Can We Mathematically Spot the Possible Manipulation of Results in Research Manuscripts Using Benford’s Law?
Abstract
:1. Introduction
2. Statistical Operators of Benford’s Law
3. Experimental Setup
3.1. Performance Evaluation
3.2. Sensitivity Analysis
3.3. Economic Manuscripts Use Case
4. Results
4.1. Performance Evaluation
4.2. Sensitivity Analysis
4.3. Economic Manuscripts Use Case
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franzen, M. Science Between Trust and Control: Non-Reproducibility in Scholarly Publishing. In Reproducibility; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; Chapter 22; pp. 467–485. [Google Scholar]
- Fanelli, D. Do Pressures to Publish Increase Scientists’ Bias? An Empirical Support from US States Data. PLoS ONE 2010, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lamb, S.E.; Bagg, M.K.; Toomey, E.; Cashin, A.G.; Moseley, G.L. Reproducible and replicable pain research: A critical review. Pain 2018, 159, 1683–1689. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.C.; Fischer, S.; Weiner, B.J.; Stanick, C.; Kim, M.; Martinez, R.G. Outcomes for implementation science: An enhanced systematic review of instruments using evidence-based rating criteria. Implement. Sci. 2015, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Roberts, P.; Priest, H. Reliability and validity in research. Nurs. Stand. 2006, 20. [Google Scholar] [CrossRef]
- Frederickson, R.M.; Herzog, R.W. Keeping Them Honest: Fighting Fraud in Academic Publishing. Mol. Ther. 2021, 29, 889–890. [Google Scholar] [CrossRef]
- da Silba, J.A.T.; Vuong, Q.H. Do Legitimate Publishers Benefit or Profit from Error, Misconduct or Fraud? Exch. Interdiscip. Res. J. 2021, 8, 55–68. [Google Scholar]
- Gu, J.; Wang, X.; Li, C.; Zhao, J.; Fu, W.; Liang, G.; Qiu, J. AI-enabled image fraud in scientific publications. Patterns 2022, 3, 100511. [Google Scholar] [CrossRef]
- Free, C. Looking through the fraud triangle: A review and call for new directions. Meditari Account. Res. 2015, 23, 175–196. [Google Scholar] [CrossRef]
- Bergh, D.D.; Sharp, B.M.; Aguinis, H.; Li, M. Is there a credibility crisis in strategic management research? Evidence on the reproducibility of study findings. Strateg. Organ. 2017, 15, 423–436. [Google Scholar] [CrossRef]
- Chambers, L.M.; Michener, C.M.; Falcone, T. Plagiarism and data falsification are the most common reasons for retracted publications in obstetrics and gynaecology. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 1134–1140. [Google Scholar] [CrossRef]
- Brainard, J.; You, J. What a Massive Database of Retracted Papers Reveals about Science Publishing’s ‘Death Penalty’. 2018. Available online: https://www.science.org/content/article/what-massive-database-retracted-papers-reveals-about-science-publishing-s-death-penalty (accessed on 29 May 2023).
- Misra, D.P.; Ravindran, V. Peer review in academic publishing: Threats and challenges. J. R. Coll. Physicians Edinb. 2019, 49, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Sadeghieh, T.; Adeli, K. Peer Review in Scientific Publications: Benefits, Critiques, & A Survival Guide. EJIFCC 2013, 25, 227–243. [Google Scholar]
- Walker, N.; Holtfreter, K. Applying criminological theory to academic fraud. J. Financ. Crime 2015, 22. [Google Scholar] [CrossRef]
- Horbach, S.P.J.M.; Halffman, W. The changing forms and expectations of peer review. Res. Integr. Peer Rev. 2018, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Karabag, S.F.; Berggren, C. Retraction, Dishonesty and Plagiarism: Analysis of a Crucial Issue for Academic Publishing, and the Inadequate Responses from Leading Journals in Economics and Management Disciplines. J. Appl. Econ. Bus. Res. 2012, 2, 172–183. [Google Scholar]
- Muhsin, M.; Kardoyo, M.; Arief, S.; Nurkhin, A.; Pramusinto, H. An Analyis of Student’s Academic Fraud Behavior. In Proceedings of the International Conference on Learning Innovation (ICLI 2017); Atlantis Press: Amsterdam, The Netherlands, 2017; pp. 34–38. [Google Scholar]
- Wible, J.R. Fraud in Science An Economic Approach. Philos. Soc. Sci. 1992, 22, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.L.D.; Rieger, M.O.; Wang, M.; Berens, D.; Bui, D.L.; Chen, H.L.; Emering, T.P.; Geng, S.; Liu-Gerhards, Y.; Neumann, T.; et al. Cheating, Trust and Social Norms: Data from Germany, Vietnam, China, Taiwan, and Japan. Data 2022, 7, 137. [Google Scholar] [CrossRef]
- Stehbens, W.E. Basic philosophy and concepts underlying scientific peer review. Med. Hypotheses 1999, 52, 31–36. [Google Scholar] [CrossRef]
- Cokol, M.; Ozbay, F.; Rodriguez-Esteban, R. Retraction rates are on the rise. EMBO Rep. 2008, 9, 2. [Google Scholar] [CrossRef]
- Fang, F.C.; Casadevall, A. Retracted Science and the Retraction Index. Infect. Immun. 2011, 79, 3855–3859. [Google Scholar] [CrossRef]
- Triggle, C.R.; Triggle, D.J. What is the future of peer review? Why is there fraud in science? Is plagiarism out of control? Why do scientists do bad things? Is it all a case of:“All that is necessary for the triumph of evil is that good men do nothing?”. Vasc. Health Risk Manag. 2007, 3, 39–53. [Google Scholar] [PubMed]
- Faintuch, J.; Faintuch, S. Past and Current Status of Scientific, Academic, and Research Fraud. In Integrity of Scientific Research: Fraud, Misconduct and Fake News in the Academic, Medical and Social Environment; Faintuch, J., Faintuch, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 3–8. [Google Scholar]
- Chan, P. An Empirical Study on Data Validation Methods of Delphi and General Consensus. Data 2022, 7, 18. [Google Scholar] [CrossRef]
- Durtschi, C.; Hillison, W.; Pacini, C. The Effective Use of Benford’s Law to Assist in Detecting Fraud in Accounting Data. J. Forensic Account. 2004, 5, 17–34. [Google Scholar]
- Drake, P.D.; Nigrini, M.J. Computer assisted analytical procedures using Benford’s Law. J. Account. Educ. 2000, 18, 127–146. [Google Scholar] [CrossRef]
- Mbona, I.; Eloff, J.H.P. Feature selection using Benford’s law to support detection of malicious social media bots. Inf. Sci. 2022, 582, 369–381. [Google Scholar] [CrossRef]
- Horton, J.; Krishna Kumar, D.; Wood, A. Detecting academic fraud using Benford law: The case of Professor James Hunton. Res. Policy 2020, 49, 104084. [Google Scholar] [CrossRef]
- Todter, K.H. Benford’s Law as an Indicator of Fraud in Economics. Ger. Econ. Rev. 2019, 10, 339–351. [Google Scholar] [CrossRef]
- Piwowar, H.A. Who Shares? Who Doesn’t? Factors Associated with Openly Archiving Raw Research Data. PLoS ONE 2011, 6, e18657. [Google Scholar] [CrossRef]
- Miyakawa, T. No raw data, no science: Another possible source of the reproducibility crisis. Mol. Brain 2020, 13, 24. [Google Scholar] [CrossRef]
- Diekmann, A. Not the First Digit! Using Benford’s Law to Detect Fraudulent Scientif ic Data. J. Appl. Stat. 2007, 34, 321–329. [Google Scholar] [CrossRef]
- Günnel, S.; Tödter, K.H. Does Benford’s Law hold in economic research and forecasting? Empirica 2009, 36, 273–292. [Google Scholar] [CrossRef]
- Massey, F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Nigrini, M. Benford’s Law: Applications for Forensic Accounting, Auditing, and Fraud Detection; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Bauer, J.; Gross, J. Difficulties detecting fraud? The use of Benford’s law on regression tables. Jahrb. Nat. Stat. 2011, 231, 733–748. [Google Scholar]
- Nix, D.; Weigend, A. Estimating the mean and variance of the target probability distribution. In Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94), Orlando, FL, USA, 28 June 1994–2 July 1994; Volume 1, pp. 55–60. [Google Scholar]
- Lerman, P.M. Fitting Segmented Regression Models by Grid Search. J. R. Stat. Soc. Ser. C Appl. Stat. 2018, 29, 77–84. [Google Scholar] [CrossRef]
- Srinath, K.R. Python—The Fastest Growing Programming Language. Int. Res. J. Eng. Technol. 2017, 4, 354–357. [Google Scholar]
- Lazebnik, T.; Fleischer, T.; Yaniv-Rosenfeld, A. Benchmarking Biologically-inspired Automatic Machine Learning for Economic Tasks. Sustainability 2023, 15, 11232. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kouranos, V.D.; Arencibia-Jorge, R.; Karageorgopoulos, D.E. Comparison of SCImago journal rank indicator with journal impact factor. FASEB J. 2008, 22, 2623–2628. [Google Scholar] [CrossRef]
- Gomez-Nunez, A.; Vargas-Quesada, B.; Chinchilla-Rodríguez, Z.; Batagelj, V.; Moya-Anegon, F. Visualization and analysis of SCImago Journal & Country Rank structure via journal clustering. Aslib J. Inf. Manag. 2016, 68, 607–627. [Google Scholar]
- Manana-Rodríguez, J. A critical review of SCImago Journal & Country Rank. Res. Eval. 2014, 24, 343–354. [Google Scholar]
- Niskanen, J.; Keloharju, M. Earnings cosmetics in a tax-driven accounting environment: Evidence from Finnish public firms. Eur. Account. Rev. 2000, 9, 443–452. [Google Scholar] [CrossRef]
- Batchelor, R. How useful are the forecasts of intergovernmental agencies? The IMF and OECD versus the consensus. Appl. Econ. 2001, 33, 225–235. [Google Scholar] [CrossRef]
- Druica, E.; Oancea, B.; Valsan, C. Benford’s law and the limits of digit analysis. Int. J. Account. Inf. Syst. 2018, 31, 75–82. [Google Scholar] [CrossRef]
- Morrow, J. Benford’s Law, Families of Distributions and a Test Bias CEP Discussion. 2014; p.1291. Available online: https://cep.lse.ac.uk/_new/publications/abstract.asp?index=4486 (accessed on 24 October 2023).
- List, J.A.; Bailey, C.; Euzent, P.; Martin, T. Academic economists behaving badly? A survey on three areas of unethical behavior. Econ. Inq. 2001, 39, 162–170. [Google Scholar] [CrossRef]
- Necker, S. Scientific misbehavior in economics. Res. Policy 2014, 43, 1747–1759. [Google Scholar] [CrossRef]
- Shukla, A.; Pandey, A.K.; Pathak, A. Benford’s Distribution in Extrasolar World: Do the Exoplanets Follow Benford’s Distribution? J. Astrophys. Astron. 2017, 38, 7. [Google Scholar] [CrossRef]
- Barabesi, L.; Cerioli, A.; Perrotta, D. Forum on Benford’s law and statistical methods for the detection of frauds. Stat. Methods Appl. 2021, 30, 767–778. [Google Scholar] [CrossRef]
- Granick, J.S. The Price of Restricting Vulnerability Publications. Int. J. Commun. Law Policy 2005, 9, 1. [Google Scholar]
Positive | Negative | Total | |
---|---|---|---|
Positive | 43 | 7 | 50 |
Negative | 14 | 36 | 50 |
Total | 57 | 43 | 100 |
Positive | Negative | Total | |
---|---|---|---|
Positive | 18 | 19 | 37 |
Negative | 0 | 0 | 0 |
Total | 18 | 19 | 37 |
Confidence level | 90% | 92% | 94% | 96% | 98% |
---|---|---|---|---|---|
Flagged manuscripts | 12 | 8 | 6 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazebnik, T.; Gorlitsky, D. Can We Mathematically Spot the Possible Manipulation of Results in Research Manuscripts Using Benford’s Law? Data 2023, 8, 165. https://doi.org/10.3390/data8110165
Lazebnik T, Gorlitsky D. Can We Mathematically Spot the Possible Manipulation of Results in Research Manuscripts Using Benford’s Law? Data. 2023; 8(11):165. https://doi.org/10.3390/data8110165
Chicago/Turabian StyleLazebnik, Teddy, and Dan Gorlitsky. 2023. "Can We Mathematically Spot the Possible Manipulation of Results in Research Manuscripts Using Benford’s Law?" Data 8, no. 11: 165. https://doi.org/10.3390/data8110165
APA StyleLazebnik, T., & Gorlitsky, D. (2023). Can We Mathematically Spot the Possible Manipulation of Results in Research Manuscripts Using Benford’s Law? Data, 8(11), 165. https://doi.org/10.3390/data8110165