Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Bacteria Isolation and DNA Extraction
3.2. Genome Sequencing and Assembly
3.3. Plant-Growth Promotion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osdaghi, E.; Young, A.J.; Harveson, R.M. Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: A new threat from an old enemy. Mol. Plant Pathol. 2020, 21, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Evseev, P.; Lukianova, A.; Tarakanov, R.; Tokmakova, A.; Shneider, M.; Ignatov, A.; Miroshnikov, K. Curtobacterium spp. and Curtobacterium flaccumfaciens: Phylogeny, Genomics-Based Taxonomy, Pathogenicity, and Diagnostics. Curr. Issues Mol. Biol. 2022, 44, 889–927. [Google Scholar] [CrossRef] [PubMed]
- Pilik, R.I.; Tesic, S.; Ignatov, A.N.; Tarakanov, R.I.; Dorofeeva, L.V.; Lukianova, A.A.; Evseev, P.V.; Dzhalilov, F.S.; Miroshnikov, K.A. First Report of Curtobacterium flaccumfaciens pv. flaccumfaciens Causing Bacterial Wilt and Blight on Sunflower in Russia. Plant Dis. 2022, 107, 1261–1640. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.J.; Doherty, R.R.; Patel, M.; Hamblin, J.F.; Ojaimi, S.; Korman, T.M. Curtobacterium flaccumfaciens septic arthritis following puncture with a Coxspur Hawthorn thorn. J. Clin. Microbiol. 2011, 49, 2759–2760. [Google Scholar] [CrossRef] [PubMed]
- Mallick, P. A rare case of Curtobacterium flaccumfaciens infection in the eye: A case report. Trop. Med. Health 2022, 50, 64. [Google Scholar] [CrossRef] [PubMed]
- Raupach, G.S.; Kloepper, J.W. Biocontrol of Cucumber Diseases in the Field by Plant Growth-Promoting Rhizobacteria With and Without Methyl Bromide Fumigation. Plant Dis. 2000, 84, 1073–1075. [Google Scholar] [CrossRef]
- Cardinale, M.; Ratering, S.; Suarez, C.; Montoya, A.; Geissler-Plaum, R.; Schnell, S. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol. Res. 2015, 181, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Chebotar, V.K.; Gancheva, M.S.; Chizhevskaya, E.P.; Keleinikova, O.V.; Baganova, M.E.; Zaplatkin, A.N.; Husainov, K.A. Whole-Genome Sequence of Paenibacillus amylolyticus Strain W018, Isolated from Triticum aestivum L. Seeds, Obtained Using Nanopore Sequencing. Microbiol. Resour. Announc. 2022, 12, e0064722. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 2001, 56(1), 1–5. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019, 20, 129. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017, 27, 737–746. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Shi, W.; Sun, Q.; Fan, G.; Hideaki, S.; Moriya, O.; Itoh, T.; Zhou, Y.; Cai, M.; Kim, S.G.; Lee, J.S.; et al. gcType: A high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res. 2021, 49, D694–D705. [Google Scholar] [CrossRef] [PubMed]
Region | Type | From | To | Most Similar Known Cluster | Similarity | |
---|---|---|---|---|---|---|
Region 1 | Betalactone | 112,356 | 138,201 | Microansamycin | Polyketide | 7% |
Region 2 | NAPAA | 794,298 | 828,195 | Arginomycin | Other | 13% |
Region 3 | NRPS-like | 1,399,133 | 1,441,514 | Pepticinnamin E | NRP + polyketide | 12% |
Region 4 | T3PKS | 1,625,623 | 1,666,202 | Merochlorin | Terpene + polyketide: type III polyketide | 9% |
A/merochlorin | ||||||
B/deschloro-merochlorin | ||||||
A/deschloro-merochlorin | ||||||
B/isochloro-merochlorin | ||||||
B/dichloro-merochlorin | ||||||
B/merochlorin | ||||||
D/merochlorin C | ||||||
Region 5 | NI-siderophore | 2,005,682 | 2,017,316 | Desferrioxamine E | Other | 100% |
Region 6 | Butyrolactone | 2,475,794 | 2,486,471 | |||
Region 7 | Terpene | 2,721,328 | 2,742,182 | Carotenoid | Terpene | 28% |
Region 8 | T3PKS | 3,252,954 | 3,293,358 | Bottromycin A2 | RiPP: bottromycin | 6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebotar, V.K.; Gancheva, M.S.; Chizhevskaya, E.P.; Baganova, M.E.; Keleinikova, O.V.; Husainov, K.A.; Pishchik, V.N. Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004. Data 2023, 8, 187. https://doi.org/10.3390/data8120187
Chebotar VK, Gancheva MS, Chizhevskaya EP, Baganova ME, Keleinikova OV, Husainov KA, Pishchik VN. Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004. Data. 2023; 8(12):187. https://doi.org/10.3390/data8120187
Chicago/Turabian StyleChebotar, Vladimir K., Maria S. Gancheva, Elena P. Chizhevskaya, Maria E. Baganova, Oksana V. Keleinikova, Kharon A. Husainov, and Veronika N. Pishchik. 2023. "Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004" Data 8, no. 12: 187. https://doi.org/10.3390/data8120187
APA StyleChebotar, V. K., Gancheva, M. S., Chizhevskaya, E. P., Baganova, M. E., Keleinikova, O. V., Husainov, K. A., & Pishchik, V. N. (2023). Genome Sequence of the Plant-Growth-Promoting Endophyte Curtobacterium flaccumfaciens Strain W004. Data, 8(12), 187. https://doi.org/10.3390/data8120187