matrix for cross-project experiments in predicting vulnerable status; (1) Train
on Tomcat, test on Struts; (2) Train on Struts, test on Tomcat.

(1) (2)

Figure 35. Confusion matrix for cross-project experiments in predicting severity; (1) Train on Tomcat,
test on Struts; (2) Train on Struts, test on Tomcat.

Table 10. (Exp 1) Train on Tomcat, test on Struts; (Exp 2) Train on Struts, test on Tomcat.

Exp 1 Accuracy in % Precision in % Recall in %

Vulnerable 98.2 0.6 4.5
Severity 78.4 12.4 9.8
Title 0 0 0

Exp 2

Vulnerable 62 29.1 87.4
Severity 32.3 12.1 4.8
Title 20.9 3.1 1.5
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Train on tomcat, test on struts

Train on struts, test on tomcat

Figure 36. AUC-ROC curve for RQ4.

5. Related Work

Over the past years, several studies have been conducted to identify software sys-
tems vulnerabilities or bugs. This section introduces studies with similar scopes such as
vulnerability identification and prediction and identifying metrics useful in vulnerability
prediction.

In their paper, Harer et al. [24] predicted vulnerabilities using control-flow graphs.
Both simple and deep learning models were employed to predict the vulnerabilities. More-
over, the scope of their experiments was to detect vulnerabilities in systems written in
C/C++. The source code was used to extract features for conducting these experiments [24].
Staying on deep learning algorithms, Pang et al. [25] used such an algorithm to predict
vulnerabilities in Java-based Android applications. This experiment appeared to be more
related to our current domain. However, we did not intend to use deep learning for pre-
dictions. Another similar factor is the use of gradient descent in their experiments for
error handling. The feature selection for these experiments was made using a statistical
algorithm. Their experiments were finally able to predict the vulnerable status of a class
using deep learning [25].

A study conducted by Livshits et al. [26] helped to reduce security vulnerabilities using
a non-ML technique. This study did not help predict vulnerabilities but instead helped
detect them using source code metrics from Java classes. Using static analysis techniques,
they could identify some of the most common security vulnerabilities such as SQL injection,
cross-site scripting, etc., mainly due to human error in the source code. Finally, they
identified 29 vulnerabilities in the most common java packages, and libraries [26].

Slightly deviating from the prediction of vulnerabilities, another study was proposed
by Hammouri et al. [27], which predicted bugs in the source code. This study was proposed
in 218, and it made use of three supervised ML algorithms, namely Decision Tree (DT),
Naive Bayes (NB), and Artificial Neural Networks (ANNs). They were set to predict future
defects using historical information on three unspecified datasets. The study concluded
that the decision tree classifier outperformed the other ML models [27]. To analyse the
impact of source code metrics on vulnerability occurrence, Gupta and Saxena [28] proposed
a study in 2018. This study indicated the presence of more impactful object-oriented metrics
such as CBO and LOC, as opposed to lesser impactful metrics such as DIT [28].

A similar study conducted by Goyal et al. [29] tried to establish a connection between
object-oriented metrics and the occurrence of bugs in a system. The authors tested the
effectiveness of their bug prediction using a KNN Classifier and a Linear regression model.
This study concluded that Linear regression is a better performing model than the KNN.
Accuracy was the performance evaluation metric in this study, and the highest recorded
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accuracy while running the model in both individuals and the combined datasets was
76.27% [29].

Shar and Tan [30] proposed to detect cross-site scripting and SQL injection (common
vulnerabilities caused by the absence of input validation in a web application). The authors
use static code attributes directly related to input validation and code patterns to classify
instances as vulnerable or not [30].

Yosifova [31] explored the use of ensemble learning techniques in predicting vulnera-
bilities [31]. The author used a Random Forest Classifier and a Gradient Boost Classifier
to conduct the experiments and concluded that the Gradient Boost classifier performed
better. Bilgin et al. [32] conducted a study to predict the vulnerable status of function level
source codes using Abstract Syntax Trees (AST) [32]. The experiment is conducted using
the source code itself instead of source code metrics, which means that the text of the source
code was tokenized and then subject to ML to predict vulnerable parts.

6. Discussion

This study aims to explore ways to predict security vulnerabilities using static source
code metrics and to see whether there is any direct relation between metrics of the code
and the occurrence of a vulnerability. The systems focused are two open-source systems:
Apache Tomcat and Apache Struts2-core. The experiments conducted proved to be stepping
points to identifying vulnerabilities in the source code. Thus, the relevant security log data
were accessible.

However, there was a discrepancy with the data in Tomcat that the titles of the
vulnerabilities were redundant. For example, there are three instances of ‘Remote Code
Execution’ in the dataset with minor variations, making it into three classes instead of one.
We did not handle this in our cleanup phase as we wanted to experiment with the titles as
they were in the security logs. There is a chance that better results can be obtained when the
titles are composed into categories of their vulnerabilities instead of unique vulnerabilities
by themselves. This would also help better cross-project prediction, as discussed later in
this section.

Aside from the provided results, two additional experiments were conducted to
explore if under-sampling methods could produce better performance than over-sampling
the dataset and to explore the viability of weighted performance metrics as a relevant
standard for evaluation.

Confusion matrices and AUC-ROC curves are provided only for the answered RQs, i.e.,
the performance observations are the only deliverable for Under-sampling and Weighted-
performance.

6.1. Performance of the Classifiers Using Under-Sampling

The results for the experiments from RQ1, performed using an under-sampled dataset,
are provided in Tables 11–13 for vulnerable, severity and title respectively. Moreover, the
results for the Stacking classifier predicting in an under-sampled dataset is presented in
Tables 14 and 15 for Tomcat and Struts respectively. Furthermore, the results from the
RQ3 variant using the undersampled dataset is provided in Tables 16 and 17 for Tomcat
and Struts respectively. Finally, the results of the undersampled cross-project prediction
experiment are presented in Table 18. From the tables mentioned above, it is observable
that an undersampled dataset performs poorer than the oversampled dataset. This could be
because in oversampling, the number of positive and negative instances are attempted to be
equal by duplication and randomization. However, it is not the case with undersampling,
which removes certain samples, leaving fewer data to train on than before. The best learner
from RQ1 (as mentioned in Section 4.2) has a very low precision in Struts due to the lack of
training samples. Below, we discuss the findings for undersampled dataset.
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Table 11. Performance in predicting the vulnerable status (undersampled).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 72.9 37.8 85.3 72.5 36.5 86
LR 84 53.3 69.9 82.4 48.7 78.1
NB 83.6 52.8 60.3 83.5 50.9 63.9
XGB 94.6 78.7 94.9 95.7 81 97.9

Struts

DT 79.7 0.6 55.5 71.2 0.8 90.9
LR 74.1 0.6 77.7 75.5 0.9 81.8
NB 77.5 0.4 44.4 82.4 1.1 72.7
XGB 80.6 0.6 55.5 74.7 0.9 81.8

Table 12. Performance in predicting the severity (undersampled).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 71.5 71.5 71.5 66.3 66.3 66.3
LR 64.2 64.2 64.2 65.2 65.2 65.2
NB 28.4 28.4 28.4 21.2 21.2 21.2
XGB 71.5 71.5 71.5 68.8 68.8 68.8

Struts

DT 66.2 66.2 66.2 47.4 47.4 47.4
LR 50 50 50 21.6 21.6 21.6
NB 37.9 37.9 37.9 28.1 28.1 28.1
XGB 39.4 39.4 39.4 25 25 25

Table 13. Performance in predicting the title of vulnerability (undersampled).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 4.5 4.5 4.5 5 5 5
LR 13.6 13.6 13.6 15.4 15.4 15.4
NB 8 8 8 5.9 5.9 5.9
XGB 13.5 13.5 13.5 12.6 12.6 12.6

Struts

DT 1.2 1.2 1.2 17.5 17.5 17.5
LR 1.3 1.3 1.3 5.1 5.1 5.1
NB 0.1 0.1 0.1 0.5 0.5 0.5
XGB 0.6 0.6 0.6 0.1 0.1 0.1

Table 14. Stacking classifier performance in Apache Tomcat (undersampled).

Tomcat Accuracy in % Precision in % Recall in %

Vulnerable 77 41.5 87.2
Severity 66.5 66.5 66.5
Title 10.6 10.6 10.6
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Table 15. Stacking classifier performance in Apache Struts (undersampled).

Struts Accuracy in % Precision in % Recall in %

Vulnerable 70.4 100 86.6
Severity 69.2 69.2 69.2
Title 6.4 6.4 6.4

Table 16. Cross-version prediction performance in Apache Tomcat (undersampled).

Vulnerable

Exp. No. Accuracy in % Precision in % Recall in %

1 97.1 0 0
2 91.7 0 0
3 96.4 0 0
4 92.3 7 100
5 95.1 0 0
6 95.9 0 0

Severity

1 98.4 98.4 98.4
2 67.6 67.6 67.6
3 71.7 71.7 71.7
4 34.7 34.7 34.7
5 72 72 72
6 80 80 80

Title

1 76.9 76.9 76.9
2 66.3 66.3 66.3
3 42 42 42
4 23.9 23.9 23.9
5 31.4 31.4 31.4
6 30.9 30.9 30.9

6.1.1. Individual Learner Prediction

When the ML models are trained with only the negative samples to predict the positive
instances, they evidently will not perform poorly. For Tomcat, the models are being trained
with fewer positive samples, while in Struts, that count is near 0. From Table 11 a severe
precision drop can be noticed in both the datasets.

In the case of multi-class target variables such as severity, it is observable from Table 12
that the accuracy, precision, and recall are the same. This is because the precision and
recall values are ’micro-averaged’ due to the data imbalance being handled poorly. Thus, the
models did not perform better in predicting the severity of the vulnerabilities. As for the
title of the vulnerabilities, it is observed from Table 13 that the performance is again severely
affected. This is more realistic in this case, as there are twenty-three and seven unique titles
for Tomcat and struts. However, it is observed from the table that the performance in Struts
is poor compared to Tomcat’s. It is due to the same rationale of ’training using negative
samples with no positive samples, to predict positive samples’.
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Table 17. Cross-version prediction performance in Apache Struts (undersampled).

Vulnerable

Exp. No. Accuracy in % Precision in % Recall in %

1 92.6 0 0
2 95.3 0 0
3 91.9 0 0
4 95.4 11.8 100
5 94.5 0 0
6 96.6 4 16.6
7 81 1.2 100
8 69.3 0.1 100
9 79.7 1.1 100
10 79.7 0.2 33.3

Severity

1 96.5 96.5 96.5
2 95.1 95.1 95.1
3 91.5 91.5 91.5
4 94.8 94.8 94.8
5 70.9 70.9 70.9
6 92.4 92.4 92.4
7 6.5 6.5 6.5
8 54.6 54.6 54.6
9 70.2 70.2 70.2
10 56.7 56.7 56.7

Title

1 88 88 88
2 95 95 95
3 92 92 92
4 92.3 92.3 92.3
5 93 93 93
6 87.6 87.6 87.6
7 99.7 99.7 99.7
8 99.9 99.9 99.9
9 31.6 31.6 31.6
10 23.8 23.8 23.8

Table 18. Cross-project prediction performance (undersampled). (Exp 1) Train on Tomcat, test on
Struts; (Exp 2) Train on Struts, test on Tomcat.

Exp 1 Accuracy in % Precision in % Recall in %

Vulnerable 97.5 0.1 20.4
Severity 88.4 88.4 88.4
Title 0.1 0.1 0.1

Exp 2

Vulnerable 67.3 31.9 83.2
Severity 29.1 29.1 29.1
Title 18.6 18.6 18.6

6.1.2. Ensemble learning

For the Stacking classifier, it is observed from Table 15 that vulnerable has a precision
of 100%, which is the case where the test dataset has only negative classes. The classifier
predicted all the samples to be negative. It is observed that the classifier’s performance in
predicting the other target variables is the same as before.
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6.1.3. Cross-Version Prediction

While predicting cross-version in an undersampled dataset, it is noted that the preci-
sion is zero or near zero most of the time due to the lack of sufficient training data to make
precise predictions. This can be observed from the Tables 16 and 17 for Tomcat and Struts
respectively. It is a similar case with severity and title as they are micro-averaged.

6.1.4. Cross-Project Prediction

Finally, the relevant predictions between both datasets would be the vulnerable status
in the cross-project prediction. Table 18 shows that training on Struts and testing on Tomcat
yields slightly better than the alternate experiment. As we discussed earlier, severity and
title yield poorer performances cross-project due to the lack of a data normalization phase
during data manipulation.

Thus, undersampling proved incompetent in our experiments and was restricted to the
discussion.

6.2. Weighted-Performance of the Classifiers

In addition to the RQs and experiments with the undersampled dataset, another set of
experiments with a weighted average as the averaging method for precision and recall were
conducted. The results of these experiments do not contribute to the research questions but
serve as mere experiments for optimization. The results relevant to RQ1 are provided in
Tables 19–21 for experiments in predicting vulnerable, severity and title, respectively. The
results relevant to RQ2 with weighted average are shown in Tables 22 and 23, respectively,
for experiments conducted in Tomcat and Struts respectively. Furthermore, we have also
recorded the results of cross-version experiments conducted using the weighted-average
in Tables 24 and 25 for Tomcat and Struts respectively. Finally, the results for cross-project
prediction have been presented in Table 26.

This method assigns weights to each class present in a target variable. In the case
of precision, the weighted average is calculated by averaging each class to the number
of right class predictions. In the present datasets, the number of negative classes is very
high compared to that of positive classes, as seen earlier in Figure 5. Thus the number
of right negative class predictions (True Negatives) boosts the average to show a good
precision/recall.

Supporting our previous statement, it is observable that the precision and recall values
in these experiments are high or decent enough, averaging around 90–95%, but this does
not represent the False Positives predicted by the model. The average is high because one
of the classes is predicted more precisely than the others, which boosts the output.

Thus, the weighted average did not prove to be the right metric to evaluate the
performance of our models.
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Table 19. Performance of all learners in predicting vulnerable status in both datasets. (Weighted-average).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 77 95.6 77 77 95.8 77
LR 83.8 95.7 83.8 84.2 95.8 84.2
NB 89.8 95.2 89.8 90.3 95.2 90.3
XGB 96.7 97 96.7 95.7 96.4 95.7

Struts

DT 81.9 99.7 81.9 83.6 99.7 83.6
LR 86.9 99.6 86.9 84.7 99.7 84.7
NB 14 99.5 14 73.8 99.8 73.8
XGB 99.6 99.7 99.6 99.6 99.7 99.6

Table 20. Performance of all learners in predicting severity in both datasets. (Weighted-average).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 58.7 95.9 58.4 80.1 95.8 80.1
LR 85.6 95.8 85.6 82.1 99.6 82.1
NB 25.3 95.4 34.4 39.3 96 39.3
XGB 68.5 96.1 66.3 70.5 96.4 70.5

Struts

DT 84.5 99.8 84.5 83.9 99.5 83.9
LR 83.7 99.7 83.7 80.2 99.4 80.2
NB 19.1 99.6 19.1 80.7 99.6 80.7
XGB 88 99.7 88 94 99.5 94

Table 21. Performance of all learners in predicting title of the vulnerability in both datasets. (Weighted-
average).

Tomcat SFS RFE

Accuracy in % Precision in % Recall in % Accuracy in % Precision in % Recall in %

DT 8.6 1 8.6 12.4 0 0
LR 35.5 0 0 47.1 96.1 47.1
NB 9.3 92.9 9.3 35.5 96.1 35.5
XGB 61.5 96.1 61.5 66.7 96.1 66.7

Struts

DT 70.3 99.7 70.3 61.7 99.7 61.7
LR 46.6 99.6 46.6 61.2 99.6 61.2
NB 31.8 99.6 31.8 43.6 99.7 43.6
XGB 95.3 99.7 95.3 91.9 99.7 91.9

Table 22. Stacking classifier performance in Apache Tomcat. (Weighted-average).

Tomcat Accuracy in % Precision in % Recall in %

Vulnerable 81.5 96 83.5
Severity 83 95.8 83
Title 89.9 95.3 89.9
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Table 23. Stacking classifier performance in Apache Struts. (Weighted-average).

Struts Accuracy in % Precision in % Recall in %

Vulnerable 96.5 99.8 96.5
Severity 99.4 99.8 99.4
Title 99.6 99.7 99.6

Table 24. Cross-version prediction performance in Apache Tomcat. (Weighted-average).

Vulnerable

Exp. No. Accuracy in % Precision in % Recall in %

1 100 100 100
2 92.3 92.1 92.3
3 87.3 83.5 87.3
4 64.6 68.2 64.6
5 80.3 95.9 80.3
6 80.4 99.7 80.4

Severity

1 100 100 100
2 83.2 79.9 83.2
3 79.4 85.5 79.4
4 51 44.2 51
5 75.1 95.9 75.1
6 76.9 99.7 76.9

Title

1 100 100 100
2 76.7 75.5 76.7
3 80.9 82.6 80.9
4 44.7 37.4 44.7
5 70.1 95.6 70.1
6 63.7 99.7 63.7

6.3. Threats to Validity

This study focused on predicting security vulnerabilities in the two open-source
projects. To minimize the threats to external validity, we considered seven versions of
Apache Tomcat and eleven versions of Apache Struts2-core. However, other systems need
to be analyzed to generalize our findings further. To minimize the threats to internal validity,
we experimented with several ML models and two feature selection methods. However, the
results reported in this study are further subject to improvement using more sophisticated
ML models and feature selection techniques. Additionally, vulnerability predictions are
made at the class level. However, a finer—method or line-level—prediction would be
useful for the developers. To minimize the threats to the reliability and repeatability validity,
the dataset and model implementations are made available online https://github.com/
palmafr/MDPIData2022 (accessed on 14 July 2022).

https://github.com/palmafr/MDPIData2022
https://github.com/palmafr/MDPIData2022
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Table 25. Cross-version prediction performance in Apache Struts. (Weighted-average).

Vulnerable

Exp. No Accuracy in % Precision in % Recall in %

1 99.7 100 99.7
2 99.7 100 99.7
3 100 100 100
4 99.3 98.7 99.3
5 99.3 100 99.3
6 98.8 98.8 98.8
7 96.9 99.7 96.9
8 95.2 99.8 95.2
9 93.1 99.5 93.1
10 92.5 99.7 92.5

Severity

1 99.7 100 99.7
2 99.7 100 99.7
3 100 100 100
4 99.3 98.7 99.3
5 99.6 100 99.6
6 98.9 98.7 98.9
7 95.2 99.8 95.2
8 95.1 99.8 95.1
9 95 99.6 95
10 94.2 99.6 94.2

Title

1 99.7 100 99.7
2 99.7 100 99.7
3 100 100 100
4 99.3 98.7 99.3
5 99.6 100 99.6
6 98.9 98.6 98.9
7 95.6 99.8 95.6
8 94.6 99.8 94.6
9 94 99.7 94
10 93.8 99.7 93.8

Table 26. Cross-project prediction performance in Apache Struts. (Weighted-average). (Exp 1) Train
on Tomcat, test on Struts; (Exp 2) Train on Struts, test on Tomcat.

Exp 1 Accuracy in % Precision in % Recall in %

Vulnerable 95.3 99.6 95.3
Severity 90.9 99.6 90.9
Title 83.7 99.6 83.7

Exp 2

Vulnerable 70.3 71.7 70.3
Severity 69.2 70 69.2
Title 74.3 68.7 74.3

7. Conclusions

In summary, we can answer the initial question, “Are source code metrics good enough to
predict software security vulnerabilities?” positively that static source code metrics are good
enough to predict security vulnerabilities in the software systems.

We determined the best feature set by employing two feature selection techniques and
examining the performance results. To achieve the best-performing model, experiments
were carried out using four supervised ML models. Our results suggested that the XGBoost



Data 2022, 7, 127 37 of 38

Classifier (XGB) delivered better results regarding predicting security vulnerabilities com-
pared to Decision Trees (DT), Naive Bayes (NB), and Logistic Regression (LR). The presence
of vulnerability is a binary value (yes/no). However, the severity has four classes (High,
Important, Moderate, and Low). Due to its performance compared to the other models,
the XGBoost classifier was selected as the best performing model among the four. This
answered RQ1 on choosing the best classifier. RQ2 dealt with employing ensemble learning
techniques and a Stacking classifier to hope for a better performance than the individual
learner. However, this was unsuccessful based on the presented results.

Nevertheless, there is a chance that the Stacking classifier could perform better when
its parameters are more fine-tuned. This was a challenge in the current experiment due to
the limited resources restricting computing performance and training time. RQ3 explored
the performance of the best learner in cross-version prediction, which resulted in variable
prediction performance. However, we observed that the cross-version prediction was viable
for the last iteration of experiments, i.e., train the model with 1 to (n−1)th versions and test
on the nth version. Finally, RQ4 explored the possibilities of cross-project prediction using
the best learner. As discussed in Section 6, the model would be more accurate if the data
were normalized between the datasets.

The models and feature sets used in this experiment are subject to enrichment for
better performance. More sophisticated feature selection methods can be applied. Ad-
ditionally, fine-tuning the ensemble methods, simple multi-layer perceptron, and neural
networks can be applied to make more accurate predictions. There was also a discussion
to normalize vulnerability titles between different datasets to an OWASP (Open Web Ap-
plication Security Project) standard. This would increase the predictive performance in
cross-project predictions. Moreover, the results obtained using this experiment are distinct
only to Apache Tomcat and Apache Struts2-core, and more experiments are required with
different systems. Furthermore, we can also try to handle the imbalance of the datasets
using a different over-sampling technique instead of random over-sampling. There is
also a further scope to conduct experiments with closed-source systems with the required
permission to distinguish the quality of the datasets.
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