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Abstract: This paper presents a dataset containing automatically collected source codes solving
unique programming exercises of different types. The programming exercises were automatically
generated by the Digital Teaching Assistant (DTA) system that automates a massive Python pro-
gramming course at MIREA—Russian Technological University (RTU MIREA). Source codes of
the small programs grouped by the type of the solved task can be used for benchmarking source
code classification and clustering algorithms. Moreover, the data can be used for training intelligent
program synthesizers or benchmarking mutation testing frameworks, and more applications are
yet to be discovered. We describe the architecture of the DTA system, aiming to provide detailed
insight regarding how and why the dataset was collected. In addition, we describe the algorithms
responsible for source code analysis in the DTA system. These algorithms use vector representations
of programs based on Markov chains, compute pairwise Jensen–Shannon divergences of programs,
and apply hierarchical clustering algorithms in order to automatically discover high-level concepts
used by students while solving unique tasks. The proposed approach can be incorporated into
massive programming courses when there is a need to identify approaches implemented by students.

Dataset: The data presented in this study are openly available in Zenodo at https://doi.org/10.5281/
zenodo.7799971 (accessed on 10 June 2023).

Dataset License: CC-BY-4.0

Keywords: autograding; programming exercise generation; python; online education; program text
analysis; source code analysis; abstract syntax trees; clustering algorithms

1. Summary

The digitalization of the economy leads to a constant expansion of the range of tasks
facing specialists in information technologies, especially software developers. Research
in static analysis of program source codes introduced a number of algorithms aiming to
simplify and speed up the software development process and to improve the reliability and
maintainability of software. Many such algorithms are now widely used in industry [1], in-
cluding automated bug detection techniques based on static analysis of source codes [2–4].
Cyclomatic complexity [5] and cognitive complexity [6] checks are incorporated into static
analyzers developed by SonarSource™, as well as into integrated development environ-
ments distributed by JetBrains™. These checks provide a quantitative estimate of how
complex a function or a class method is, suggesting developers either automatically or
manually refactor a code snippet in order to improve the maintainability of the piece of
software they are working on. Recent research introduced a number of intelligent program
text analysis algorithms for code completion [7–9], as well as for function name and variable
name prediction [10–12]. The OpenAI™ Codex® model used by GitHub™ Copilot for code
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completion has been of great interest among software developers around the globe. There
is still an increasing demand for further improvements of intelligent static analyzers of
source codes.

Duplication of approaches to solving problems that arise during the software devel-
opment process often takes place both in complex software systems with an extensive
codebase and in open-source repositories that are not related to each other. Software devel-
opers often borrow publicly available source code that is then adapted to be integrated into
the system being developed. However, a developer is also able to independently reinvent
and reimplement a well-known approach to solving a specific problem, and the approach
might be already implemented and used in the system being worked on. Recent research
introduced a number of algorithms allowing the detection of similar patterns in source
codes of programs [13,14]. Such algorithms can be used to perform automatic refactoring
in order to get rid of code duplication, search for plagiarism, or to detect errors.

As a result of the expansion of the range of tasks in the IT sector of the economy, there
is a demand for mass training of IT specialists in institutions of higher education. The
massive nature of programming courses increases the burden on employees of educational
organizations; course instructors have to come up with a sufficient number of various
programming tasks under circumstances when regular cheating on the part of students
becomes the norm. It is also difficult for an instructor of a massive programming course to
equally dedicate time to all students and to check the solutions of every student in detail.
The increased burden on teachers can result in emotional burnout, in a decrease in their
desire to be creative and involved in the teaching process [15,16].

Recently, a few autograding systems were developed and incorporated into the ed-
ucational process [17–19]. Such systems support automated checking of programming
exercises; the teachers are expected to manually configure the exercises available in such
systems, as well as test cases for them. In order to prevent cheating, plagiarism detection
techniques are often used in autograding systems [19]; such techniques include clustering
approaches that are based on pairwise comparisons of weighted keywords extracted from
source codes [14], abstract syntax tree-based code clone detection algorithms [20,21], and
methods that are based on the preliminary transformation of the program source code into
vectors [22]. However, students can cheat plagiarism detection software by altering their
source code to make the abstract syntax tree look completely different.

Recent research introduced algorithms for the automatic generation of unique pro-
gramming exercises of different types based on the heuristic generate-and-test method [23].
On top of such algorithms, the Digital Teaching Assistant (DTA) system was developed
in MIREA—Russian Technological University (RTU MIREA) [15,16], with the aim to com-
pletely eliminate the source code plagiarism problem in a massive Python programming
course with over 1500 students. In the DTA system, every student receives a set of unique,
automatically generated programming exercises of various types at the beginning of the
semester. Students submit their source codes solving the programming exercises to DTA
using a web interface, and the DTA system performs static and dynamic analysis of the
source codes in a background process.

At the end of the semester, the received source codes are analyzed using intelligent
algorithms in order to identify the most common approaches used by students while
solving the unique programming exercises [24,25]. Several methods exist that allow mining
idioms from source codes [26,27]. The aim of the current research is the identification of the
knowledge gaps of students from different groups and departments in order to explain the
least frequently used language features of the programming language to students before the
final test [25]. Another aim of the source code analysis is the quality control of the automatic
generators of programming exercises. A generator needs improvements if only typical,
non-variable solutions are possible for the generated exercises [24]. In order to find similar
approaches to solving unique programming exercises in a dataset containing more than
14,000 unique source codes that were checked and accepted by the DTA system, we applied
code vectorization techniques based on Markov chains [25] with pairwise Jensen–Shannon
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divergences computation [28,29], as well as agglomerative hierarchical clustering algorithm
with average linkage [30].

This data article provides the source codes received by the DTA system during the
spring semester of 2022. The dataset contains only programs written in the Python pro-
gramming language that were successfully checked during static and dynamic analysis and
accepted by the DTA autograding system. All docstrings and comments were preliminarily
removed from the source code datasets. The programs are grouped into 11 files, programs
from the same file represent solutions for unique programming exercises of a given type.

The rest of the paper is structured as follows. Section 2 describes the DTA system
and the different types of tasks available in the system, aiming to provide a complete
picture of how and why the dataset was collected. Section 3 describes the collected dataset
and methods used while preprocessing the source codes. Section 4 briefly describes the
methods incorporated into the DTA analytics module and used for finding the most
common approaches used by students while solving unique automatically generated
programming exercises of different types.

2. Digital Teaching Assistant

The DTA system that automates the Python programming course at RTU MIREA
consists of the core module, the web application module, and the analytics module. The
architecture of the DTA system is shown in Figure 1.
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Figure 1. Architecture of the Digital Teaching Assistant system.

2.1. Digital Teaching Assistant Core

The core of the system is responsible for the automatic generation of unique program-
ming exercises for every student; every exercise is represented by a task formulation in the
HTML format, a set of open tests, and a set of hidden tests. As shown in Figure 1, the core
checks source codes received from students by performing static analysis, including PEP8
formatting checks and cyclomatic complexity [5] checks. Dynamic source code analysis
is carried out afterward in order to verify the correctness of the submitted code on both
open and hidden tests. The code is executed in a jailed Docker-based sandbox [31] with the
gVisor secure runtime [32]. If an error has occurred while performing the tests, the DTA
system only demonstrates the input data of only one erroneous test case.

The programming exercise generation problem can be formulated as a constraint
satisfaction problem and solved using the general generate-and-test method [23,33]. The
formulations of the exercises are generated at the beginning of the semester by the core of the
DTA system; they are represented by a set of HTML documents created using the Pandoc
utility [34] from files in the Markdown format. LaTeX is used to render mathematical
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equations, and the DOT language is used to generate graphs using the graphviz tool [35].
The DTA core supports the generation of unique programming exercises of 11 different
types. These types fall into two categories:

• Translation of some formal notation into source code;
• Conversion between two different data formats.

The 11 types of programming exercises are listed in Table 1. Formulation examples of
the generated unique exercises of the first nine different types are shown in Figure 2. The
long formulations for the 10th and 11th exercises are provided in Appendix A.

Table 1. Different types of unique programming exercises supported in DTA.

Task Programming Exercise Type Category of the Exercise Type

1. Implement a function Notation into code translation
2. Implement a piecewise function Notation into code translation
3. Implement an iterative function Notation into code translation
4. Implement a recurrent function Notation into code translation
5. Implement a function that processes vectors Notation into code translation
6. Implement a function computing a decision tree Notation into code translation
7. Implement bit field conversion Conversion between data formats
8. Implement a text format parser Conversion between data formats
9. Implement a finite state machine as a class Notation into code translation
10. Implement tabular data transformations Conversion between data formats
11. Implement a binary format parser Conversion between data formats
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As shown in Figure 2a–e, the first block of 11 programming exercises that students
have to solve during the semester consists of mathematical notation to source code transla-
tion tasks. While solving such tasks, the students familiarize themselves with the standard
library of the Python programming language. The second block (see Figure 2f–i) contains
more complex automatically generated exercises, including conversion between two data
formats tasks and translation of graph-based notations into code tasks. The last two task
types, which are listed in Table 1 as the 10th and 11th exercise types, respectively, are
considered the most complex ones. In the 10th task, a unique set of tabular data transfor-
mations described in natural language is generated, and students have to implement those
transformations in code. The tables are represented by two-dimensional Python lists. In
the 11th task, a specification of the automatically generated binary format is given, and
students have to write a parser function based on the specification.

2.2. Digital Teaching Assistant Web Application

The DTA web application allows students and teachers to interact with the DTA core
(see Figure 1) and automates the checking of the submitted source codes one by one by
communicating with the DTA core in a background process using programmatic APIs.
Additionally, the web application visualizes student performance statistics that are useful
for teachers while tracking student activity. The DTA web application implements the
Model-View-Controller (MVC) architecture [36] and consists of HTTP controllers, HTML
view templates, business logic modules, and data access modules. The sequence diagram
illustrating how a student interacts with the DTA system is shown in Figure 3.
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According to Figure 3, a student first sees the list of groups, selects their group, then
selects their variant and sees the list of tasks they have to solve by the end of the semester.
Next, the student selects the task that they would like to complete, obtains the formulation
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of the task, solves it, and submits the solution to the DTA system. The DTA core checks
the source code using static analyzers and containerized Docker environment, and if the
solution is accepted, it is analyzed using intelligent algorithms in order to determine the
implemented approach to solving the task. The results are then passed back to the DTA
web application, which writes the received information to the database.

DTA uses the relational SQLite3 database engine; the data access modules shown in
Figure 1 contain SQL queries implemented in the SQLAlchemy object-relational mapper
(ORM) [37]. The entity-relationship (ER) diagram of the DTA web application database
is shown in Figure 4a. The DTA analytical subsystem (see Figure 1) is responsible for
determining approaches to solving unique programming exercises based on source codes.
Every approach discovered by a student is treated as an educational achievement. The DTA
web application interacts with the analytical subsystem after successfully checking a source
code (see Figure 3); the decision made by the analytical subsystem indicating the discovered
approach to solving a programming exercise is recorded in the “achievements” column of
the “task statuses” table (see Figure 4a). The web interface displaying the achievements
discovered by a student is shown in Figure 4b.
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According to Figure 4a, the DTA system database includes six tables and stores
messages containing source codes received from students, check results for the messages,
and task statuses containing the acceptance status of the last received source code. The
information about groups, tasks, and variants is also stored in the database. The DTA
system uses an event sourcing (ES)-based approach [38]. Hence, the state stored in the
“task statuses” table (see Figure 4a) at time T can be restored by re-checking all the source
codes from the messages table that were received before the time moment T.

3. Data Description

This article presents a dataset containing source codes solving unique programming
exercises of 11 different types generated by the DTA system and also anonymized submis-
sions and checks statistics. The implementation details of the DTA system, as well as the
detailed insight regarding how and why the dataset was collected, are provided in Sec-
tion 2. The dataset associated with this article contains the “messages.csv” file describing
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the history of source code submissions to the DTA web application. The “messages.csv”
file contains a table with seven columns; the columns are described in Table 2.

Table 2. Structure of the “messages.csv” file available in the dataset associated with this paper.

Column Column Description Column Data Type Possible Values

1. Unique message identifier Integer Z
2. Task number Integer {0, . . . , 10}
3. Variant number Integer {0, . . . , 39}
4. Group number Integer {1, . . . , 52}
5. Message submission time Timestamp Z
6. Task status Integer {2, 3}
7. Message check time Timestamp Z

The table in the “messages.csv” file contains 66,553 rows total, excluding the header
row. Every row of the table represents the characteristics of a message that was submitted to
the DTA web application. As described in Table 2, the 1st column contains a monotonously
increasing message identifier; the 2nd, 3rd, and 4th columns contain integers encoding task,
variant, and group number, respectively; and the 5th and 7th columns contain timestamps
indicating when the message was submitted and checked. Finally, the 6th column contains
the check status (see Table 2), “2” means that the message was checked and accepted by the
DTA core, and “3” means that there were errors during checks.

During the spring semester of 2022, the DTA system received 66,553 messages, 52,483
solutions were automatically rejected as erroneous, and 14,070 solutions were automatically
accepted as correct. The comparison of rejected and accepted program counts is shown in
Figure 5a. Figure 5c visualizes the total rejected and accepted program counts grouped by
task types (see Table 1). The average accepted and rejected solutions count depending on
the time of day is shown in Figure 5b.
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As shown in Figure 5c, the first exercise is characterized by the largest number of
attempts. This can be explained by the fact that the students who have never interacted
with the DTA system before are familiarizing themselves with the system by submitting
solutions and looking at the system’s reaction. The first exercise is also characterized by the
largest number of accepted programs among all exercises; most of the students successfully
completed the first task but failed to solve other tasks, especially the last one.

Solutions to unique programming exercises submitted to the DTA system could be
rejected due to various reasons. For example, a Python program could be rejected if it is
not formatted according to the PEP8 standard, if the cyclomatic complexity of the solution
is too high [5], or if there is no function named “main” in the submitted code, or if there
is a syntax error, or if an exception has been thrown while testing the submitted solution
in a containerized environment. Finally, if the output returned by the code is wrong, the
solution is also rejected. The plot displaying the most common program rejection reasons
is shown in Figure 6a. Moreover, different exceptions can be thrown while testing the code,
which solves a programming exercise. The plot displaying the most commonly thrown
exceptions is shown in Figure 6b.
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The dataset associated with this paper contains files with programs solving automati-
cally generated unique programming exercises grouped by exercise type; all exercise types
are listed in Table 1. The title of the first file is “task-00.csv”; it contains programs solving
unique tasks of type 1 (see Table 1 and Figure 2a). The title of the last file is “task-10.csv”; it
contains programs solving tasks of type 11 (see Table 1).

The programs contained in the described files were used during the development of
classifiers that form the basis of the DTA achievements system (see Figure 4b) [24,25]. The
dataset contains only programs that were successfully checked and accepted by the DTA
core. The accepted program count for each of the task types listed in Table 1 is shown in
Figure 5c. The programs included in the dataset were preprocessed and filtered according
to Algorithm 1 using functions from the Python standard library [38] with the aim of
excluding any information that can be treated as personal from the dataset.
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Algorithm 1: Filtering and preprocessing of source code datasets.

Input: S—dataset with source codes of programs that successfully solved the tasks.
1. Define set of string literals K = {print(, eval(, exec(, .com, .ru}.
2. Define P = Ø.
3. For each s ∈ S do:
4. Construct an AST a for s using the ast.parse function [38].
5. Remove docstrings from a.
6. Restore the program text s* from a using the ast.unparse function [38].
7. If @k ∈ K : k ⊂ s∗ then P← P ∪ {s∗} .
8. End loop.
9. Return the filtered set of preprocessed programs.

As described in Algorithm 1, each of the program source codes was first normalized
by constructing an abstract syntax tree (AST) with a subsequent reconstruction of the
source code only based on the information included in the AST. Prior to source code string
reconstruction, the AST was traversed, and the documentation strings were removed.
Python programs containing such instructions as “eval”, “exec”, or “print” were excluded.

The small programs grouped by the type of the solved task can be used for benchmark-
ing source code classification algorithms [25], cluster analysis algorithms [24], and data
visualization algorithms [39,40]. Additionally, the data can be used for training intelligent
program synthesizers, benchmarking mutation testing frameworks, or evaluating static
analyzers, and more applications are yet to be discovered.

4. Intelligent Source Code Analysis Algorithms Used in Digital Teaching Assistant

In this section, we show one of the possible applications of the dataset described in
Section 3. The DTA analytics system includes a clustering module that processes a dataset
of source codes solving tasks of a given type and detects the most common approaches used
by students [24]. Additionally, the system includes a classification module that identifies
the most similar cluster to a newly submitted solution by analyzing the source code [25].
This classification module lies at the core of the achievements system (see Figure 4b) that
motivates students to solve their tasks using different approaches.

Both classification and clustering algorithms [24,25] use probabilistic context-free
grammar-based representations of source codes. In other words, the ASTs of the source
codes are converted into Markov chains, where the state space consists of types of vertices
that occur in syntax trees, and weights of edges among the vertices represent probabilities of
state transitions from one AST node type to the other. A sample AST is shown in Figure 7a,
and a Markov chain for this AST is shown in Figure 7b.
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The series of actions that converts an AST into a Markov chain is shown in Algorithm
2. First, the algorithm constructs an AST using tools from the Python standard library [38].
Next, the AST is simplified, and insignificant nodes are removed. Then, the set of vertex
types and the set of edges are constructed. The weights of edges represent probabilities
with which a vertex of one type references a vertex of another type.

Algorithm 2: Markov chain construction for the given source code.

Input: s—source code of a program solving a unique programming exercise.
1. Construct an AST A = (V,E) for program s using the ast.parse function [38].
2. Delete from A vertices belonging to set {Load, Store, alias, arguments, args}.
3. Define the mapping g:V→ T that maps a vertex v∈V to its type.
4. M = Ø.
5. T = {g(v) : v ∈ V}.
6. For each vertex type t ∈ T do:
7. Vd = {vd : (vs, vd) ∈ E ∧ g(vs) = t}—descendants of vertices of type t.
8. Td = {g(vd) : vd ∈ Vd}—types of descendants of vertices of type t.
9. For each descendant vertex type td∈Td do:

10. ω = 1
|Vd | |{vd : vd ∈ Vd ∧ g(vd) = td}|—normed descendant count for td.

11. M← M ∪ {(t, td, ω)} .
12. End loop.
13. End loop.
14. Return the weighted state transition graph (T,M) of the Markov chain.

However, some ASTs built for programs solving unique exercises may contain vertices
that are not present in other ASTs. Given that, the adjacency matrices of Markov chains
constructed for such ASTs (see Figure 7b) can have different shapes, and thus their pairwise
comparison is complicated. In order to overcome this limitation, we maintain the H set
containing all vertices that occur in ASTs during the conversion of a dataset of source codes
S into a set of Markov chain-based vector representations V. This approach allows convert-
ing all of the weighted adjacency matrices of Markov chains obtained using Algorithm 2 to
the fixed shape Rm×m, where m = |H|. The matrices for programs belonging to the S set
can then be transformed into vectors belonging to Rh, where h = m2, and easily compared
by using a distance metric that operates on vectors. Algorithm 3 illustrates the conversion
process of the S set of source codes into the V set of their vector representations.

Algorithm 3: Conversion of source codes to vectors based on Markov chains.

Input: S—a set of source codes to be converted into vector representations.
1. H = Ø—a set for AST node types that occur in Markov chains.
2. G = Ø.
3. For each source code s ∈ S do:
4. Construct a Markov chain (T,M) for s according to Algorithm 2.
5. H ← H ∪ T —add observed vertices to the H set.
6. G ← G ∪ {M}—add a set of weighted edges of a Markov chain to G.
7. End loop.
8. V = Ø—a set for vector representations of program source codes.
9. m = |H|—count of different AST node types that occur in Markov chains.
10. For each set of edges M ∈ G do:
11. Construct a weighted adjacency matrix B ∈ Rm×m for graph (H,M).
12. Convert the B ∈ Rm×m matrix to vector

→
v ∈ Rh, where h = m2.

13. V ← V ∪
{→

v
}

.

14. End loop.
15. Return the V set containing vector representations of source codes.

After obtaining vector representations based on Markov chains using Algorithm 3
from a set of source codes containing programs solving exercises of a given type, a pairwise
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distance matrix is constructed. As shown in [24], the DTA analytics system computes
Jensen-Shannon divergence (JSD) [28,29] for each pair of vectors. JSD is given by

JSD
(→

v i,
→
v j

)
=

1
2

h

∑
k=1

viklog2
2vik(

vik + vjk

) +
1
2

h

∑
k=1

vjklog2
2vjk(

vik + vjk

) , (1)

where
→
v i and

→
v j denote vector representations of programs based on Markov chains (see

Algorithms 2 and 3), vik denotes k-th component of vector
→
v i, vjk denotes k-th component

of vector
→
v j, h denotes component count in vectors

→
v i and

→
v j.

After the construction of a pairwise distance matrix, the matrix is passed to the agglom-
erative hierarchical clustering algorithm with average linkage [24,30]. The implementation
of this algorithm used in DTA is based on the sklearn library [41]. As described in [24], the
optimal cluster count is selected based on the silhouette score metric [42] for every dataset
containing source codes solving programming exercises. The count of clusters with more
than 10 objects for different datasets is shown in Figure 8.
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In the DTA system, the exercises become more complex with the increase of the
exercise identifier. According to Figure 8, datasets with source codes of programs that
implement mathematical formulas (see Figure 2a–e) contain fewer high-level concepts that
can be used as solutions when compared to more complex tasks (see Figure 2f–i). Solutions
for unique exercises of type 11 appear to be the most varied.

Examples of the approaches to solving programming exercises that were discovered
by applying the hierarchical clustering algorithm to the pairwise distance matrix obtained
for Markov chain-based vector representations of programs from the dataset contained in
file “task-03.csv” from the dataset associated with this paper are shown in Figure 9.
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Figure 9. Examples of the approaches to solving unique programming exercises of type 4 (see Table 1
and Figure 2d) written in the Python programming language: (a) recurrent function implementation
using a conditional operator; (b) recurrent function implemented using a conditional operator with
early return; (c) recursion implemented as a loop and a list; (d) recursion implemented as a loop with
temporary variables; (e) recursion implemented with a ternary operator.

The clusters obtained by applying the described methods and algorithms are then
used to train Extreme Learning Machine-based classifiers, and training and evaluation of
the classifiers are described in detail in [25]. The obtained classifiers lie at the core of the
educational achievements system implemented in DTA (see Figure 4b).
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5. Discussion

The dataset presented and described in this paper contains source codes of programs
solving unique exercises of different types. The programs were successfully checked
and accepted by Digital Teaching Assistant (DTA) [15,16] in the spring semester of 2022.
The DTA system automates a massive Python programming course at RTU MIREA, the
architecture of the system is described in Section 2.

The source codes of programs included in the dataset (see Section 3) are grouped by
the type of tasks that they solve (see Table 1 and Figure 2). Each of such source code groups
was processed using Algorithm 1, aiming to exclude any information that can be treated
as personal from the dataset. During the operation of DTA in the spring semester of 2022,
more than 65,000 programs were submitted to the system by programming course students,
and more than 52,000 programs were automatically rejected (see Figure 5a) due to different
reasons. The most common rejection reasons include formatting issues, too high cyclomatic
complexity [5], numerical issues, or thrown exceptions (see Figure 6a). The most common
exceptions include type error, index error, name error, and assertion error (see Figure 6b).
The erroneous programs are not included in the source code dataset associated with this
paper. In addition to source codes of programs, the dataset also includes an event log of
code submissions aiming to provide a complete picture of how the data were collected (see
Figure 5a,b). The event log can also be a subject for further analysis in terms of anomaly
and outburst detection in the time series of the submitted messages.

In Section 4, we provide a detailed description of methods and algorithms used
in the DTA system for the automatic discovery of the common approaches to solving
programming exercises of a given type as an example of how to extract useful information
from the provided dataset of source codes. The DTA system first constructs ASTs for
source codes using the Python standard library [38] (see Figure 7a) and then transforms the
obtained syntax trees into Markov chains (see Figure 7b) using Algorithm 2. The Markov
chain-based representations are then transformed into vectors by applying Algorithm 3 to
the obtained weighted graphs. Next, a pairwise distance matrix is built using the obtained
vectors and Equation (1); the matrix is then fed to the agglomerative hierarchical clustering
algorithm as described in [24]. Examples of the discovered approaches used by students
while solving programming exercises of type 4 (see Table 1) are shown in Figure 9. The
obtained clusters are then used to train Extreme Learning Machine-based classifiers [25]
that lie at the core of the DTA achievements system (see Figure 4b).

The datasets of small programs solving unique programming exercises of different
types can be used for training intelligent static analyzers, for the development of pro-
gram synthesizers, for the evaluation of high-level concept miners [26], for benchmarking
mutation testing frameworks, more applications of the datasets are yet to be discovered.
The source code analysis algorithms described in this paper can be used for automated
detection of corporate programming standards violation [43], vulnerability detection [44],
and authorship identification [45].
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Appendix A

In Figure 2, formulation examples for the 10th tabular data transformation task and
for the 11th binary data format parser task were omitted for brevity, so we provide the
examples of formulations for these two tasks in Figures A1 and A2, respectively.
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