A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions
Abstract
:1. Introduction
2. Literature Review
- In the last few years, a significant amount of research related to the mining and analysis of web behavior, associated with different virus outbreaks such as COVID-19 [40,68,84,92], influenza [62], Lyme disease [63], malaria [64], dengue [64], chikungunya [64], syphilis [65], HIV [66], and Zika virus [67], has been conducted. Even though Disease X features in the shortlist of blueprint priority diseases of the WHO, no prior work in this field has focused on Disease X. Therefore, it is crucial to perform the mining and analysis of web behavior related to Disease X.
- The works that analyzed relevant data from Google Trends during virus outbreaks of the past have focused on web behavior originating from a very limited number of geographic regions. For example, the work by Verma et al. [64] focused on the analysis of the web behavior from two regions in India, the work by Young et al. [66] focused on web behavior analysis from the United States, and the work of Morsy et al. [67] focused on the web behavior analysis from Brazil and Columbia. Similar to the virus outbreaks of the past, which were not localized in one or two geographic regions, the outbreak of Disease X is expected to have a global impact. Therefore, the need of the hour is to mine and analyze the web behavior data related to Disease X emerging from different geographic regions.
3. Methodology
- Search Term Trends: This feature allows users to see how the popularity of a specific search term or keyword has changed over time. Google Trends provides a graphical representation to highlight these trends.
- Related Queries: Google Trends displays related queries that are frequently searched alongside the user’s primary search term. This can help identify related topics or terms relevant for data analysis.
- Regional Interest: Users can view the geographical regions where a specific search term is most popular using Google Trends. Google Trends provides insights into regional differences in search interests for search terms.
- Trending Searches: This feature of Google Trends highlights the current and popular search queries or topics, providing real-time insights into what people are searching for on Google.
- Year in Search: Google Trends often releases a “Year in Search” report summarizing the top search queries from the past year. This report offers an overview of significant events and trends.
- Category Comparison: Users can compare the search interests of different categories or topics on Google using Google Trends. This can be useful for understanding the relative popularity of various topics.
- Time Period Selection: Google Trends allows users to specify the time period for which they wish to query and analyze the data. This can range from a few hours to multiple years.
- Data Visualization: Google Trends provides interactive charts and graphs to visualize search data.
- Real-Time Data: Google Trends often updates in near real-time, making it valuable for tracking ongoing events.
- Data Export: Google Trends allows different options to export data related to search interests, related queries, and related topics for a search term on Google for further analysis.
- Navigate to the “Explore” tab on Google Trends.
- Set the search query as Disease X (Topic).
- Set the geolocation to “Worldwide”.
- Navigate to the timestamp dropdown menu, select “Custom Time Range”, and enter the time range as “2/1/18—8/8/18”.
- Set “All Categories” in the categories option.
- Select “Web Search” for the type of search.
4. Data Description
5. Data Analysis and Potential Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fauci, A.S.; Lane, H.C.; Redfield, R.R. COVID-19—Navigating the Uncharted. N. Engl. J. Med. 2020, 382, 1268–1269. [Google Scholar] [CrossRef]
- Prentice, M.B.; Rahalison, L. Plague. Lancet 2007, 369, 1196–1207. [Google Scholar] [CrossRef]
- Aassve, A.; Alfani, G.; Gandolfi, F.; Le Moglie, M. Epidemics and Trust: The Case of the Spanish Flu. Health Econ. 2021, 30, 840–857. [Google Scholar] [CrossRef]
- Joint United Nations Programme on HIV/AIDS. World Health Organization 2008 Report on the Global AIDS Epidemic; World Health Organization: Genève, Switzerland, 2008; ISBN 9789291737116. [Google Scholar]
- Jacob, S.T.; Crozier, I.; Fischer, W.A., II; Hewlett, A.; Kraft, C.S.; de la Vega, M.-A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola Virus Disease. Nat. Rev. Dis. Primers 2020, 6, 13. [Google Scholar] [CrossRef]
- Thakur, N.; Duggal, Y.N.; Liu, Z. Analyzing Public Reactions, Perceptions, and Attitudes during the MPox Outbreak: Findings from Topic Modeling of Tweets. Computers 2023, 12, 191. [Google Scholar] [CrossRef]
- Sampath, S.; Khedr, A.; Qamar, S.; Tekin, A.; Singh, R.; Green, R.; Kashyap, R. Pandemics throughout the History. Cureus 2021, 13, e18136. [Google Scholar] [CrossRef]
- Chatterjee, P.; Nair, P.; Chersich, M.; Terefe, Y.; Chauhan, A.; Quesada, F.; Simpson, G. One Health, “Disease X” & the Challenge of “Unknown” Unknowns. Indian J. Med. Res. 2021, 153, 264. [Google Scholar] [CrossRef]
- Prioritizing Diseases for Research and Development in Emergency Contexts. Available online: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 17 August 2023).
- Barnes, T. World Health Organisation Fears New “Disease X” Could Cause a Global Pandemic. Available online: https://www.independent.co.uk/news/science/disease-x-what-is-infection-virus-world-health-organisation-warning-ebola-zika-sars-a8250766.html (accessed on 17 August 2023).
- Scutti, S. World Health Organization Gets Ready for ‘Disease X’. Available online: https://www.cnn.com/2018/03/12/health/disease-x-blueprint-who/index.html (accessed on 17 August 2023).
- Adalja, A.A.; Watson, M.; Toner, E.S.; Cicero, A.; Inglesby, T.V. Characteristics of Microbes Most Likely to Cause Pandemics and Global Catastrophes. In Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–20. ISBN 9783030363109. [Google Scholar]
- Kreuder Johnson, C.; Hitchens, P.L.; Smiley Evans, T.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and Pandemic Properties of Zoonotic Viruses with High Host Plasticity. Sci. Rep. 2015, 5, 14830. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate Change Increases Cross-Species Viral Transmission Risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; Tu, W.-W.; Yen, H.-L. A Novel H1N1 Virus Causes the First Pandemic of the 21st Century. Eur. J. Immunol. 2009, 39, 2946–2954. [Google Scholar] [CrossRef] [PubMed]
- Van Kerkhove, M.D.; Ryan, M.J.; Ghebreyesus, T.A. Preparing for “Disease X”. Science 2021, 374, 377. [Google Scholar] [CrossRef]
- Iserson, K. The next Pandemic: Prepare for “Disease X”. West. J. Emerg. Med. 2020, 21, 756. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.J.; Sawal, I.; Essar, M.Y.; Jabbar, A.; Ullah, I.; Ahmed, A. Disease X: A Hidden but Inevitable Creeping Danger. Infect. Control Hosp. Epidemiol. 2022, 43, 1758–1759. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Kaufmann, M.C.; Glozman, V.; Chakrabarti, A. Disease X: Accelerating the Development of Medical Countermeasures for the next Pandemic. Lancet Infect. Dis. 2020, 20, e108–e115. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Chakrabarti, A.; Robinson, D.; Chirgwin, K.; Lumpkin, M. Navigating Facilitated Regulatory Pathways during a Disease X Pandemic. NPJ Vaccines 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Radanliev, P.; De Roure, D. Disease X Vaccine Production and Supply Chains: Risk Assessing Healthcare Systems Operating with Artificial Intelligence and Industry 4.0. Health Technol. 2023, 13, 11–15. [Google Scholar] [CrossRef]
- Singh, R.; Sarsaiya, S.; Singh, T.A.; Singh, T.; Pandey, L.K.; Pandey, P.K.; Khare, N.; Sobin, F.; Sikarwar, R.; Gupta, M.K. Corona Virus (COVID-19) Symptoms Prevention and Treatment: A Short Review. J. Drug Deliv. Ther. 2021, 11, 118–120. [Google Scholar] [CrossRef]
- Thakur, N. Sentiment Analysis and Text Analysis of the Public Discourse on Twitter about COVID-19 and MPox. Big Data Cogn. Comput. 2023, 7, 116. [Google Scholar] [CrossRef]
- Mercer, T.R.; Salit, M. Testing at Scale during the COVID-19 Pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [Google Scholar] [CrossRef]
- Kooli, C. COVID-19: Public Health Issues and Ethical Dilemmas. Ethics Med. Public Health 2021, 17, 100635. [Google Scholar] [CrossRef]
- Golan, M.S.; Jernegan, L.H.; Linkov, I. Trends and Applications of Resilience Analytics in Supply Chain Modeling: Systematic Literature Review in the Context of the COVID-19 Pandemic. Environ. Syst. Decis. 2020, 40, 222–243. [Google Scholar] [CrossRef]
- Schuerger, C.; Batalis, S.; Quinn, K.; Adalja, A.; Puglisi, A. Viral Families and Disease X: A Framework for U.S. Pandemic Preparedness Policy. Available online: https://cset.georgetown.edu/wp-content/uploads/CSET-Viral-Families-and-Disease-X-A-Framework-for-U.S.-Pandemic-Preparedness-Policy.pdf (accessed on 17 August 2023).
- Fontanet, A.; Cauchemez, S. COVID-19 Herd Immunity: Where Are We? Nat. Rev. Immunol. 2020, 20, 583–584. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, L.S.F.; Zhang, Y.; Foged, C.; Thakur, A. The Long Road toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front. Immunol. 2020, 11, 1817. [Google Scholar] [CrossRef] [PubMed]
- Kiviniemi, M.T.; Orom, H.; Hay, J.L.; Waters, E.A. Prevention Is Political: Political Party Affiliation Predicts Perceived Risk and Prevention Behaviors for COVID-19. BMC Public Health 2022, 22, 298. [Google Scholar] [CrossRef] [PubMed]
- Rabin, C.; Dutra, S. Predicting Engagement in Behaviors to Reduce the Spread of COVID-19: The Roles of the Health Belief Model and Political Party Affiliation. Psychol. Health Med. 2022, 27, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, R.T.; Mohammed, M.A.; Tapus, N. Big Data Analysis. Mesopotamian J. Big Data 2021, 2021, 22–25. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, Y.; Tang, L.; Yang, Z. Online Big Data-Driven Oil Consumption Forecasting with Google Trends. Int. J. Forecast. 2019, 35, 213–223. [Google Scholar] [CrossRef]
- Vaughan, L.; Chen, Y. Data Mining from Web Search Queries: A Comparison of Google Trends and Baidu Index: Data Mining from Web Search Queries: A Comparison of Google Trends and Baidu Index. J. Assoc. Inf. Sci. Technol. 2015, 66, 13–22. [Google Scholar] [CrossRef]
- Horák, J.; Ivan, I.; Kukuliač, P.; Inspektor, T.; Devečka, B.; Návratová, M. Google Trends for Data Mining. Study of Czech Towns. In Computational Collective Intelligence. Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 100–109. ISBN 9783642404948. [Google Scholar]
- Sadeq, N.; Hamzeh, Z.; Nassreddine, G.; ElHassan, T. The Impact of Blockchain Technique on Trustworthy Healthcare Sector. Mesopotamian J. Cyber Secur. 2023, 2023, 105–115. [Google Scholar] [CrossRef]
- Tijerina, J.D.; Morrison, S.D.; Nolan, I.T.; Parham, M.J.; Richardson, M.T.; Nazerali, R. Celebrity Influence Affecting Public Interest in Plastic Surgery Procedures: Google Trends Analysis. Aesthetic Plast. Surg. 2019, 43, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Adawi, M.; Bragazzi, N.L.; Watad, A.; Sharif, K.; Amital, H.; Mahroum, N. Discrepancies between Classic and Digital Epidemiology in Searching for the Mayaro Virus: Preliminary Qualitative and Quantitative Analysis of Google Trends. JMIR Public Health Surveill. 2017, 3, e93. [Google Scholar] [CrossRef] [PubMed]
- Szmuda, T.; Ali, S.; Hetzger, T.V.; Rosvall, P.; Słoniewski, P. Are Online Searches for the Novel Coronavirus (COVID-19) Related to Media or Epidemiology? A Cross-Sectional Study. Int. J. Infect. Dis. 2020, 97, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Preis, T.; Moat, H.S.; Stanley, H.E. Quantifying Trading Behavior in Financial Markets Using Google Trends. Sci. Rep. 2013, 3, 1684. [Google Scholar] [CrossRef] [PubMed]
- Kristoufek, L. BitCoin Meets Google Trends and Wikipedia: Quantifying the Relationship between Phenomena of the Internet Era. Sci. Rep. 2013, 3, 3415. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, L.T.P.; Papworth, S.K.; Lim, F.K.S.; Carrasco, L.R. Analysis of the Capacity of Google Trends to Measure Interest in Conservation Topics and the Role of Online News. PLoS ONE 2016, 11, e0152802. [Google Scholar] [CrossRef]
- Cho, S.; Sohn, C.H.; Jo, M.W.; Shin, S.-Y.; Lee, J.H.; Ryoo, S.M.; Kim, W.Y.; Seo, D.-W. Correlation between National Influenza Surveillance Data and Google Trends in South Korea. PLoS ONE 2013, 8, e81422. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Han, C.Y. Country-Specific Interests towards Fall Detection from 2004–2021: An Open Access Dataset and Research Questions. Data 2021, 6, 92. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A Review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; p. 219. [Google Scholar]
- Adomavicius, G.; Tuzhilin, A. Toward the next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Jin, R.; Si, L.; Zhai, C. A Study of Mixture Models for Collaborative Filtering. Inf. Retr. Boston. 2006, 9, 357–382. [Google Scholar] [CrossRef]
- Belk, M.; Papatheocharous, E.; Germanakos, P.; Samaras, G. Modeling Users on the World Wide Web Based on Cognitive Factors, Navigation Behavior and Clustering Techniques. J. Syst. Softw. 2013, 86, 2995–3012. [Google Scholar] [CrossRef]
- Eirinaki, M.; Vazirgiannis, M. Web Mining for Web Personalization. ACM Trans. Internet Technol. 2003, 3, 1–27. [Google Scholar] [CrossRef]
- Jalan, A.; Matkovskyy, R.; Urquhart, A.; Yarovaya, L. The Role of Interpersonal Trust in Cryptocurrency Adoption. J. Int. Financ. Mark. Inst. Money 2023, 83, 101715. [Google Scholar] [CrossRef]
- Mair, P.; Treiblmaier, H.; Lowry, P.B. Using Multistage Competing Risks Approaches to Model Web Page Transitions. Internet Res. 2017, 27, 650–669. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, T.; Li, A.; Zhang, F.; Xu, X. Web Behavior and Personality: A Review. In Proceedings of the 2011 3rd Symposium on Web Society, Port Elizabeth, South Africa, 26–28 October 2011. [Google Scholar]
- Thakur, N.; Hall, I.; Han, C.Y. A Comprehensive Study to Analyze Trends in Web Search Interests Related to Fall Detection before and after COVID-19. In Proceedings of the 2022 5th International Conference on Computer Science and Software Engineering (CSSE 2022), New York, NY, USA, 21–23 October 2022. [Google Scholar]
- Cervellin, G.; Comelli, I.; Lippi, G. Is Google Trends a Reliable Tool for Digital Epidemiology? Insights from Different Clinical Settings. J. Epidemiol. Glob. Health 2017, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Bi, D.; Xie, G.; Jin, Y.; Huang, Y.; Lin, B.; An, X.; Feng, D.; Tong, Y. Dynamic Forecasting of Zika Epidemics Using Google Trends. PLoS ONE 2017, 12, e0165085. [Google Scholar] [CrossRef]
- Jun, S.-P.; Yoo, H.S.; Choi, S. Ten Years of Research Change Using Google Trends: From the Perspective of Big Data Utilizations and Applications. Technol. Forecast. Soc. Chang. 2018, 130, 69–87. [Google Scholar] [CrossRef]
- Lippi, G.; Mattiuzzi, C.; Cervellin, G.; Favaloro, E.J. Direct Oral Anticoagulants: Analysis of Worldwide Use and Popularity Using Google Trends. Ann. Transl. Med. 2017, 5, 322. [Google Scholar] [CrossRef]
- Quintanilha, L.F.; Souza, L.N.; Sanchez, D.; Demarco, R.S.; Fukutani, K.F. The Impact of Cancer Campaigns in Brazil: A Google Trends Analysis. Ecancermedicalscience 2019, 13, 963. [Google Scholar] [CrossRef]
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The Use of Google Trends in Health Care Research: A Systematic Review. PLoS ONE 2014, 9, e109583. [Google Scholar] [CrossRef]
- Dreher, P.C.; Tong, C.; Ghiraldi, E.; Friedlander, J.I. Use of Google Trends to Track Online Behavior and Interest in Kidney Stone Surgery. Urology 2018, 121, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting Influenza Epidemics Using Search Engine Query Data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Kapitány-Fövény, M.; Ferenci, T.; Sulyok, Z.; Kegele, J.; Richter, H.; Vályi-Nagy, I.; Sulyok, M. Can Google Trends Data Improve Forecasting of Lyme Disease Incidence? Zoonoses Public Health 2019, 66, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Kishore, K.; Kumar, M.; Sondh, A.R.; Aggarwal, G.; Kathirvel, S. Google Search Trends Predicting Disease Outbreaks: An Analysis from India. Healthc. Inform. Res. 2018, 24, 300. [Google Scholar] [CrossRef] [PubMed]
- Young, S.D.; Torrone, E.A.; Urata, J.; Aral, S.O. Using Search Engine Data as a Tool to Predict Syphilis. Epidemiology 2018, 29, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Young, S.D.; Zhang, Q. Using Search Engine Big Data for Predicting New HIV Diagnoses. PLoS ONE 2018, 13, e0199527. [Google Scholar] [CrossRef] [PubMed]
- Morsy, S.; Dang, T.N.; Kamel, M.G.; Zayan, A.H.; Makram, O.M.; Elhady, M.; Hirayama, K.; Huy, N.T. Prediction of Zika-Confirmed Cases in Brazil and Colombia Using Google Trends. Epidemiol. Infect. 2018, 146, 1625–1627. [Google Scholar] [CrossRef]
- Ortiz-Martínez, Y.; Garcia-Robledo, J.E.; Vásquez-Castañeda, D.L.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Can Google® Trends Predict COVID-19 Incidence and Help Preparedness? The Situation in Colombia. Travel Med. Infect. Dis. 2020, 37, 101703. [Google Scholar] [CrossRef]
- Vasconcellos-Silva, P.R.; Carvalho, D.B.F.; Trajano, V.; de La Rocque, L.R.; Sawada, A.C.M.B.; Juvanhol, L.L. Using Google Trends Data to Study Public Interest in Breast Cancer Screening in Brazil: Why Not a Pink February? JMIR Public Health Surveill. 2017, 3, e17. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Barberis, I.; Rosselli, R.; Gianfredi, V.; Nucci, D.; Moretti, M.; Salvatori, T.; Martucci, G.; Martini, M. How Often People Google for Vaccination: Qualitative and Quantitative Insights from a Systematic Search of the Web-Based Activities Using Google Trends. Hum. Vaccin. Immunother. 2017, 13, 464–469. [Google Scholar] [CrossRef]
- Tkachenko, N.; Chotvijit, S.; Gupta, N.; Bradley, E.; Gilks, C.; Guo, W.; Crosby, H.; Shore, E.; Thiarai, M.; Procter, R.; et al. Google Trends Can Improve Surveillance of Type 2 Diabetes. Sci. Rep. 2017, 7, 4993. [Google Scholar] [CrossRef] [PubMed]
- Carrière-Swallow, Y.; Labbé, F. Nowcasting with Google Trends in an Emerging Market: Nowcasting with Google Trends in an Emerging Market. J. Forecast. 2013, 32, 289–298. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. A Human-Human Interaction-Driven Framework to Address Societal Issues. In Human Interaction, Emerging Technologies and Future Systems V; Springer International Publishing: Cham, Switzerland, 2022; pp. 563–571. ISBN 9783030855390. [Google Scholar]
- Thakur, N.; Han, C.Y. Google Trends to Investigate the Degree of Global Interest Related to Indoor Location Detection. In Human Interaction, Emerging Technologies and Future Systems V; Springer International Publishing: Cham, Switzerland, 2022; pp. 580–588. ISBN 9783030855390. [Google Scholar]
- Kao, Y.-S. Do People Use ChatGPT to Replace Doctor? A Google Trends Analysis. Ann. Biomed. Eng. 2023. [Google Scholar] [CrossRef] [PubMed]
- Aslanidis, N.; Bariviera, A.F.; López, Ó.G. The Link between Cryptocurrencies and Google Trends Attention. Fin. Res. Lett. 2022, 47, 102654. [Google Scholar] [CrossRef]
- Arezooji, D.M. A Big Data Analysis of the Ethereum Network: From Blockchain to Google Trends. arXiv 2021, arXiv:2104.01764. [Google Scholar]
- Padhi, S.S.; Pati, R.K. Quantifying Potential Tourist Behavior in Choice of Destination Using Google Trends. Tour. Manag. Perspect. 2017, 24, 34–47. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. An Intelligent Ubiquitous Activity Aware Framework for Smart Home. In Human Interaction, Emerging Technologies and Future Applications III; Springer International Publishing: Cham, Switzerland, 2021; pp. 296–302. ISBN 9783030553067. [Google Scholar]
- Tran, U.S.; Andel, R.; Niederkrotenthaler, T.; Till, B.; Ajdacic-Gross, V.; Voracek, M. Low Validity of Google Trends for Behavioral Forecasting of National Suicide Rates. PLoS ONE 2017, 12, e0183149. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Han, C.Y. Indoor Localization for Personalized Ambient Assisted Living of Multiple Users in Multi-Floor Smart Environments. Big Data Cogn. Comput. 2021, 5, 42. [Google Scholar] [CrossRef]
- Sampri, A.; Mavragani, A.; Tsagarakis, K.P. Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA. Procedia Eng. 2016, 162, 585–592. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. Pervasive Activity Logging for Indoor Localization in Smart Homes. In Proceedings of the 2021 4th International Conference on Data Science and Information Technology, Shanghai, China, 23–25 July 2021. [Google Scholar]
- Li, Y. How Is Data Visualization Shaping Our Life? The Application of Analytics from Google Trends during the Epidemic of COVID-19. In Studies in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–239. ISBN 9783030766313. [Google Scholar]
- Thakur, N.; Han, C.Y. An Approach for Detection of Walking Related Falls during Activities of Daily Living. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020. [Google Scholar]
- Kupfer, A.; Puhr, H. The Russian View on the War in Ukraine: Insights from Google Trends. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Artyukhov, A.; Barvinok, V.; Rehak, R.; Matvieieva, Y.; Lyeonov, S. Dynamics of Interest in Higher Education before and during Ongoing War: Google Trends Analysis. Knowl. Perform. Manag. 2023, 7, 47–63. [Google Scholar] [CrossRef]
- Dolkar, T.; Gowda, S.; Chatterjee, S. Cardiac Symptoms during the Russia-Ukraine War: A Google Trends Analysis. Cureus 2023, 15, e36676. [Google Scholar] [CrossRef] [PubMed]
- Faugère, C.; Gergaud, O. Business Ethics Searches: A Socioeconomic and Demographic Analysis of U.S. Google Trends in the Context of the 2008 Financial Crisis: Faugere and Gergaud. Bus. Ethics 2017, 26, 271–287. [Google Scholar] [CrossRef]
- Gao, J.; Xing, D.; Li, J.; Li, T.; Huang, C.; Wang, W. Is Robotic Assistance More Eye-Catching than Computer Navigation in Joint Arthroplasty? A Google Trends Analysis from the Point of Public Interest. J. Robot. Surg. 2023, 17, 2167–2176. [Google Scholar] [CrossRef]
- Thakur, N.; Han, C.Y. A Multimodal Approach for Early Detection of Cognitive Impairment from Tweets. In Human Interaction, Emerging Technologies and Future Systems V; Springer International Publishing: Cham, Switzerland, 2022; pp. 11–19. ISBN 9783030855390. [Google Scholar]
- Krishnan, N.; Anand, S.; Sandlas, G. Evaluating the Impact of COVID-19 Pandemic on Public Interest in Minimally Invasive Surgery: An Infodemiology Study Using Google Trends. Cureus 2021, 13, e18848. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Han, C.Y. A Framework for Prediction of Cramps during Activities of Daily Living in Elderly. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020. [Google Scholar]
- Google Trends. Available online: https://trends.google.com/trends/ (accessed on 18 August 2023).
- Mavragani, A.; Ochoa, G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill. 2019, 5, e13439. [Google Scholar] [CrossRef] [PubMed]
- Arora, V.S.; McKee, M.; Stuckler, D. Google Trends: Opportunities and Limitations in Health and Health Policy Research. Health Policy 2019, 123, 338–341. [Google Scholar] [CrossRef]
- Mulero, R.; García-Hiernaux, A. Forecasting Spanish Unemployment with Google Trends and Dimension Reduction Techniques. SERIEs 2021, 12, 329–349. [Google Scholar] [CrossRef]
- IEEE DataPort. Available online: https://ieee-dataport.org/ (accessed on 18 August 2023).
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Slenter, D.N.; Kutmon, M.; Hanspers, K.; Riutta, A.; Windsor, J.; Nunes, N.; Mélius, J.; Cirillo, E.; Coort, S.L.; Digles, D.; et al. WikiPathways: A Multifaceted Pathway Database Bridging Metabolomics to Other Omics Research. Nucleic Acids Res. 2018, 46, D661–D667. [Google Scholar] [CrossRef] [PubMed]
- Banda, J.M.; Tekumalla, R.; Wang, G.; Yu, J.; Liu, T.; Ding, Y.; Artemova, E.; Tutubalina, E.; Chowell, G. A Large-Scale COVID-19 Twitter Chatter Dataset for Open Scientific Research—An International Collaboration. Epidemiologia 2021, 2, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N. A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave. Data 2022, 7, 109. [Google Scholar] [CrossRef]
- Thakur, N. MonkeyPox2022Tweets: A Large-Scale Twitter Dataset on the 2022 Monkeypox Outbreak, Findings from Analysis of Tweets, and Open Research Questions. Infect. Dis. Rep. 2022, 14, 855–883. [Google Scholar] [CrossRef] [PubMed]
- Gjerding, M.N.; Taghizadeh, A.; Rasmussen, A.; Ali, S.; Bertoldo, F.; Deilmann, T.; Knøsgaard, N.R.; Kruse, M.; Larsen, A.H.; Manti, S.; et al. Recent Progress of the Computational 2D Materials Database (C2DB). 2D Mater. 2021, 8, 044002. [Google Scholar] [CrossRef]
- Kearnes, S.M.; Maser, M.R.; Wleklinski, M.; Kast, A.; Doyle, A.G.; Dreher, S.D.; Hawkins, J.M.; Jensen, K.F.; Coley, C.W. The Open Reaction Database. J. Am. Chem. Soc. 2021, 143, 18820–18826. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; et al. RCSB Protein Data Bank: Enabling Biomedical Research and Drug Discovery. Protein Sci. 2020, 29, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; De Silva, N.; Martinez, M.C.; Pedro, H.; Yates, A.D.; et al. PHI-Base: The Pathogen–Host Interactions Database. Nucleic Acids Res. 2019, 48, D613–D620. [Google Scholar] [CrossRef]
- Johnson, A.K.; Mehta, S.D. A Comparison of Internet Search Trends and Sexually Transmitted Infection Rates Using Google Trends. Sex. Transm. Dis. 2014, 41, 61–63. [Google Scholar] [CrossRef]
- Fazeli Dehkordy, S.; Carlos, R.C.; Hall, K.S.; Dalton, V.K. Novel Data Sources for Women’s Health Research. Acad. Radiol. 2014, 21, 1172–1176. [Google Scholar] [CrossRef]
- Husnayain, A.; Fuad, A.; Lazuardi, L. Correlation between Google Trends on Dengue Fever and National Surveillance Report in Indonesia. Glob. Health Action 2019, 12, 1552652. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guerra, A.; Wittke, F.; Lang, J.C.; Bakker, K.; Lee, A.W.; Finelli, L.; Chen, Y.-H. Real-Time Monitoring of Infectious Disease Outbreaks with a Combination of Google Trends Search Results and the Moving Epidemic Method: A Respiratory Syncytial Virus Case Study. Trop. Med. Infect. Dis. 2023, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.H.; Sahai, V.; Conrad, C.; Brownstein, J.S. Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance. PLoS Negl. Trop. Dis. 2011, 5, e1206. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J. Summary of Avian Influenza Activity in Europe, Asia, Africa, and Australasia, 2002–2006. Avian Dis. 2007, 51, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.I.; Nguyen, T.; Wing, C.; Lozano-Rojas, F.; Ahn, Y.-Y.; Simon, K. Evidence from Internet Search Data Shows Information-Seeking Responses to News of Local COVID-19 Cases. Proc. Natl. Acad. Sci. USA 2020, 117, 11220–11222. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Han, C. An Exploratory Study of Tweets about the SARS-CoV-2 Omicron Variant: Insights from Sentiment Analysis, Language Interpretation, Source Tracking, Type Classification, and Embedded URL Detection. COVID 2022, 2, 1026–1049. [Google Scholar] [CrossRef]
- Abeynayake, A.D.L.; Sunethra, A.A.; Deshani, K.A.D. A Stylometric Approach for Reliable News Detection Using Machine Learning Methods. In Proceedings of the 2022 22nd International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 30 November–1 December 2022. [Google Scholar]
- Health Ministry Says on High Alert for Any Possible Existence of ‘Disease X’ in Malaysia. Available online: https://www.theborneopost.com/2023/09/30/health-ministry-says-on-high-alert-for-any-possible-existence-of-disease-x-in-malaysia/ (accessed on 3 October 2023).
- Explainers, F.P. “Deadlier than COVID”: How Dangerous Is Disease X? Available online: https://www.firstpost.com/explainers/deadlier-than-covid-how-dangerous-is-disease-x-13192892.html (accessed on 3 October 2023).
- Live “Disease X” Could Be 20 Times Deadlier than COVID-19, Says Expert. Top 10 Updates. Available online: https://www.livemint.com/science/health/disease-x-could-be-20-times-deadlier-than-covid-19-says-expert-top-10-updates-11695606507951.html (accessed on 3 October 2023).
- Vats, V. What Is Disease X? It Could Bring the next Pandemic, Says Expert. Available online: https://www.ndtv.com/health/what-is-disease-x-it-could-bring-the-next-pandemic-deadlier-than-covid-19-says-expert-4424840 (accessed on 3 October 2023).
List of Regions |
---|
Singapore, Haiti, Honduras, El Salvador, Madagascar, Panama, Bolivia, Reunion, Guatemala, Cuba, United Arab Emirates, Paraguay, Nicaragua, Hong Kong, Macao, Qatar, United Kingdom, Brunei, Ecuador, Uruguay, Oman, Bahrain, Ireland, Kuwait, Costa Rica, Argentina, India, Puerto Rico, Venezuela, France, St. Helena, Brazil, Mexico, Côte d’Ivoire, Peru, Canada, Australia, Zimbabwe, Colombia, United States, Luxembourg, Lebanon, Ghana, Algeria, New Zealand, Portugal, Malaysia, Myanmar (Burma), Ethiopia, Dominican Republic, China, Chile, Nepal, Belgium, Iraq, Taiwan, South Africa, Tunisia, Sri Lanka, Thailand, Switzerland, Spain, Bangladesh, Saudi Arabia, Kenya, South Korea, Germany, Norway, Pakistan, Indonesia, Hungary, Morocco, Austria, Israel, Nigeria, Bulgaria, Philippines, Netherlands, Denmark, Greece, Italy, Jordan, Egypt, Sweden, Finland, Czechia, Romania, Poland, Iran, Türkiye, Russia, Vietnam, Ukraine, Japan |
Attribute Name | Description | Range | Datatype |
---|---|---|---|
Month | Represents each month between February 2018 and August 2023 | February 2018–August 2023 | Date |
Disease X: (Singapore) | Search Interest Data about Disease X from Singapore | 0–100 | Numerical |
Disease X: (Honduras) | Search Interest Data about Disease X from Honduras | 0–100 | Numerical |
Disease X: (Haiti) | Search Interest Data about Disease X from Haiti | 0–100 | Numerical |
Disease X: (Nicaragua) | Search Interest Data about Disease X from Nicaragua | 0–100 | Numerical |
Disease X: (Guatemala) | Search Interest Data about Disease X from Guatemala | 0–100 | Numerical |
Disease X: (El Salvador) | Search Interest Data about Disease X from El Salvador | 0–100 | Numerical |
Disease X: (Brunei) | Search Interest Data about Disease X from Brunei | 0–100 | Numerical |
Disease X: (Panama) | Search Interest Data about Disease X from Panama | 0–100 | Numerical |
. | . | . | . |
. | . | . | . |
. | . | . | . |
Disease X: (Japan) | Search Interest Data about Disease X from Japan | 0–100 | Numerical |
Disease X: (Ukraine) | Search Interest Data about Disease X from Ukraine | 0–100 | Numerical |
Disease X: (Vietnam) | Search Interest Data about Disease X from Vietnam | 0–100 | Numerical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakur, N.; Cui, S.; Patel, K.A.; Hall, I.; Duggal, Y.N. A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions. Data 2023, 8, 163. https://doi.org/10.3390/data8110163
Thakur N, Cui S, Patel KA, Hall I, Duggal YN. A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions. Data. 2023; 8(11):163. https://doi.org/10.3390/data8110163
Chicago/Turabian StyleThakur, Nirmalya, Shuqi Cui, Kesha A. Patel, Isabella Hall, and Yuvraj Nihal Duggal. 2023. "A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions" Data 8, no. 11: 163. https://doi.org/10.3390/data8110163
APA StyleThakur, N., Cui, S., Patel, K. A., Hall, I., & Duggal, Y. N. (2023). A Large-Scale Dataset of Search Interests Related to Disease X Originating from Different Geographic Regions. Data, 8(11), 163. https://doi.org/10.3390/data8110163