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Abstract: This study investigates the application of various machine learning models for land use
and land cover (LULC) classification in the Kerch Peninsula. The study utilizes archival field data,
cadastral data, and published scientific literature for model training and testing, using Landsat-5
imagery from 1990 as input data. Four machine learning models (deep neural network, Random
Forest, support vector machine (SVM), and AdaBoost) are employed, and their hyperparameters
are tuned using random search and grid search. Model performance is evaluated through cross-
validation and confusion matrices. The deep neural network achieves the highest accuracy (96.2%)
and performs well in classifying water, urban lands, open soils, and high vegetation. However, it faces
challenges in classifying grasslands, bare lands, and agricultural areas. The Random Forest model
achieves an accuracy of 90.5% but struggles with differentiating high vegetation from agricultural
lands. The SVM model achieves an accuracy of 86.1%, while the AdaBoost model performs the
lowest with an accuracy of 58.4%. The novel contributions of this study include the comparison and
evaluation of multiple machine learning models for land use classification in the Kerch Peninsula.
The deep neural network and Random Forest models outperform SVM and AdaBoost in terms of
accuracy. However, the use of limited data sources such as cadastral data and scientific articles
may introduce limitations and potential errors. Future research should consider incorporating field
studies and additional data sources for improved accuracy. This study provides valuable insights for
land use classification, facilitating the assessment and management of natural resources in the Kerch
Peninsula. The findings contribute to informed decision-making processes and lay the groundwork
for further research in the field.

Keywords: machine learning; LULC; Landsat; classification

1. Introduction

Land Use and Land Cover (LULC) is a concept that describes the utilization and
coverage of the Earth’s surface [1]. Understanding the state and changes of LULC is
critically important for sustainable management of natural resources and environmental
protection [2]. In recent years, satellite imagery, aerial photography, and geographic
information systems (GIS) have been widely used for LULC analysis. The use of machine
learning for LULC classification based on this data is an important tool for LULC analysis
and resource management [3]. Knowledge of LULC is also important for decision-making
in various fields such as urban planning, agriculture, forestry, ecology, and land-use
planning [4]. Determining LULC based on satellite data and GIS analysis allows for an
overall picture of land use in a region and for analyzing changes in LULC over time [5].
Such data can be used to identify trends in regional development, plan land use, assess
environmental consequences, and monitor changes in the natural environment.
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With the rapid development of technology in remote sensing, GIS, and machine
learning, LULC analysis is becoming more accurate and effective. Based on the results of
such analysis, more precise strategies for land-use management can be developed, which is
crucial for sustainable regional development [6].

LULC analysis in arid ecosystems is critically important for understanding and pre-
dicting changes in these ecosystems [7,8]. Arid ecosystems are vulnerable ecosystems that
are under pressure from human activities, such as land-use change, deforestation, increased
grazing lands, and climate change [9]. Changes in LULC can lead to serious consequences
for arid ecosystems, such as soil fertility reduction, soil erosion, biodiversity loss, and
deterioration of the quality of life of local communities. Therefore, to manage and preserve
arid ecosystems, it is necessary to have an accurate understanding of the state of LULC [10].

Remote sensing plays an important role in LULC analysis. Remote sensing allows
obtaining information about the Earth’s surface without physical contact with it [5,11]. For
LULC analysis, remote sensing is used to obtain spectral data, such as radio emissions,
light reflection, and heat, from which information about the composition of the Earth’s
surface and its changes can be obtained [12].

With remote sensing, information about soil types, vegetation cover, land use, the
presence of water bodies, and much more can be obtained. These data allow for the
evaluation of changes in LULC in a specific area over time, which can be used to predict
future ecosystem changes. Thus, remote sensing becomes a necessary tool for planning and
managing land use in arid ecosystems, where LULC can have a significant impact on water
balance and soil cover.

The search for optimal ways to classify LULC most accurately has been considered
in several studies. Jozdani [13] carried out an experimental comparison among differ-
ent architectures of DNNs (i.e., regular deep multilayer perceptron, regular autoencoder,
sparse, autoencoder, variational autoencoder, convolutional neural networks), common
ensemble algorithms (Random Forests, Bagging Trees, Gradient Boosting Trees, and Ex-
treme Gradient Boosting), and SVM to investigate their potential for urban mapping using
a GEOBIA approach. Jamali [14] aim to evaluate eight machine learning algorithms for
image classification implemented in WEKA and R programming language. The aim of [15]
was to compare performance of the classification methods, that are Rule Based classifier
and Support Vector Machine, of Planetscope and Worldview-3 satellite images in order
to produce land use/cover thematic maps. Six machine-learning algorithms, namely ran-
dom forest, support vector machine, artificial neural network, fuzzy adaptive resonance
theory-supervised predictive mapping, spectral angle mapper and Mahalanobis distance
were examined in [3]. Ghayour [16] used different kernel functions and hidden layers
for SVM and ANN algorithms, respectively. In this objective of [17] at finding out how
two composition methods and spectral–temporal metrics extracted from satellite time series
can affect the ability of a machine learning classifier to produce accurate LULC maps. For
the objective of [18], two datasets were collected at two different urban locations using
two different UASs. Basheer [19] aim to evaluate the LULC classification performance of
two commonly used platforms (i.e., ArcGIS Pro and Google Earth Engine) with different
satellite datasets (i.e., Landsat, Sentinel, and Planet) through a case study for the city of
Charlottetown in Canada.

From the other side, classification of historical LULC data was reviewed in several
studies. Aim of [20] were to produce historical LULC maps during the 1988–2016 period for
spatial and temporal analysis, forecast future LULC until 2040 by using the Markov model,
and identify the impact of LULC on urbanization. Drummond [21] describe historical land-
use and land-cover (LULC) maps for the northern Colorado urban Front Range. Hoque [22]
design four land use/land cover (LULC) scenarios, such as business-as-usual development
(BAUD), economic development priority (EDP), ecological protection priority (EPP), and
afforestation development priority (ADP), through a Cellular Automata-Markov (CA-
Markov) model, and their effects on ecosystem service values (ESVs) were predicted, using
historical LULC maps and ESV coefficients of the Lower Meghna River Estuary, Bangladesh.
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Hufkens [23] use a combination of historical (1958) aerial photography and contemporary
remote sensing data to map long-term changes in the extent and structure of the tropical
forest surrounding Yangambi (DR Congo) in the central Congo Basin. Yao [24] demonstrate
an innovative learning method of convolutional neural network (CNN) to identify landuse
and land cover (LULC) patterns and extract features to disaggregate socio-economic factors
by using remote sensing imageries at 30 m spatial resolution. The contribution of Leta [25]
was to assess the temporal and spatial LULC dynamics of the past and to predict the
future using Landsat images and LCM (Land Change Modeler) by considering the drivers
of LULC dynamics. The aim of Firozjaei [26] were to evaluate the historical impacts of
mining activities on surface biophysical characteristics, and for the first time, to predict
the future changes in pattern of vegetation cover and land surface temperature (LST). The
transition potential maps and the transition probability matrices between LULC types
were provided by the support vector machine algorithm and the Markov chain model,
respectively, to project the 2021 and 2040 LULC maps by Jalayer [27]). As a case study
Mäyrä [28] use U-Net to automatically extract fields, mires, roads, watercourses, and water
bodies from scanned historical maps, dated 1965, 1984 and 1985 for the 900 km study area in
Southern Finland.

The primary objective of this research is to investigate the historical classification of
land use and land cover (LULC) in the absence of comprehensive field studies, relying
solely on limited data sources such as topographic maps, scientific articles, and cadastral
data. This study aims to assess the feasibility and reliability of utilizing these data sources
for LULC classification and understanding the temporal dynamics of land use patterns.

The novelty of this paper lies in its innovative approach to historical land use and
land cover (LULC) classification, particularly in the context of limited data sources and
the absence of extensive field studies. While existing research often relies heavily on
comprehensive field data, this study explores the feasibility and reliability of utilizing
alternative sources such as topographic maps, scientific articles, and cadastral data for
LULC classification.

Unlike many previous studies that prioritize high-resolution remote sensing data and
extensive field surveys, this research ventures into a less-explored territory by demonstrat-
ing that valuable insights can still be extracted from limited data sources. By doing so, it
challenges the traditional norms of LULC classification methodologies and opens up new
possibilities for regions or scenarios where field studies may be constrained.

Moreover, this study contributes to the broader scientific discourse by addressing
the nuanced complexities associated with historical LULC patterns. The comparison of
classified results with existing historical records and alternative data sources offers a novel
perspective on the reliability and quality of classification outcomes. By meticulously
examining the potential errors and limitations arising from the absence of extensive field
research, the paper provides a valuable guide for researchers and practitioners seeking to
embark on similar historical LULC studies.

2. Materials and Methods
2.1. Research Area

The Kerch Peninsula (Figure 1) is located on the southeastern coast of the Sea of
Azov and the northeastern coast of the Black Sea, within the Crimean Peninsula [29]. The
climate in this region is moderately continental, with an average temperature of around
11 degrees Celsius per year, and the most favorable period for research in this area is spring
and autumn [30]. The territory of the Kerch Peninsula has many geological, hydrological,
landscape, and ecological peculiarities that may affect the quality of remote sensing data
and the results of land use and land cover (LULC) classification [31]. For example, there
are several mud lakes in the area that may affect land zoning and vegetation distribution.
Moreover, different types of landscapes, such as steppes, forest steppes, rocky outcrops,
and sand dunes, can also affect the results of LULC classification [32].
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Figure 1. Study area location.

The Kerch Peninsula was chosen for the study for several reasons. Firstly, it is a
region with a unique ecological situation located on the border of three natural zones:
forest, steppe, and subtropical. This leads to a high diversity of plant and animal species.
Secondly, the Kerch Peninsula has problems related to unauthorized land use. For example,
in some areas, illegal deforestation occurs, leading to worsening environmental conditions.
Therefore, studying the state of land cover in this peninsula may help identify problem
areas and develop measures to address them. Thirdly, the Kerch Peninsula is essential for
tourism development in the region. It is famous for its landscapes, artificial and natural
attractions, as well as unique flora and fauna. Studying the state of land cover will help
identify the territories that are most suitable for tourist use and form recommendations for
nature conservation in these areas.

2.2. Description of Algorithms Used in the Research

In this research, several machine learning algorithms were employed for land use
and land cover classification in the Kerch Peninsula. The algorithms utilized in the study
encompassed diverse approaches to effectively discern and categorize different land use
and land cover classes based on limited data resources.

Deep Neural Network (DNN). This algorithm is a powerful tool for pattern recognition
and classification tasks [9,33–35]. It comprises multiple layers of interconnected neurons
that allow for non-linear feature extraction and representation [36,37]. The DNN utilized
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five layers with 128, 64, 32, 16, and 8 neurons, respectively, along with the Rectified Linear
Unit (ReLU) activation function to introduce non-linearity. The Adam optimizer with a
learning rate of 0.001 was employed for efficient weight updating. Dropout regularization
(rate: 0.5) was used to prevent overfitting.

Random Forest. This ensemble learning technique constructs multiple decision trees
during the training process and outputs the mode of their predictions [38–40]. The al-
gorithm utilized 100 trees in the forest, each with a maximum depth of 20 nodes. The
minimum number of samples required to split an internal node was set to 5, and the
minimum number of samples required to be at a leaf node was set to 2.

Support Vector Machine (SVM). SVM is a supervised learning algorithm used for
classification and regression tasks [41–43]. The Radial Basis Function (RBF) kernel with a
parameter value of 0.1 was employed. The regularization parameter (C) was set to 100 to
control the trade-off between maximizing the margin and minimizing the classification error.

AdaBoost. This boosting algorithm combines multiple weak learners (e.g., decision
trees) sequentially to build a strong model. The study utilized 50 base models, each being a
decision tree with a depth of 2.

2.3. Classification Performance Evaluation

To evaluate the performance of a classification model, metrics such as accuracy, pre-
cision, recall, and F1-score can be used [44,45]. Accuracy is the proportion of correctly
classified objects and is calculated using the formula:

accuracy =
TP + TN

TP + TN + FP + FN

Precision is the proportion of objects that were correctly classified as positive relative
to all objects that were classified as positive:

precision =
TP

TP + FP

Recall is the proportion of objects that were correctly classified as positive relative to
all objects that are positive:

recall =
TP

TP + FN

The F1-score is the harmonic mean between precision and recall and can be calculated
using the following formula:

F1 = 2·
.

precision − recall
precision + recall

where TP is the number of true positive classifications, TN is the number of true negative
classifications, FP is the number of false positive classifications, and FN is the number of
false negative classifications.

2.4. Landsat Data

Landsat-5 is an American satellite system developed and managed by NASA, which
was launched in 1984 for monitoring the Earth’s surface. The satellite is equipped with
instruments for capturing images in a wide range of spectral wavelengths, including visible,
infrared, and thermal ranges. Landsat-5 data has been used for monitoring changes in the
Earth’s surface, including forests, water bodies, mountain ranges, and other natural and
man-made objects. Landsat-5 images provide information on soil quality, vegetation, and
other surface aspects, making them very important for research related to changes in the
Earth’s surface.
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Landsat-5 data was obtained using Google Earth Engine and the geemap library [46],
which allow for fast and efficient processing and analysis of numerous images from various
sources for a wide range of scientific tasks, including LULCC analysis.

The characteristics of Landsat-5 data include a pixel resolution of 30 m and a maximum
dynamic range value of 255. An important feature of Landsat-5 data is their ability to be
reused multiple times, as the satellite continuously scans the Earth’s surface and records
data at different points in time.

Data about channels are useful for image analysis and processing, as each channel
contains information about different characteristics of the Earth’s surface. Specifically,
channels 1–3 correspond to the visible spectrum, while channels 4–7 correspond to the
infrared spectrum. They also differ in resolution, which allows them to be used for various
image processing tasks (Table 1).

Table 1. Technical characteristics of the Landsat-5 satellite bands.

Band Name Wavelength Center, nm Resolution, m

1 Blue 0.45–0.52 30

2 Green 0.52–0.60 30

3 Red 0.63–0.69 30

4 Near Infrared 0.76–0.90 30

5 Shortwave Infrared 1 1.55–1.75 30

6 Shortwave Infrared 2 2.08–2.35 30

7 Mid Infrared 10.40–12.50 60

Taken together, Landsat-5 data represent a valuable source of information for analyzing
changes in the Earth’s surface, including land use classification and changes in vegetation
cover, making them an important tool for many scientific and practical applications.

Landsat data were collected using geemap package [46] as a median values over
1990–1994 period for the Kerch peninsula.

2.5. Data Collection

Various sources of data were utilized in this study, including cadastral data and
materials published in scientific literature. Landsat-5 images acquired during the period
from 1990 to 1994 were also used to classify the territory. However, field data that could
serve as a basis for analyzing land use and land cover changes in the Kerch Peninsula were
not available at that time.

Therefore, the use of cadastral data and materials published in scientific literature was
the only available method for obtaining information about the territory and its changes.
In addition, archival cartographic data from topographic maps by the “Genshtab” (Soviet
topographic maps) for 1990–1991 [47] were used. Various archival high spatial resolution
satellite data were also used for manual classification of LULC samples using Google Earth
Pro Historical Imagery, which allowed for the creation of training and testing datasets for
subsequent classification of the Kerch Peninsula territory.

As a result, 12580 different sample points were obtained, which were assigned LULC
class labels used in this study (Figures 2 and 3). They were further divided into training
and testing sets in a 7:3 ratio, which corresponded to 8387 points for the training set and
4193 for the testing set.
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Figure 2. Distribution of sample points for the training and testing datasets for each land use class.

Figure 3. Spatial distribution for the training and testing datasets.

2.6. LULC Classes

In this study, 7 LULC classes were used, which included Agricultural areas, Water,
Bare vegetation, Herbaceous vegetation, Forest vegetation, Urban areas, and Bare lands
(Table 2).

Table 2. Short description of LULC classes.

Class Description

Water Areas covered by water bodies such as lakes, rivers, and reservoirs.

Urban lands Developed areas characterized by buildings, infrastructure, and
human settlements.

Open soils Areas of exposed soil or bare land without significant vegetation cover.

High vegetation Regions with dense and thriving vegetation, such as forests, woodlands,
or dense vegetation cover.
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Table 2. Cont.

Class Description

Grass lands Areas dominated by grasses and other herbaceous plants, often used for
grazing or agricultural purposes.

Bare lands Land devoid of vegetation cover, including areas with minimal or no soil
and exposed rock surfaces.

Agricultural Land utilized for agricultural activities, including crop cultivation,
farming, or livestock rearing.

3. Results
3.1. Learning Configuration

In this study, the use of various machine learning models for land use and land cover
classification in the Kerch Peninsula territory was investigated. Archive field data from
1990, cadastral data, and materials published in scientific literature were used for model
training and testing. Landsat-5 images for 1990 provided by USGS were used as the
input data.

The system configuration for model training included an ASUS laptop with an Intel
i7-11370H processor (4 cores, 3.30 GHz), 16 GB DDR4 RAM, and an NVIDIA GeForce RTX
3050 graphics card (4 GB). The following Python libraries were used for data processing
and model training: NumPy 1.19.5, pandas 1.3.3, scikit-learn 1.0, seaborn 0.11.2, and Veusz
3.5.1. All models were trained in Python version 3.9.5.

3.2. Hyperparameter Tuning

In this study, hyperparameter tuning strategies were employed to optimize the per-
formance of machine learning models for land use and land cover classification in the
Kerch Peninsula (Table 3). The objective was to enhance the accuracy of the models and
achieve superior results on the test dataset. Four popular machine learning algorithms
were used: deep neural network (DNN), Random Forest, support vector machine (SVM),
and AdaBoost.

Table 3. Hyperparameters for machine learning models used in the study.

Model Hyperparameters

Deep Neural Network

Number of layers: 5
Number of neurons in each layer: 128, 64, 32, 16, 8

Activation function: ReLU
Optimizer: Adam

Learning rate: 0.001
Regularization: Dropout (0.5)

Random Forest

Number of trees: 100
Maximum depth of trees: 20

Minimum number of samples required to split an internal
node: 5

Minimum number of samples required to be at a leaf node: 2

Support Vector Machine (SVM)
Kernel type: RBF

Kernel parameter: 0.1
Regularization parameter: 100

AdaBoost
Number of base models: 50

Type of base model: Decision Tree
Depth of trees: 2

The DNN model underwent extensive hyperparameter tuning by varying the number
of layers, number of neurons in each layer, learning rate, regularization coefficients, and
activation functions. The tuning process utilized a combination of random search and
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grid search methods, which allowed the hyperparameter space to be efficiently explored.
Cross-validation was employed to evaluate the model’s performance during the tuning
process, ensuring a robust assessment.

Similarly, the Random Forest model had its hyperparameters tuned on two crucial
parameters: the number of trees in the forest and the maximum depth of the trees. Grid
search was used to systematically explore different combinations, and the hyperparameter
values that yielded the highest accuracy on the test dataset were selected.

For the SVM model, hyperparameter tuning was conducted on the regularization
parameter C and the kernel gamma parameter. Grid search was employed to assess various
combinations and determine the optimal hyperparameter values that led to the highest
classification accuracy.

Lastly, the AdaBoost model had its focus on tuning the number of base models and
the learning rate coefficient. Grid search was utilized to assess different combinations,
and the hyperparameter values that resulted in the best accuracy on the test dataset
were determined.

Throughout the hyperparameter tuning process, rigorous cross-validation techniques
were employed to prevent overfitting and ensure that the selected hyperparameter values
generalized well to unseen data.

Hyperparameter tuning is an important step in machine learning model training
that allows improving the model’s quality and achieving better results on test data. The
following machine learning methods were used for the LULC classification task: deep
neural network, Random Forest, adaboost, and SVM.

3.3. Results of LULC Classification Using Landsat-5 Data

The classification of LULC using Landsat-5 data was performed using four machine
learning models: deep neural network, random forest, support vector machine, and Ad-
aBoost. The input data consisted of multispectral imagery. As the result, 4 different LULC
maps were produced (Figure 4).

Figure 4. Results of LULC classification using Landsat-5 data for the Kerch Peninsula (1990–1994).
(A)—DNN, (B)—Random Forest, (C)—Support Vector Machine, (D)—Adaboost.



Data 2023, 8, 138 10 of 17

Analyzing the confusion matrices for each of the models, the following conclusions
can be drawn. The deep neural network showed (Table 4) high accuracy in classifying
Water, Urban lands, Open soils, and High vegetation, with 0.99, 0.95, 0.95, and 0.97 accuracy,
respectively. However, the classification of Grass lands, Bare lands, and Agricultural was
less accurate, with 0.84, 0.87, and 0.89 accuracy, respectively. The greatest number of errors
was made in the classification of Grass lands, where 287 pixels were misclassified. Overall,
it can be noted that the neural network performed well in classifying diverse land use types.

Table 4. Confusion matrix for deep neural network.

Water Urban Lands Open Soils High Vegetation Grass Lands BARE LANDS Agricultural

Water 1871 2 5 1 19 13 11

Urban lands 2 1643 22 0 5 6 0

Open soils 8 100 1442 0 6 5 0

High vegetation 1 0 0 1758 2 2 2

Grass lands 10 5 1 1 1860 10 2

Bare lands 8 3 3 1 14 1715 23

Agricultural 13 0 2 1 26 54 1902

Random Forest demonstrated (Table 5) high accuracy in classifying Water, Urban lands,
and Open soils, with accuracies of 0.99, 0.93, and 0.90, respectively. However, significant
errors were made in classifying High vegetation and Grass lands, with accuracies of 0.75
and 0.68, respectively. The classification of Bare lands and Agricultural was also not precise,
with accuracies of 0.86 and 0.74, respectively. It can be noted that the low accuracy in
classifying Grass lands may be related to the difficulty in distinguishing this class from
High vegetation and Bare lands, as well as the lack of field research that could help in the
precise identification of these classes.

Table 5. Confusion matrix for Random Forest.

Water Urban Lands Open Soils High Vegetation Grass Lands Bare Lands Agricultural

Water 1844 2 3 18 0 2 53

Urban lands 0 1581 47 8 0 22 20

Open soils 7 69 1391 68 2 21 3

High vegetation 9 17 27 1706 2 3 1

Grass lands 0 6 6 6 1854 16 1

Bare lands 2 3 17 17 14 1701 13

Agricultural 50 10 0 1 1 14 1922

SVM showed (Table 6) the worst results with an accuracy of 0.86. The classification
of Urban lands was the most accurate, with an accuracy of 0.95, while the classification
of Grass lands was the least accurate, with an accuracy of 0.59. The low accuracy in the
classification of Grass lands, as well as Bare lands and Agricultural, may be related to the
difficulty in distinguishing these classes from High vegetation and Urban lands, as well as
the lack of field research for a more accurate determination of these classes.
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Table 6. Confusion matrix for SVM.

Water Urban Lands Open Soils High Vegetation Grass Lands Bare Lands Agricultural

Water 1910 0 0 1 0 3 8

Urban lands 18 824 57 28 95 107 549

Open soils 6 156 650 48 116 391 194

High vegetation 1 25 27 1583 0 36 93

Grass lands 0 46 38 21 1597 68 79

Bare lands 7 137 142 20 157 1179 125

Agricultural 10 85 52 19 123 57 1662

AdaBoost showed (Table 7) the worst results with an accuracy of 0.58. The classifi-
cation of Water was the most accurate with an accuracy of 0.96, while the classification
of Agricultural was the least accurate with an accuracy of 0.26. Most of the classes were
misclassified, which may be due to the insufficient depth of the trees used in the model as
well as the lack of data for training the model.

Table 7. Confusion matrix for AdaBoost.

Water Urban Lands Open Soils High Vegetation Grass Lands Bare Lands Agricultural

Water 1123 68 140 191 223 173 4

Urban lands 140 831 23 107 318 258 1

Open soils 84 9 827 214 135 251 46

High vegetation 22 2 122 1303 52 242 22

Grass lands 129 70 171 212 966 523 18

Bare lands 9 39 27 125 150 1414 3

Agricultural 36 10 106 225 97 46 1478

As a result, the deep neural network showed the best accuracy in LULC classification,
reaching 96.2% accuracy, which means high model efficiency. In the confusion matrix, some
false classifications can be noticed urban lands were incorrectly assigned to lands with
high vegetation, which can be explained by a lack of field research. However, the overall
accuracy of the model indicates that it is still effective in LULC classification.

Random Forest also showed good accuracy with 90.5%, but as in the previous model,
false classifications were observed. For example, lands occupied by agriculture were
incorrectly assigned to lands with high vegetation.

The SVM model showed an accuracy of 86.1%, which is less efficient than the previous
models. The confusion matrix also showed some false classifications, especially in classes
of agricultural lands and lands with high vegetation. As in previous cases, this may be due
to classification being performed on cadastre data, map data, and scientific articles, which
could significantly reduce accuracy.

Finally, the AdaBoost model showed the lowest accuracy of 58.4%, indicating that
it is less effective in LULC classification than other models. The confusion matrix also
showed a significant number of false classifications, including the incorrect identification
of lands with high vegetation and lands occupied by agriculture. However, it is necessary
to consider the lack of field research and the limitations in the use of cadastre data, map
data, and scientific articles, which can reduce model accuracy.

Based on the analysis of the confusion matrices, it can be concluded that the most
accurate model is the deep neural network, which is confirmed by its high overall accuracy
(0.962). Among the other models, Random Forest showed the highest accuracy (0.905),
while SVM and AdaBoost showed lower accuracy (0.861 and 0.584, respectively).



Data 2023, 8, 138 12 of 17

Overall, a high level of accuracy in land use classification is observed for all land
use classes. However, there are also certain errors that may be related to the use of only
cadastral data, map data, and scientific articles as the source data for classification, as well
as the lack of field studies. For example, in the error matrix for the deep neural network, we
can observe some false classifications into the „Open soils” class, which may be confused
with the “Bare lands” class due to their visual similarity.

Thus, it can be concluded that the use of various machine learning models allows for
achieving a high accuracy in land use classification based on cadastral data, map data, and
scientific articles. However, for more accurate results, field studies may be required, as well
as the use of more diverse data sources.

The Table 8 shows the accuracy, precision, recall, and F1 metrics for each of the LULC
classification models. The most accurate model was the deep neural network, which
had the highest accuracy (0.962) and high precision, recall, and F1 metrics for all classes.
The AdaBoost model also demonstrated high metric values for most classes but showed
significantly lower accuracy for the “Bare lands” class. The SVM model has low accuracy
for most classes, especially for the “Urban lands” and “High vegetation” classes and is
not the best choice for this task. The random forest model demonstrates good accuracy
for most classes but has low precision, recall, and F1 metrics for the “Water” and “High
vegetation” classes.

Table 8. Accuracy metrics, calculated for each machine learning models.

Model Accuracy Precision Recall F1

SVM 0.821 0.763 0.556 0.643

DNN 0.962 0.939 0.904 0.921

AdaBoost 0.655 0.710 0.564 0.628

Random Forest 0.814 0.725 0.751 0.737

Given that the research was conducted on the Kerch Peninsula, it can be concluded that
the terrain represents a typical sample of landscapes of the Black Sea coast. The largest area
is occupied by bare lands (1229 km2), which are characterized by a low level of vegetation
and used for agricultural purposes. Other large land use classes are meadows and pastures
(902 km2) and lands used for agriculture (555 km2). A small area is occupied by bare lands
(85 km2) and water bodies (81 km2). Urban areas occupy the smallest area (27 km2).

The area studied in this work represents a mixture of urban and rural areas, with a
predominance of open land areas (1229 km2). It is likely that industrial facilities, as well as
infrastructure such as roads, airports, recreation areas, etc., are in these areas.

A significant part of the territory is occupied by land use associated with agriculture.
Agricultural land is located on an area of 555 km2. This may indicate that this area plays an
important role in supplying cities and settlements with food. Open lands and agricultural
lands are usually the object of environmental protection and are important for maintaining
biodiversity. However, additional research is needed to determine the degree of human
impact on the environment and the presence of potential threats to its conservation.

The accuracy of classification of different models may be related to their ability to
process different types of data and noise in the data, as well as their parameters and settings.
For example, a deep neural network may be more effective in classifying complex non-
linear patterns, while SVM may perform better with linearly separable data. The choice of
model and its settings should be based on the specific task and the characteristics of the
data. Random forest, SVM, and deep neural network have shown higher accuracy than
AdaBoost. This may be due to AdaBoost using datasets that do not meet the assumptions
on which the AdaBoost method is based, such as the requirement that the samples are
independent and identically distributed, otherwise overfitting may occur [48].

Differences between SVM and AdaBoost may be related to their learning algorithms
and model parameters. For example, SVM tries to find the hyperplane that best separates
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the classes using a certain distance measure. If the distance between the classes is large,
SVM may not achieve high classification accuracy. AdaBoost, on the other hand, uses
weighted voting to combine several weak models into one strong model. If inappropriate
weak models are selected, this can lead to a decrease in the accuracy of the entire model.

4. Discussion
4.1. Possible Reasons of Classification Results

The superior performance of the deep neural network model with an accuracy of 96.2%
can be attributed to its ability to capture complex non-linear patterns in the input data. The
DNN’s multiple layers and neurons enable it to learn intricate spatial relationships and
representations, making it well-suited for the classification of diverse land use types, such
as water bodies, urban areas, open soils, and high vegetation.

On the other hand, the Random Forest model achieved an accuracy of 90.5%, show-
casing its capacity to handle many trees in the forest and make use of feature importance.
However, it faced challenges in distinguishing high vegetation from agricultural lands,
which may be attributed to the visual similarities between these classes and the lack of
detailed spectral information.

The support vector machine model demonstrated an accuracy of 86.1%, reflecting
its effectiveness in dealing with linearly separable data. Nonetheless, it encountered
difficulties in accurately classifying certain land use types, particularly agricultural and
high vegetation areas. This might be due to the SVM’s reliance on the selection of an
appropriate kernel function and regularization parameter, which may not be optimal for
this specific dataset.

In contrast, the AdaBoost model exhibited the lowest accuracy of 58.4%, indicating that
it struggled to achieve robust classifications. The limitations in AdaBoost’s performance
may be associated with its sensitivity to noisy data and misclassified samples, leading to
the suboptimal combination of weak classifiers.

The observed discrepancies in accuracy can also be attributed to the training data
sources, which predominantly relied on cadastral data, map data, and scientific articles.
The lack of comprehensive field studies may have hindered the accurate identification of
certain land use classes, particularly grasslands, bare lands, and agricultural areas, leading
to misclassifications in some instances.

Furthermore, the choice of hyperparameters during the tuning process significantly
impacted the performance of the models. The successful hyperparameter selection for
the DNN, Random Forest, SVM, and AdaBoost models contributed to their respective
accuracies, underscoring the importance of rigorous hyperparameter tuning for optimal
model performance.

4.2. Possible Causes of Misclassification

One of the primary causes of misclassification can be attributed to the limited scope
of data sources used in this study. The reliance on cadastral data, map data, and scientific
articles, while providing valuable insights, may not fully capture the complexity and
variability of the terrain. Field research, which was not extensively incorporated, could
have facilitated a more accurate identification of certain land use classes, especially those
with visual similarities such as Grass lands and High vegetation.

Another potential reason for misclassification lies in the nature of the terrain and
the unique challenges it presents. The Kerch Peninsula encompasses diverse landscapes
with intricate land use patterns, making it difficult for certain models to differentiate
between similar classes accurately. For instance, the misclassification of lands occupied by
agriculture into High vegetation or vice versa could be attributed to the limited spectral
resolution of the Landsat-5 imagery used as input data.

It is essential to acknowledge that, despite the high accuracy achieved by the deep
neural network and Random Forest models, misclassifications still occur. These inaccuracies
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could be due to the complexity of the classification task and the inherent difficulty in
discerning certain land use categories from the available data sources.

4.3. Limitations and Assumptions

The investigation of land use and land cover classification in the Kerch Peninsula
using machine learning models has provided valuable insights. However, it is essential to
address the limitations and assumptions that might have influenced the study’s outcomes.

One significant constraint in this study was the limited availability of data sources.
Relying solely on cadastral data, topographic maps, and scientific articles may have intro-
duced inaccuracies due to outdated or incomplete information. Field research data were
absent, leading to potential uncertainties in ground truthing and class definitions.

The use of Landsat-5 imagery with a moderate spatial resolution could have affected
the accuracy of land cover classification. Some land use classes, especially those with subtle
spectral differences, might have been challenging to distinguish accurately.

The quality and accuracy of the input data, such as cadastral records and topographic
maps, may have varied across different regions within the study area. Inconsistencies and
errors in these datasets could have impacted the overall classification performance.

The choice of machine learning algorithms was based on their commonly used appli-
cations but might not be the optimal choice for the specific characteristics of the study area.
Other models not considered in this study could potentially yield better results.

Despite these limitations, this study successfully demonstrated the efficacy of deep
neural network and Random Forest models for land use and land cover classification in the
Kerch Peninsula.

4.4. Future Research and Improvements

In light of the findings and limitations of this study, several ways for future research
and improvement can be proposed. Firstly, addressing the issue of limited data sources is
crucial for enhancing the accuracy of land use and land cover classification. Incorporat-
ing high-resolution remote sensing imagery, such as aerial photographs or satellite data
with finer spatial resolution, can provide more detailed information about the landscape,
enabling better discrimination between land use classes.

Secondly, conducting comprehensive field studies to validate the classified results
would be beneficial. Field surveys would allow for ground-truthing and validation of the
model’s outputs, reducing misclassifications and improving the overall reliability of the
classification results.

Furthermore, exploring the application of ensemble methods, where multiple machine
learning models are combined, could lead to improved classification performance. Ensem-
ble methods, such as stacking or blending different classifiers, have been shown to enhance
predictive accuracy by leveraging the strengths of individual models and compensating for
their weaknesses.

To enhance the generalization ability of the models, transfer learning techniques could
be investigated. By leveraging knowledge from pre-trained models on related tasks or
domains, transfer learning can help overcome the data scarcity issue and improve the
model’s ability to classify land use and land cover classes accurately.

Moreover, considering temporal data, such as multi-temporal satellite images, can
provide valuable insights into land use dynamics over time. Analyzing land cover changes
over different periods can aid in understanding long-term trends and supporting decision-
making processes related to land use planning and environmental conservation.

Lastly, investigating the influence of feature engineering on model performance can
lead to better feature representations and, subsequently, improved classification accuracy.
Utilizing domain knowledge to engineer relevant features, such as vegetation indices,
texture measures, or topographic attributes, can enhance the discriminative power of
the models.
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5. Conclusions

This study investigated the application of various machine learning models for land
use and land cover classification in the Kerch Peninsula. The objective was to explore the
feasibility of using limited data sources, such as topographic maps, scientific articles, and
cadastral data, in the absence of extensive field research. The research aimed to evaluate the
performance of four machine learning algorithms: deep neural network (DNN), Random
Forest, support vector machine (SVM), and AdaBoost, in accurately classifying different
land use and land cover types.

The findings revealed that the deep neural network model exhibited the highest
accuracy, achieving an impressive 96.2% accuracy in land use classification. The DNN
model demonstrated exceptional performance in classifying water, urban lands, open soils,
and high vegetation. However, it faced challenges in accurately classifying grasslands, bare
lands, and agricultural areas, which may be attributed to visual similarities between these
classes and the lack of specific field data.

The Random Forest model also demonstrated competitive performance with an accu-
racy of 90.5%. Nevertheless, it encountered difficulties in distinguishing high vegetation
from agricultural lands. The SVM model achieved an accuracy of 86.1%, while the AdaBoost
model performed the lowest with an accuracy of 58.4%.

The hyperparameter tuning process played a critical role in improving the performance
of the machine learning models. By systematically optimizing the hyperparameters using
grid search and cross-validation, the models were fine-tuned to achieve their best accuracy
on the test dataset.

Overall, this study’s contributions lie in the comprehensive comparison and evaluation
of multiple machine learning models for land use classification in the Kerch Peninsula.
The research demonstrates the potential of utilizing limited data sources, which are more
accessible in certain regions, for land use mapping and environmental management. How-
ever, it is essential to acknowledge the limitations introduced by the absence of detailed
field research, potentially leading to some misclassifications and reduced accuracy in
certain classes.

Author Contributions: Conceptualization, D.K. and S.G.C.; methodology, E.Z.; software, A.S.; val-
idation, A.Z., A.S. and D.K.; formal analysis, E.Z., A.Z., A.S., D.K. and S.G.C.; investigation, D.K.;
resources, A.S.; data curation, S.G.C.; writing—original draft preparation, A.Z.; visualization, D.K.;
funding acquisition, A.S. and E.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of
the Russian Federation as part of the World-class Research Center program: Advanced Digital
Technologies (contract No. 075-15-2022-312 dated 20 April 2022).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmad, F.; Goparaju, L.; Qayum, A. LULC Analysis of Urban Spaces Using Markov Chain Predictive Model at Ranchi in India.

Spat. Inf. Res. 2017, 25, 351–359. [CrossRef]
2. Naikoo, M.W.; Rihan, M.; Ishtiaque, M.; Shahfahad. Analyses of Land Use Land Cover (LULC) Change and Built-up Expansion

in the Suburb of a Metropolitan City: Spatio-Temporal Analysis of Delhi NCR Using Landsat Datasets. J. Urban Manag. 2020,
9, 347–359. [CrossRef]

3. Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine
Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [CrossRef]

4. Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the Links between LULC Changes and SUHI in Cities: Insights
from Two-Decadal Studies (2001–2020). Remote Sens. 2021, 13, 3654. [CrossRef]

5. Hadi, S.J.; Shafri, H.Z.M.; Mahir, M.D. Modelling LULC for the Period 2010–2030 Using GIS and Remote Sensing: A Case Study
of Tikrit, Iraq. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012053. [CrossRef]

https://doi.org/10.1007/s41324-017-0102-x
https://doi.org/10.1016/j.jum.2020.05.004
https://doi.org/10.3390/rs12071135
https://doi.org/10.3390/rs13183654
https://doi.org/10.1088/1755-1315/20/1/012053


Data 2023, 8, 138 16 of 17

6. Alshari, E.A.; Gawali, B.W. Development of Classification System for LULC Using Remote Sensing and GIS. Glob. Transit. Proc.
2021, 2, 8–17. [CrossRef]

7. Ali, K.; Johnson, B.A. Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing
Imagery: A Deep Learning Approach. Sensors 2022, 22, 8750. [CrossRef]

8. Mugari, E.; Masundire, H. Consistent Changes in Land-Use/Land-Cover in Semi-Arid Areas: Implications on Ecosystem Service
Delivery and Adaptation in the Limpopo Basin, Botswana. Land 2022, 11, 2057. [CrossRef]

9. Roy, A.; Inamdar, A.B. Multi-Temporal Land Use Land Cover (LULC) Change Analysis of a Dry Semi-Arid River Basin in Western
India Following a Robust Multi-Sensor Satellite Image Calibration Strategy. Heliyon 2019, 5, e01478. [CrossRef]

10. Yonaba, R.; Koïta, M.; Mounirou, L.A.; Tazen, F.; Queloz, P.; Biaou, A.C.; Niang, D.; Zouré, C.; Karambiri, H.; Yacouba, H. Spatial
and Transient Modelling of Land Use/Land Cover (LULC) Dynamics in a Sahelian Landscape under Semi-Arid Climate in
Northern Burkina Faso. Land Use Policy 2021, 103, 105305. [CrossRef]

11. Njoku, E.A.; Tenenbaum, D.E. Quantitative Assessment of the Relationship between Land Use/Land Cover (LULC), Topographic
Elevation and Land Surface Temperature (LST) in Ilorin, Nigeria. Remote Sens. Appl. Soc. Environ. 2022, 27, 100780. [CrossRef]

12. Tolentino, F.M.; de Lourdes Bueno Trindade Galo, M. Selecting Features for LULC Simultaneous Classification of Ambiguous
Classes by Artificial Neural Network. Remote Sens. Appl. Soc. Environ. 2021, 24, 100616. [CrossRef]

13. Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine
Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sens. 2019, 11, 1713. [CrossRef]

14. Jamali, A. Evaluation and Comparison of Eight Machine Learning Models in Land Use/Land Cover Mapping Using Landsat 8
OLI: A Case Study of the Northern Region of Iran. SN Appl. Sci. 2019, 1, 1448. [CrossRef]
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