Potential Range Map Dataset of Indian Birds
Abstract
:1. Summary
2. Data Description
3. Methods
3.1. Species Presence Data
3.2. Climate Data
3.3. Species Distribution Modelling
4. Potential Constraints and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis-Soto, D.; Merow, C.; Amatulli, G.; Parra, J.L.; Jetz, W. Continental-Scale 1 Km Hummingbird Diversity Derived from Fusing Point Records with Lateral and Elevational Expert Information. Ecography 2021, 44, 640–652. [Google Scholar] [CrossRef]
- Hurlbert, A.H.; Jetz, W. Species Richness, Hotspots, and the Scale Dependence of Range Maps in Ecology and Conservation. Proc. Natl. Acad. Sci. USA 2007, 104, 13384–13389. [Google Scholar] [CrossRef] [PubMed]
- Hurlbert, A.H.; White, E.P. Disparity between Range Map- and Survey-Based Analyses of Species Richness: Patterns, Processes and Implications. Ecol. Lett. 2005, 8, 319–327. [Google Scholar] [CrossRef]
- Ramesh, V.; Gopalakrishna, T.; Barve, S.; Melnick, D.J. Citizen Science Driven Species Distribution Models Estimate Drastically Smaller Range Sizes and Higher Threat Levels for Western Ghats Endemic Birds. Biol. Conserv. 2017, 210, 205–221. [Google Scholar] [CrossRef]
- Duan, H.; Yu, X.; Xia, S.; Liu, Y. Comparison of IUCN and Species Distribution Modeling-Estimated Ranges of Shorebirds in Coastal Mainland China. Glob. Ecol. Conserv. 2022, 38, e02236. [Google Scholar] [CrossRef]
- Higino, G.T.; Banville, F.; Dansereau, G.; Muñoz, N.R.F.; Windsor, F.; Poisot, T. Mismatch between IUCN Range Maps and Species Interactions Data Illustrated Using the Serengeti Food Web. PeerJ 2023, 11, e14620. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Lamming, J.D.L.; Sutherland, W.J. Spatial Gaps in Global Biodiversity Information and the Role of Citizen Science. BioScience 2016, 66, 393–400. [Google Scholar] [CrossRef]
- eBird. eBird: An Online Database of Bird Distribution and Abundance [Web Application]. Available online: http://www.ebird.org (accessed on 25 December 2021).
- Elith, J.; Graham, H.C.; Anderson, P.R.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting Species Distribution: Offering More than Simple Habitat Models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A Maximum Entropy Approach to Species Distribution Modeling. In Proceedings of the Twenty-First International Conference on Machine Learning—ICML ’04, Banff, AB, Canada, 4–8 July 2004; Volume 69, p. 83. [Google Scholar]
- Bazzichetto, M.; Malavasi, M.; Bartak, V.; Acosta, A.T.R.; Rocchini, D.; Carranza, M.L. Plant Invasion Risk: A Quest for Invasive Species Distribution Modelling in Managing Protected Areas. Ecol. Indic. 2018, 95, 311–319. [Google Scholar] [CrossRef]
- Blair, M.E.; Le, M.D.; Xu, M. Species Distribution Modeling to Inform Transboundary Species Conservation and Management under Climate Change: Promise and Pitfalls. Front. Biogeogr. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Domic, A.I.; Capriles, J.M. Distribution Shifts in Habitat Suitability and Hotspot Refugia of Andean Tree Species from the Last Glacial Maximum to the Anthropocene. Neotrop. Biodivers. 2021, 7, 297–309. [Google Scholar] [CrossRef]
- Kass, J.M.; Anderson, R.P.; Espinosa-Lucas, A.; Juárez-Jaimes, V.; Martínez-Salas, E.; Botello, F.; Tavera, G.; Flores-Martínez, J.J.; Sánchez-Cordero, V. Biotic Predictors with Phenological Information Improve Range Estimates for Migrating Monarch Butterflies in Mexico. Ecography 2020, 43, 341–352. [Google Scholar] [CrossRef]
- Syfert, M.M.; Joppa, L.; Smith, M.J.; Coomes, D.A.; Bachman, S.P.; Brummitt, N.A. Using Species Distribution Models to Inform IUCN Red List Assessments. Biol. Conserv. 2014, 177, 174–184. [Google Scholar] [CrossRef]
- Ariño, A.H.; Chavan, V.; Faith, D.P. Assessment of User Needs of Primary Biodiversity Data: Analysis, Concerns, and Challenges. Biodivers. Inform. 2015, 8, 59–93. [Google Scholar] [CrossRef]
- Barry, S.; Elith, J. Error and Uncertainty in Habitat Models. J. Appl. Ecol. 2006, 43, 413–423. [Google Scholar] [CrossRef]
- Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial Bias in the GBIF Database and Its Effect on Modeling Species’ Geographic Distributions. Ecol. Inform. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- Meyer, C.; Weigelt, P.; Kreft, H. Multidimensional Biases, Gaps and Uncertainties in Global Plant Occurrence Information. Ecol. Lett. 2016, 19, 992–1006. [Google Scholar] [CrossRef]
- Barber, R.A.; Ball, S.G.; Morris, R.K.A.; Gilbert, F. Target-Group Backgrounds Prove Effective at Correcting Sampling Bias in Maxent Models. Divers. Distrib. 2022, 28, 128–141. [Google Scholar] [CrossRef]
- Boakes, E.H.; McGowan, P.J.K.; Fuller, R.A.; Chang-Qing, D.; Clark, N.E.; O’Connor, K.; Mace, G.M. Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data. PLoS Biol. 2010, 8, e1000385. [Google Scholar] [CrossRef] [PubMed]
- Botella, C.; Joly, A.; Monestiez, P.; Bonnet, P.; Munoz, F. Bias in Presence-Only Niche Models Related to Sampling Effort and Species Niches: Lessons for Background Point Selection. PLoS ONE 2020, 15, e0232078. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.C.; Nogueira, C.; Machado, R.B.; Colli, G.R. Sampling Bias and the Use of Ecological Niche Modeling in Conservation Planning: A Field Evaluation in a Biodiversity Hotspot. Biodivers. Conserv. 2010, 19, 883–899. [Google Scholar] [CrossRef]
- El-Gabbas, A.; Dormann, C.F. Improved Species-Occurrence Predictions in Data-Poor Regions: Using Large-Scale Data and Bias Correction with down-Weighted Poisson Regression and Maxent. Ecography 2018, 41, 1049–1231. [Google Scholar] [CrossRef]
- Breiner, F.T.; Guisan, A.; Nobis, M.P.; Bergamini, A. Including Environmental Niche Information to Improve IUCN Red List Assessments. Divers. Distrib. 2017, 23, 484–495. [Google Scholar] [CrossRef]
- McClure, C.J.W.; Dunn, L.; Buechley, E.R.; Juergens, P.; Oleyar, D.; Goodrich, L.J.; Therrien, J.-F. Conservation Assessment of Raptors within the USA and Canada. Biol. Conserv. 2022, 272, 109633. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Carrasco, B.; Orchard, C. Combining Niche Modelling, Land-Use Change, and Genetic Information to Assess the Conservation Status of Pouteria Splendens Populations in Central Chile. Int. J. Ecol. 2015, 2015, 612194. [Google Scholar] [CrossRef]
- Papeş, M.; Gaubert, P. Modelling Ecological Niches from Low Numbers of Occurrences: Assessment of the Conservation Status of Poorly Known Viverrids (Mammalia, Carnivora) across Two Continents. Divers. Distrib. 2007, 13, 890–902. [Google Scholar] [CrossRef]
- Pena, J.C.C.; Kamino, L.H.Y.; Rodrigues, M.; Mariano-Neto, E.; de Siqueira, M.F. Assessing the Conservation Status of Species with Limited Available Data and Disjunct Distribution. Biol. Conserv. 2014, 170, 130–136. [Google Scholar] [CrossRef]
- Araújo, M.B.; Thuiller, W.; Pearson, R.G. Climate Warming and the Decline of Amphibians and Reptiles in Europe. J. Biogeogr. 2006, 33, 1712–1728. [Google Scholar] [CrossRef]
- Beresford, A.E.; Buchanan, G.M.; Donald, P.F.; Butchart, S.H.M.; Fishpool, L.D.C.; Rondinini, C. Poor Overlap between the Distribution of Protected Areas and Globally Threatened Birds in Africa. Anim. Conserv. 2011, 14, 99–107. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Robertson, M.P.; Erasmus, B.F.N.; van Rensburg, B.J.; Thuiller, W. Ensemble Models Predict Important Bird Areas in Southern Africa Will Become Less Effective for Conserving Endemic Birds under Climate Change. Glob. Ecol. Biogeogr. 2009, 18, 701–710. [Google Scholar] [CrossRef]
- Gill, J.A.; Alves, J.A.; Gunnarsson, T.G. Mechanisms Driving Phenological and Range Change in Migratory Species. Philos. Trans. R. Soc. B 2019, 374, 20180047. [Google Scholar] [CrossRef] [PubMed]
- Huntley, B.; Collingham, Y.C.; Willis, S.G.; Green, R.E. Potential Impacts of Climatic Change on European Breeding Birds. PLoS ONE 2008, 3, e1439. [Google Scholar] [CrossRef]
- Scott, D.; Lemieux, C. Climate Change and Protected Area Policy and Planning in Canada. For. Chron. 2005, 81, 696–703. [Google Scholar] [CrossRef]
- Sintayehu, D.W. Impact of Climate Change on Biodiversity and Associated Key Ecosystem Services in Africa: A Systematic Review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef]
- Keller, V.; Herrando, S.; Voříšek, P.; Franch, M.; Kipson, M.; Milanesi, P.; Martí, D.; Anton, M.; Klvaňová, A.; Kalyakin, M.V.; Bauer, H.-G.; Foppen, R.P.B. European Breeding Bird Atlas 2: Distribution, Abundance and Change; European Bird Census Council & Lynx Edicions: Barcelona, Spain, 2020. [Google Scholar]
- Chhetri, B.; Badola, H.K.; Barat, S. Predicting Climate-Driven Habitat Shifting of the near Threatened Satyr Tragopan (Tragopan Satyra; Galliformes) in the Himalayas. Avian Biol. Res. 2018, 11, 221–230. [Google Scholar] [CrossRef]
- Chhetri, B.; Badola, H.K.; Barat, S. Modelling Climate Change Impacts on Distribution of Himalayan Pheasants. Ecol. Indic. 2021, 123, 107368. [Google Scholar] [CrossRef]
- Jha, K.K.; Jha, R. Study of Vulture Habitat Suitability and Impact of Climate Change in Central India Using MaxEnt. J. Resour. Ecol. 2021, 12, 30–42. [Google Scholar] [CrossRef]
- Jose, V.S.; Nameer, P.O. The Expanding Distribution of the Indian Peafowl (Pavo Cristatus) as an Indicator of Changing Climate in Kerala, Southern India: A Modelling Study Using MaxEnt. Ecol. Indic. 2020, 110, 105930. [Google Scholar] [CrossRef]
- Menon, S.; Peterson, A.T. Projected Climate Change Effects on Nuthatch Distribution. Raffles Bull. Zool. 2009, 57, 569–575. [Google Scholar]
- Singh, H.; Kumar, N.; Kumar, M.; Singh, R. Modelling Habitat Suitability of Western Tragopan (Tragopan Melanocephalus) a Range-Restricted Vulnerable Bird Species of the Himalayan Region, in Response to Climate Change. Clim. Risk Manag. 2020, 29, 100241. [Google Scholar] [CrossRef]
- Sreekumar, E.R.; Nameer, P.O. Impact of Climate Change on Two High-Altitude Restricted and Endemic Flycatchers of The Western Ghats, India. Curr. Sci. 2021, 121, 1335. [Google Scholar] [CrossRef]
- Sreekumar, E.R.; Nameer, P.O. A MaxEnt Modelling Approach to Understand the Climate Change Effects on the Distributional Range of White-Bellied Sholakili Sholicola Albiventris (Blanford, 1868) in the Western Ghats, India. Ecol. Inform. 2022, 70, 101702. [Google Scholar] [CrossRef]
- Sutton, L.J.; McClure, C.J.W.; Kini, S.; Leonardi, G. Climatic Constraints on Laggar Falcon (Falco Jugger) Distribution Predicts Multidirectional Range Movements under Future Climate Change Scenarios. J. Raptor Res. 2020, 54, 1–17. [Google Scholar] [CrossRef]
- Yousefi, M.; Ahmadi, M.; Nourani, E.; Rezaei, A.; Kafash, A.; Khani, A.; Sehhatisabet, M.E.; Adibi, M.A.; Goudarzi, F.; Kaboli, M. Habitat Suitability and Impacts of Climate Change on the Distribution of Wintering Population of Asian Houbara Bustard Chlamydotis Macqueenii in Iran. Bird Conserv. Int. 2017, 27, 294–304. [Google Scholar] [CrossRef]
- Peterson, A.; Papeş, M. Potential Geographic Distribution of the Bugun Liocichla Liocichla Bugunorum, a Poorly-Known Species from North-Eastern India. Indian Birds 2006, 2, 146–149. [Google Scholar]
- Kaul, R.; Kalsi, R.S.; Singh, R.; Basnet, H.; Awan, M.N. Cheer Pheasant (Catreus Wallichii) and the Conservation Paradox: Importance of Unprotected Areas. Diversity 2022, 14, 785. [Google Scholar] [CrossRef]
- Singh, P.; Saran, S.; Kocaman, S. Role of Maximum Entropy and Citizen Science to Study Habitat Suitability of Jacobin Cuckoo in Different Climate Change Scenarios. ISPRS Int. J. Geo-Inf. 2021, 10, 463. [Google Scholar] [CrossRef]
- Chitale, V.S.; Behera, M.D.; Roy, P.S. Future of Endemic Flora of Biodiversity Hotspots in India. PLoS ONE 2014, 9, e115264. [Google Scholar] [CrossRef]
- Ghosh, B.G.; Garai, S.; Rahaman, S.M.; Khatun, M.; Mohammad, N.; Mishra, Y.; Ranjan, A.; Tiwari, S. Assessing Potential Habitat Distribution Range of the Endangered Tree Species Pterocarpus Marsupium Roxb. Under the Climate Change Scenario in India. Trees For. People 2021, 6, 100124. [Google Scholar] [CrossRef]
- Hebbar, K.B.; Abhin, P.S.; Sanjo Jose, V.; Neethu, P.; Santhosh, A.; Shil, S.; Prasad, P.V.V. Predicting the Potential Suitable Climate for Coconut (Cocos nucifera L.) Cultivation in India under Climate Change Scenarios Using the MaxEnt Model. Plants 2022, 11, 731. [Google Scholar] [CrossRef]
- Kailash, B.R.; Charles, B.; Ravikanth, G.; Setty, S.; Kadirvelu, K. Identifying the Potential Global Distribution and Conservation Areas for Terminalia Chebula, an Important Medicinal Tree Species under Changing Climate Scenario. Trop. Ecol. 2022, 63, 584–595. [Google Scholar] [CrossRef]
- Maikhuri, R.K.; Phondani, P.C.; Dhyani, D.; Rawat, L.S.; Jha, N.K.; Kandari, L.S. Assessment of Climate Change Impacts and Its Implications on Medicinal Plants-Based Traditional Healthcare System in Central Himalaya, India. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 1827–1835. [Google Scholar] [CrossRef]
- Manish, K.; Telwala, Y.; Nautiyal, D.C.; Pandit, M.K. Modelling the Impacts of Future Climate Change on Plant Communities in the Himalaya: A Case Study from Eastern Himalaya, India. Model. Earth Syst. Environ. 2016, 2, 92. [Google Scholar] [CrossRef]
- Priti, H.; Aravind, N.A.; Uma Shaanker, R.; Ravikanth, G. Modeling Impacts of Future Climate on the Distribution of Myristicaceae Species in the Western Ghats, India. Ecol. Eng. 2016, 89, 14–23. [Google Scholar] [CrossRef]
- Mathur, M.; Mathur, P.; Purohit, H. Ecological Niche Modelling of a Critically Endangered Species Commiphora Wightii (Arn.) Bhandari Using Bioclimatic and Non-Bioclimatic Variables. Ecol. Process. 2023, 12, 8. [Google Scholar] [CrossRef]
- Irfan-Ullah, M.; Amarnath, G.; Murthy, M.S.R.; Peterson, A.T. Mapping the Geographic Distribution of Aglaia Bourdillonii Gamble (Meliaceae), an Endemic and Threatened Plant, Using Ecological Niche Modeling. Biodivers. Conserv. 2007, 16, 1917–1925. [Google Scholar] [CrossRef]
- Paul, A.; Khan, M.L.; Das, A.K.; Dutta, P.K. Diversity and Distribution of Rhododendrons in Arunachal Himalaya, India. J. Am. Rhododendr. Soc. 2010, 3, 200–205. [Google Scholar]
- Bobrowski, M.; Gerlitz, L.; Schickhoff, U. Modelling the Potential Distribution of Betula Utilis in the Himalaya. Glob. Ecol. Conserv. 2017, 11, 69–83. [Google Scholar] [CrossRef]
- Bhandari, M.S.; Meena, R.K.; Shankhwar, R.; Shekhar, C.; Saxena, J.; Kant, R.; Pandey, V.V.; Barthwal, S.; Pandey, S.; Chandra, G.; et al. Prediction Mapping Through Maxent Modeling Paves the Way for the Conservation of Rhododendron Arboreum in Uttarakhand Himalayas. J. Indian Soc. Remote Sens. 2020, 48, 411–422. [Google Scholar] [CrossRef]
- Chatterjee, P.; Tripathy, B.; Chandra, K.; Saha, G.K.; Mondal, K. Climate Change Alarms the Survival of Near Threatened Species Malayan Giant Squirrel (Ratufa Bicolor Sparrman, 1778) in India. JMAM 2020, 45, 289–302. [Google Scholar] [CrossRef]
- Kanagaraj, R.; Araujo, M.B.; Barman, R.; Davidar, P.; De, R.; Digal, D.K.; Gopi, G.V.; Johnsingh, A.J.T.; Kakati, K.; Kramer-Schadt, S.; et al. Predicting Range Shifts of Asian Elephants under Global Change. Divers. Distrib. 2019, 25, 822–838. [Google Scholar] [CrossRef]
- Singh, P.B.; Mainali, K.; Jiang, Z.; Thapa, A.; Subedi, N.; Awan, M.N.; Ilyas, O.; Luitel, H.; Zhou, Z.; Hu, H. Projected Distribution and Climate Refugia of Endangered Kashmir Musk Deer Moschus Cupreus in Greater Himalaya, South Asia. Sci. Rep. 2020, 10, 1511. [Google Scholar] [CrossRef]
- Jennings, A.P.; Veron, G. Predicted Distributions and Ecological Niches of 8 Civet and Mongoose Species in Southeast Asia. J. Mammal. 2011, 92, 316–327. [Google Scholar] [CrossRef]
- Kumara, H.N.; Irfan-Ullah, M.; Kumar, S. Mapping Potential Distribution of Slender Loris Subspecies in Peninsular India. Endanger. Species Res. 2009, 7, 29–38. [Google Scholar] [CrossRef]
- Thorn, J.S.; Nijman, V.; Smith, D.; Nekaris, K.A.I. Ecological Niche Modelling as a Technique for Assessing Threats and Setting Conservation Priorities for Asian Slow Lorises (Primates: Nycticebus). Divers. Distrib. 2009, 15, 289–298. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B.; Singh, I.H. Predicting the Current and Future Potential Spatial Distribution of Endangered Rucervus Eldii Eldii (Sangai) Using MaxEnt Model. Environ. Monit. Assess. 2021, 193, 147. [Google Scholar] [CrossRef]
- Mungi, N.A.; Qureshi, Q.; Jhala, Y.V. Expanding Niche and Degrading Forests: Key to the Successful Global Invasion of Lantana Camara (Sensu Lato). Glob. Ecol. Conserv. 2020, 23, e01080. [Google Scholar] [CrossRef]
- Bushi, D.; Mahato, R.; Nimasow, O.D.; Nimasow, G. MaxEnt-Based Prediction of the Potential Invasion of Lantana Camara L. under Climate Change Scenarios in Arunachal Pradesh, India. Acta Ecol. Sin. 2023, 43, 674–683. [Google Scholar] [CrossRef]
- Maruthadurai, R.; Das, B.; Ramesh, R. Predicting the Invasion Risk of Rugose Spiraling Whitefly, Aleurodicus Rugioperculatus, in India Based on CMIP6 Projections by MaxEnt. Pest Manag. Sci. 2023, 79, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, J.S.; Mali, S.S.; Fand, B.B.; Das, B. Predicting the Invasion Potential of Indigenous Restricted Mango Fruit Borer, Citripestis Eutraphera (Lepidoptera: Pyralidae) in India Based on MaxEnt Modelling. Curr. Sci. 2019, 116, 636–642. [Google Scholar] [CrossRef]
- Kumar, S.; Graham, J.; West, A.M.; Evangelista, P.H. Using District-Level Occurrences in MaxEnt for Predicting the Invasion Potential of an Exotic Insect Pest in India. Comput. Electron. Agric. 2014, 103, 55–62. [Google Scholar] [CrossRef]
- Padalia, H.; Srivastava, V.; Kushwaha, S.P.S. Modeling Potential Invasion Range of Alien Invasive Species, Hyptis Suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Deomurari, A.; Sharma, A.; Ghose, D.; Singh, R. Projected Shifts in Bird Distribution in India under Climate Change. Diversity 2023, 15, 404. [Google Scholar] [CrossRef]
- GBIF Occurrence Download. Available online: http://www.gbif.org/ (accessed on 25 September 2021).
- Jayadevan, P.; Jayapal, R.; Pittie, A. A Checklist of the Birds of India. Indian BIRDS 2016, 11, 113–172. [Google Scholar]
- Sullivan, B.L.; Wood, C.L.; Iliff, M.J.; Bonney, R.E.; Fink, D. eBird: A Citizen-Based Bird Observation Network in the Biological Sciences. Biol. Conserv. 2009, 142, 2282–2292. [Google Scholar] [CrossRef]
- BirdLife International and Handbook of the Birds of the World Bird Species Distribution Maps of the World. Version 2020.1. 2020. Available online: http://datazone.birdlife.org/species/requestdis (accessed on 25 December 2021).
- Beninde, J.; Delaney, T.W.; Gonzalez, G.; Shaffer, H.B. Harnessing iNaturalist to Quantify Hotspots of Urban Biodiversity: The Los Angeles Case Study. Front. Ecol. Evol. 2023, 11, 983371. [Google Scholar] [CrossRef]
- Mesaglio, T.; Callaghan, C.T.; Mesaglio, T.; Callaghan, C.T. An Overview of the History, Current Contributions and Future Outlook of iNaturalist in Australia. Wildl. Res. 2021, 48, 289–303. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; van Strien, A.J.; August, T.A.; de Zeeuw, M.P.; Roy, D.B. Statistics for Citizen Science: Extracting Signals of Change from Noisy Ecological Data. Methods Ecol. Evol. 2014, 5, 1052–1060. [Google Scholar] [CrossRef]
- Lagoze, C. eBird: Curating Citizen Science Data for Use by Diverse Communities. Int. J. Digit. Curation 2014, 9, 71–82. [Google Scholar] [CrossRef]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R Package for Spatial Thinning of Species Occurrence Records for Use in Ecological Niche Models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing; R Core Team R: Vienna, Austria, 2022. [Google Scholar]
- Van Eupen, C.; Maes, D.; Herremans, M.; Swinnen, K.R.R.; Somers, B.; Luca, S. The Impact of Data Quality Filtering of Opportunistic Citizen Science Data on Species Distribution Model Performance. Ecol. Model. 2021, 444, 109453. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; Elith, J.; Dudík, M.; Ferrier, S.; Huettmann, F.; et al. Effects of Sample Size on the Performance of Species Distribution Models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Cayuela, L.; Golicher, D.J.; Newton, A.C.; Kolb, M.; de Alburquerque, F.S.; Arets, E.J.M.M.; Alkemade, J.R.M.; Pérez, A.M. Species Distribution Modeling in the Tropics: Problems, Potentialities, and the Role of Biological Data for Effective Species Conservation. Trop. Conserv. Sci. 2009, 2, 319–352. [Google Scholar] [CrossRef]
- Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The Importance of Correcting for Sampling Bias in MaxEnt Species Distribution Models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Rocchini, D.; Hortal, J.; Lengyel, S.; Lobo, J.M.; Jiménez-Valverde, A.; Ricotta, C.; Bacaro, G.; Chiarucci, A. Accounting for Uncertainty When Mapping Species Distributions: The Need for Maps of Ignorance. Prog. Phys. Geogr. Earth Environ. 2011, 35, 211–226. [Google Scholar] [CrossRef]
- Zizka, A.; Antonelli, A.; Silvestro, D. Sampbias, a Method for Quantifying Geographic Sampling Biases in Species Distribution Data. Ecography 2021, 44, 25–32. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Title, P.O.; Bemmels, J.B. ENVIREM: An Expanded Set of Bioclimatic Variables Improves Ecological Niche Modeling Performance. Prep. Submiss. Methods Ecol. Evol. 2016, 1–48. [Google Scholar] [CrossRef]
- Feeley, K.J.; Bravo-Avila, C.; Fadrique, B.; Perez, T.M.; Zuleta, D. Climate-Driven Changes in the Composition of New World Plant Communities. Nat. Clim. Chang. 2020, 10, 965–970. [Google Scholar] [CrossRef]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Kallimanis, A.; Strid, A.; Dimopoulos, P. Plant Endemism Centres and Biodiversity Hotspots in Greece. Biology 2021, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Lembrechts, J.J.; Nijs, I.; Lenoir, J. Incorporating Microclimate into Species Distribution Models. Ecography 2019, 42, 1267–1279. [Google Scholar] [CrossRef]
- Pecchi, M.; Marchi, M.; Burton, V.; Giannetti, F.; Moriondo, M.; Bernetti, I.; Bindi, M.; Chirici, G. Species Distribution Modelling to Support Forest Management. A Literature Review. Ecol. Model. 2019, 411, 108817. [Google Scholar] [CrossRef]
- Urbina-Cardona, N.; Blair, M.E.; Londoño, M.C.; Loyola, R.; Velásquez-Tibatá, J.; Morales-Devia, H. Species Distribution Modeling in Latin America: A 25-Year Retrospective Review. Trop. Conserv. Sci. 2019, 12, 194008291985405. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in Ecological Niche Modeling: Confusions and Challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-Source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The Crucial Role of the Accessible Area in Ecological Niche Modeling and Species Distribution Modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Elith, J.; Kearney, M.; Phillips, S. The Art of Modelling Range-Shifting Species. Methods Ecol. Evol. 2010, 1, 330–342. [Google Scholar] [CrossRef]
- Anderson, R.P.; Raza, A. The Effect of the Extent of the Study Region on GIS Models of Species Geographic Distributions and Estimates of Niche Evolution: Preliminary Tests with Montane Rodents (Genus Nephelomys) in Venezuela. J. Biogeogr. 2010, 37, 1378–1393. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting Pseudo-Absences for Species Distribution Models: How, Where and How Many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Inman, R.; Franklin, J.; Esque, T.; Nussear, K. Comparing Sample Bias Correction Methods for Species Distribution Modeling Using Virtual Species. Ecosphere 2021, 12, e03422. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecol. Appl. 2009, 19, 181–197. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R Package for Conducting Spatially Independent Evaluations and Estimating Optimal Model Complexity for Maxent Ecological Niche Models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Liu, R.G.P.; Berry, C.; Dawson, P.M.; Pearson, T.P.; Liu, C.; Berry, P.M.; Dawson, T.P.; et al. Selecting Thresholds of Occurrence in the Prediction of Species Distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting Thresholds for the Prediction of Species Occurrence with Presence-Only Data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B.; Peterson, A.T.; Soberón, J.; Pearson, R.G. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011; ISBN 978-1-4008-4067-0. [Google Scholar]
- Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological Niche Modeling in Maxent: The Importance of Model Complexity and the Performance of Model Selection Criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.G.; Raxworthy, C.J.; Nakamura, M.; Townsend Peterson, A. Predicting Species Distributions from Small Numbers of Occurrence Records: A Test Case Using Cryptic Geckos in Madagascar. J. Biogeogr. 2007, 34, 102–117. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Boyce, M.S.; Vernier, P.R.; Nielsen, S.E.; Schmiegelow, F.K.A. Evaluating Resource Selection Functions. Ecol. Model. 2002, 157, 281–300. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Santini, L.; Benítez-López, A.; Maiorano, L.; Čengić, M.; Huijbregts, M.A.J. Assessing the Reliability of Species Distribution Projections in Climate Change Research. Divers. Distrib. 2021, 27, 1035–1050. [Google Scholar] [CrossRef]
- Early, R.; Keith, S.A. Geographically Variable Biotic Interactions and Implications for Species Ranges. Glob. Ecol. Biogeogr. 2019, 28, 42–53. [Google Scholar] [CrossRef]
- Pigot, A.L.; Tobias, J.A. Species Interactions Constrain Geographic Range Expansion over Evolutionary Time. Ecol. Lett. 2013, 16, 330–338. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deomurari, A.; Sharma, A.; Ghose, D.; Singh, R. Potential Range Map Dataset of Indian Birds. Data 2023, 8, 144. https://doi.org/10.3390/data8090144
Deomurari A, Sharma A, Ghose D, Singh R. Potential Range Map Dataset of Indian Birds. Data. 2023; 8(9):144. https://doi.org/10.3390/data8090144
Chicago/Turabian StyleDeomurari, Arpit, Ajay Sharma, Dipankar Ghose, and Randeep Singh. 2023. "Potential Range Map Dataset of Indian Birds" Data 8, no. 9: 144. https://doi.org/10.3390/data8090144
APA StyleDeomurari, A., Sharma, A., Ghose, D., & Singh, R. (2023). Potential Range Map Dataset of Indian Birds. Data, 8(9), 144. https://doi.org/10.3390/data8090144