Draft Genome Sequence Data of Lysinibacillus sphaericus Strain 1795 with Insecticidal Properties
Abstract
:1. Summary
2. Data Description
2.1. Isolation of Lysinibacillus sphaericus Strain 1795 and Characterization of Its Morphology and Insecticidal Activity
2.2. Genome Assembly and Annotation
3. Methods
3.1. DNA Extraction
3.2. DNA Quality Control
3.3. Whole Genome Sequencing, De Novo Genome Assembly, and Annotation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berry, C. The Bacterium, Lysinibacillus sphaericus, as an Insect Pathogen. J. Invertebr. Pathol. 2012, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kellen, W.R.; Clark, T.B.; Lindegren, J.E.; Ho, B.C.; Rogoff, M.H.; Singer, S. Bacillus sphaericus Neide as a Pathogen of Mosquitoes. J. Invertebr. Pathol. 1965, 7, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Silva Filha, M.H.N.L.; Berry, C.; Regis, L. Lysinibacillus sphaericus: Toxins Mode of Action, Applications for Mosquito Control and Resistance Management. In Advances in Insect Physiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 89–176. ISBN 9780128001974. [Google Scholar]
- Priest, F.G. Biological Control of Mosquitoes and Other Biting Flies by Bacillus sphaericus and Bacillus thuringiensis. J. Appl. Bacteriol. 1992, 72, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Charles, J.-F.; Nielson-LeRoux, C.; Delécluse, A. Bacillus sphaericus Toxins: Molecular Biology and Mode of Action. Annu. Rev. Entomol. 1996, 41, 451–472. [Google Scholar] [CrossRef] [PubMed]
- Onajobi, I.B.; Idowu, E.O.; Adeyemi, J.O.; Samson, O.J.; Ogunyinka, P.I.; Fagade, O.E. In Vitro Antibacterial Activities and Molecular Characterization of Bacterial Species Isolated from Farmlands against Selected Pathogens. Biotechnol. Rep. 2020, 27, e00513. [Google Scholar] [CrossRef]
- Nielsen-Leroux, C.; Charles, J.-F.; Thiery, I.; Georghiou, G.P. Resistance in a Laboratory Population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus Binary Toxin Is Due to a Change in the Receptor on Midgut Brush-Border Membranes. Eur. J. Biochem. 1995, 228, 206–210. [Google Scholar] [CrossRef]
- Hire, R.S.; Hadapad, A.B.; Dongre, T.K.; Kumar, V. Purification and Characterization of Mosquitocidal Bacillus sphaericus BinA Protein. J. Invertebr. Pathol. 2009, 101, 106–111. [Google Scholar] [CrossRef]
- Glare, T.R.; Jurat-Fuentes, J.-L.; O’Callaghan, M. Basic and Applied Research: Entomopathogenic Bacteria. In Microbial Control of Insect and Mite Pests; Elsevier: Amsterdam, The Netherlands, 2017; pp. 47–67. [Google Scholar]
- Wirth, M.C.; Georghiou, G.P.; Malik, J.I.; Abro, G.H. Laboratory Selection for Resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA. J. Med. Entomol. 2000, 37, 534–540. [Google Scholar] [CrossRef]
- Lozano, L.C.; Dussán, J. Metal Tolerance and Larvicidal Activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol. 2013, 29, 1383–1389. [Google Scholar] [CrossRef]
- Bertani, G. Studies on lysogenesis I. J. Bacteriol. 1951, 62, 293–300. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 4 May 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, J.; Bo, D.; Yu, Y.; Ye, W.; Peng, D.; Sun, M. BtToxin_Digger: A Comprehensive and High-Throughput Pipeline for Mining Toxin Protein Genes from Bacillus thuringiensis. Bioinformatics 2021, 38, 250–251. [Google Scholar] [CrossRef]
- Shikov, A.E.; Malovichko, Y.V.; Skitchenko, R.K.; Nizhnikov, A.A.; Antonets, K.S. No More Tears: Mining Sequencing Data for Novel Bt Cry Toxins with CryProcessor. Toxins 2020, 12, 204. [Google Scholar] [CrossRef]
- Panneerselvam, S.; Mishra, R.; Berry, C.; Crickmore, N.; Bonning, B.C. BPPRC Database: A Web-Based Tool to Access and Analyse Bacterial Pesticidal Proteins. Database 2022, 2022, baac022. [Google Scholar] [CrossRef] [PubMed]
- Hannigan, G.D.; Prihoda, D.; Palicka, A.; Soukup, J.; Klempir, O.; Rampula, L.; Durcak, J.; Wurst, M.; Kotowski, J.; Chang, D.; et al. A Deep Learning Genome-Mining Strategy for Biosynthetic Gene Cluster Prediction. Nucleic Acids Res. 2019, 47, e110. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. AntiSMASH 6.0: Improving Cluster Detection and Comparison Capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant Growth-Promoting Rhizobacteria (PGPR): Their Potential as Antagonists and Biocontrol Agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Vanittanakom, N.; Loeffler, W.; Koch, U.; Jung, G. Fengycin—A Novel Antifungal Lipopeptide Antibiotic Produced by Bacillus subtilis F-29-3. J. Antibiot. 1986, 39, 888–901. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial Siderophores and Their Potential Applications: A Review. Environ. Sci. Pollut. Res. 2016, 23, 3984–3999. [Google Scholar] [CrossRef]
- Saleem, F.; Shakoori, A. The First Cry2Ac-Type Protein Toxic to Helicoverpa armigera: Cloning and Overexpression of cry2ac7 Gene from SBS-BT1 Strain of Bacillus thuringiensis. Toxins 2017, 9, 358. [Google Scholar] [CrossRef]
- Spizizen, J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad. Sci. USA 1958, 44, 1072–1078. [Google Scholar] [CrossRef]
- Kriventseva, E.V.; Kuznetsov, D.; Tegenfeldt, F.; Manni, M.; Dias, R.; Simão, F.A.; Zdobnov, E.M. OrthoDB V10: Sampling the Diversity of Animal, Plant, Fungal, Protist, Bacterial and Viral Genomes for Evolutionary and Functional Annotations of Orthologs. Nucleic Acids Res. 2019, 47, D807–D811. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.-L.; LoCascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Agarwala, R.; Barrett, T.; Beck, J.; Benson, D.A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J.R.; Bryant, S.H.; Canese, K.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef]
Total amount of contigs | 23 |
Largest contig (number of nucleotides) | 1,459,849 |
Total length (number of nucleotides) | 4,737,839 |
GC-content (%) | 37 |
N50 value | 1,336,327 |
N90 value | 144,621 |
L50 value | 2 |
L90 value | 9 |
Number of properly paired reads (%) | 99.09 |
Average depth of coverage | 226 |
Assembly completeness (%) | 99.34 |
Suspected contamination (%) | 0.99 |
Database | Bacillales_Odb10 | Bacilli_Odb10 |
---|---|---|
Single-copy orthologues assembled completely | 449 (99.8%) | 302 (100.0%) |
Orthologues present in one copy | 445 (98.9%) | 301 (99.7%) |
Multi-copies orthologues | 4 (0.9%) | 1 (0.3%) |
Fragmented sequences | 0 (0.0%) | 0 (0.0%) |
Orthologues missing from the assembly | 1 (0.2%) | 0 (0.0%) |
Total number of single-copy orthologues in the database | 450 | 302 |
NCBI RefSeq Assembly | Taxon | ANI |
---|---|---|
GCF_001598075.1 | L. sphaericus | 99.9977 |
GCF_001581875.1 | L. sphaericus | 99.997 |
GCF_015335425.1 | L. sphaericus | 99.9962 |
GCF_000568835.1 | L. sphaericus | 99.9962 |
GCF_015845635.1 | L. sphaericus | 99.9956 |
GCF_015845625.1 | L. fusiformis | 99.995 |
GCF_024753545.1 | L. sphaericus | 99.9947 |
GCF_015845595.1 | L. sphaericus | 99.9942 |
GCF_001629735.1 | L. sphaericus | 99.9705 |
GCF_001623495.1 | L. sphaericus | 99.9702 |
Toxin | Percent of Identity | Target Order | Target Species |
---|---|---|---|
Mtx1Aa1 | 98.5 | Diptera | Aedes aegypti, Chironomus riparius, Culex quinquefasciatus, Toxorhynchites splendens |
Mpp3Aa1 | 100 | Diptera | Aedes aegypti, Culex quinquefasciatus |
Tpp1Aa2 | 100 | Diptera | Aedes aegypti, Aedes atropalpus, Anopheles albimanus, Anopheles gambiae, Anopheles quadrimaculatus, Anopheles stephensi, Culex pipiens, Culex quinquefasciatus |
Tpp2Aa2 | 100 | Diptera | Aedes aegypti, Aedes atropalpus, Anopheles albimanus, Anopheles gambiae, Anopheles quadrimaculatus, Anopheles stephensi, Culex pipiens, Culex quinquefasciatus |
Spp1Aa1 | 100 | Lepidoptera | Spodoptera litura |
Blattodea | Blattella germanica |
Contig | Tool | Type/Activity | Location (Relative Coordinate, b.p.) | Most Similar Known Cluster | Similarity | Score |
---|---|---|---|---|---|---|
1 | antiSMASH | Terpene | 329,114–349,935 (total: 20,822) | – | – | – |
DeepBGC | Antibacterial | 561,520–562,288 (total: 768) | – | – | 0.87 | |
DeepBGC | Antibacterial | 1,323,667–1,325,923 (total: 2256) | – | – | 0.60 | |
2 | antiSMASH/DeepBGC | Siderophore/ Antibacterial | 345,655–359,195 (total: 13,541) | Petrobactin | 33% | 0.56 |
antiSMASH | Non-ribosomal peptide synthetase | 532,592–578,510 (total: 4519) | – | – | – | |
antiSMASH | Non-ribosomal peptide synthetase | 628,420–690,347 (total: 61,928) | Molybdenum cofactor | 23% | – | |
antiSMASH/DeepBGC | agrD-like cyclic lactone autoinducer peptides, linear azol(in)e-containing peptides, thiopeptide/ Antibacterial | 1,302,324–1,334,433 (total: 32,109) | – | – | 0.76 | |
DeepBGC | Antibacterial | 792,182–805,500 (total: 13,318) | – | – | 0.64 | |
DeepBGC | Antibacterial | 807,568–810,289 (total: 2721) | – | – | 0.56 | |
3 | antiSMASH | Type III PKS | 114,878–155,960 (total: 41,083) | – | – | – |
4 | antiSMASH | Beta-lactone containing protease inhibitor | 1–17,474 (total: 17,474) | Fengycin | 46% | – |
5 | antiSMASH | NRPS-like fragment | 15,196–58,363 (total: 43,168) | Kijanimicin | 4% | – |
6 | DeepBGC | Antibacterial | 192–1770 (total: 1578) | – | – | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanenko, M.N.; Nesterenko, M.A.; Shikov, A.E.; Nizhnikov, A.A.; Antonets, K.S. Draft Genome Sequence Data of Lysinibacillus sphaericus Strain 1795 with Insecticidal Properties. Data 2023, 8, 167. https://doi.org/10.3390/data8110167
Romanenko MN, Nesterenko MA, Shikov AE, Nizhnikov AA, Antonets KS. Draft Genome Sequence Data of Lysinibacillus sphaericus Strain 1795 with Insecticidal Properties. Data. 2023; 8(11):167. https://doi.org/10.3390/data8110167
Chicago/Turabian StyleRomanenko, Maria N., Maksim A. Nesterenko, Anton E. Shikov, Anton A. Nizhnikov, and Kirill S. Antonets. 2023. "Draft Genome Sequence Data of Lysinibacillus sphaericus Strain 1795 with Insecticidal Properties" Data 8, no. 11: 167. https://doi.org/10.3390/data8110167
APA StyleRomanenko, M. N., Nesterenko, M. A., Shikov, A. E., Nizhnikov, A. A., & Antonets, K. S. (2023). Draft Genome Sequence Data of Lysinibacillus sphaericus Strain 1795 with Insecticidal Properties. Data, 8(11), 167. https://doi.org/10.3390/data8110167