Data-Driven Analysis of MRI Scans: Exploring Brain Structure Variations in Colombian Adolescent Offenders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Participants
2.1.2. Ethics Statement
2.1.3. Instruments
2.2. MRI Preprocessing
2.3. Data Processing and Statistical Analysis
2.3.1. Demographic Description
2.3.2. Brain Structural Analysis
2.4. Feature Selection and Model Evaluation
3. Results
3.1. Participants
3.2. Data Processing and Statistical Analysis
3.2.1. Demographic Description
3.2.2. Brain Structural Analysis
3.3. Optimizing Feature Identification through Dimensionality Reduction Techniques
3.4. Optimizing Feature Identification Using Classification Techniques
4. Discussion
4.1. Demographic and Behavioral Analysis
4.2. Socioeconomic and Substance Use Analysis
4.3. Neuroanatomical Insights
4.4. Data Processing and Machine Learning Insights
4.5. Limitations and Concluding Remarks
Structure | Function Related to Behavior | Relation to Violent Behavior |
---|---|---|
Frontal Lobe (ctx-lh-rostralmiddlefrontal) | Involved in cognitive processes of a higher nature, such as the faculties of reasoning, planning, decision-making, and impulse control [45]. Additionally, it is implicated in the regulation of emotions and the development of personality traits. | Lesions or dysfunctions within this particular region have been observed to potentially correlate with impulsivity, deficiency in empathy, and the manifestation of aggressive behavior [46,47,48]. |
Left Globus Pallidus (left pallidum) | The primary function of the globus pallidus is to control conscious and proprioceptive movements [49]. | Although its dysfunction is not directly related to violent behavior, it can affect motor regulation and certain cognitive aspects [50]. |
Occipital Lobe (ctx-lh-lingual) | Primarily concerned with visual processing, particularly word and object recognition [51,52,53]. | No direct relationship established with violent behavior [54]. |
Cerebellum (right cerebellum white matter and left cerebellum white matter) | Traditionally associated with motor coordination, but studies suggests a role in cognitive and emotional functions [44,55,56]. | Alterations in the cerebellum may be related to autism spectrum disorders and schizophrenia, but no direct relationship established with violent behavior [44]. |
Frontal Lobe (ctx-lh-caudalanteriorcingulate) | Involved in emotional regulation, decision-making, and reward anticipation. Also plays a role in motor and cognitive control [45]. | Dysfunctions in this region may be related to anxiety disorders, depression, and ADHD. There may be an indirect relationship with impulsive behaviors [57,58]. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amri, M.M.; Abed, S.A. The Data-Driven Future of Healthcare: A Review. Mesopotamian J. Big Data 2023, 2023, 68–74. [Google Scholar] [CrossRef]
- Ling, S.; Umbach, R.; Raine, A. Biological Explanations of Criminal Behavior. Psychol. Crime. Law PC L 2019, 25, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Miller, E. Brain Injury as a Contributory Factor in Offending. In The Neurobiology of Criminal Behavior; Glicksohn, J., Ed.; Neurobiological Foundation of Aberrant Behaviors; Springer: Boston, MA, USA, 2002; pp. 137–153. ISBN 978-1-4615-0943-1. [Google Scholar]
- Hofhansel, L.; Weidler, C.; Votinov, M.; Clemens, B.; Raine, A.; Habel, U. Morphology of the Criminal Brain: Gray Matter Reductions Are Linked to Antisocial Behavior in Offenders. Brain Struct. Funct. 2020, 225, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Loomans, M.M.; Tulen, J.H.M.; van Marle, H.J.C. The neurobiology of antisocial behaviour. Tijdschr. Voor Psychiatr. 2010, 52, 387–396. [Google Scholar]
- Liu, H.; Li, Y.; Guo, G. Gene by Social-Environment Interaction for Youth Delinquency and Violence: Thirty-Nine Aggression-Related Genes. Soc. Forces Sci. Medium Soc. Study Interpret. 2015, 93, 881–903. [Google Scholar] [CrossRef]
- Reiss, D.; Ganiban, J.M.; Leve, L.D.; Neiderhiser, J.M.; Shaw, D.S.; Natsuaki, M.N. Parenting in the Context of the Child: Genetic and Social Processes. Monogr. Soc. Res. Child Dev. 2022, 87, 7–188. [Google Scholar] [CrossRef]
- Jones, M.S.; Hoffmann, J.P. Measuring Adverse Childhood Experiences with Latent Class Trajectories. Child Abus. Negl. 2023, 140, 106142. [Google Scholar] [CrossRef]
- Morgan, P.L.; Farkas, G.; Woods, A.D.; Wang, Y.; Hillemeier, M.M.; Oh, Y. Factors Predictive of Being Bullies or Victims of Bullies in US Elementary Schools. Sch. Ment. Health 2023, 15, 566–582. [Google Scholar] [CrossRef]
- Turner, D.; Wolf, A.J.; Barra, S.; Müller, M.; Gregório Hertz, P.; Huss, M.; Tüscher, O.; Retz, W. The Association between Adverse Childhood Experiences and Mental Health Problems in Young Offenders. Eur. Child Adolesc. Psychiatry 2021, 30, 1195–1207. [Google Scholar] [CrossRef]
- Perino, M.T.; Guassi Moreira, J.F.; Telzer, E.H. Links between Adolescent Bullying and Neural Activation to Viewing Social Exclusion. Cogn. Affect. Behav. Neurosci. 2019, 19, 1467–1478. [Google Scholar] [CrossRef]
- Geurts, D.E.M.; von Borries, K.; Huys, Q.J.M.; Bulten, B.H.; Verkes, R.-J.; Cools, R. Psychopathic Tendency in Violent Offenders Is Associated with Reduced Aversive Pavlovian Inhibition of Behavior and Associated Striatal BOLD Signal. Front. Behav. Neurosci. 2022, 16, 963776. [Google Scholar] [CrossRef] [PubMed]
- Pino, M.; Montaño, S.; Agudelo, K.; Idárraga-Cabrera, C.; Fernández-Lucas, J.; Herrera-Mendoza, K. Emotion Recognition in Young Male Offenders and Non-Offenders. Physiol. Behav. 2019, 207, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Llorca Mestre, A.; Malonda, E.; Samper-García, P. Depression and Aggressive Behaviour in Adolescents Offenders and Non-Offenders. Psicothema 2017, 29, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Olivera-La Rosa, A.; Amador, O.; Chuquichambi, E.G.; Carmona-Cardona, C.A.; Acosta-Tobón, S.A.; Arango-Tobón, O.E.; Villacampa, J. Exploring the Relationship between Callous-Unemotional Traits and Implicit Attitudes toward Violence. Healthcare 2023, 11, 1445. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pérez, J.-J.; Viera, M.; Calero, J.; Tomás, J.M. Factors in Assessing Recidivism Risk in Young Offenders. Sustainability 2020, 12, 1111. [Google Scholar] [CrossRef]
- Galinari, L.S.; Bazon, M.R. Criminal Behavior and Psychosocial Risk Factors in Brazilian Adolescent Offenders: An Exploratory Latent Class Analysis. Int. J. Environ. Res. Public. Health 2021, 18, 10509. [Google Scholar] [CrossRef]
- Ritchie, K.; Ancelin, M.L.; Amieva, H.; Rouaud, O.; Carrière, I. The Association between Caffeine and Cognitive Decline: Examining Alternative Causal Hypotheses. Int. Psychogeriatr. 2014, 26, 581–590. [Google Scholar] [CrossRef]
- Gross, J.J.; Thompson, R.A. Emotion Regulation: Conceptual Foundations. In Handbook of Emotion Regulation; The Guilford Press: New York, NY, USA, 2007; pp. 3–24. ISBN 978-1-59385-148-4. [Google Scholar]
- Paulus, F.W.; Ohmann, S.; Möhler, E.; Plener, P.; Popow, C. Emotional Dysregulation in Children and Adolescents With Psychiatric Disorders. A Narrative Review. Front. Psychiatry 2021, 12, 628252. [Google Scholar] [CrossRef]
- Njardvik, U.; Smaradottir, H.; Öst, L.-G. The Effects of Emotion Regulation Treatment on Disruptive Behavior Problems in Children: A Randomized Controlled Trial. Res. Child Adolesc. Psychopathol. 2022, 50, 895–905. [Google Scholar] [CrossRef]
- McLaughlin, K.A.; Hatzenbuehler, M.L.; Mennin, D.S.; Nolen-Hoeksema, S. Emotion Dysregulation and Adolescent Psychopathology: A Prospective Study. Behav. Res. Ther. 2011, 49, 544–554. [Google Scholar] [CrossRef]
- Gross, J.J. Emotion Regulation: Current Status and Future Prospects. Psychol. Inq. 2015, 26, 1–26. [Google Scholar] [CrossRef]
- Salinas, K.Z.; Venta, A. Testing the Role of Emotion Dysregulation as a Predictor of Juvenile Recidivism. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Roberton, T.; Daffern, M.; Bucks, R.S. Emotion Regulation and Aggression. Aggress. Violent Behav. 2012, 17, 72–82. [Google Scholar] [CrossRef]
- Kemp, K.; Thamotharan, S.; Poindexter, B.; Barker, D.; Tolou-Shams, M.; Houck, C.D. Emotion regulation as a predictor of juvenile arrest. Crim. Justice Behav. 2017, 44, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Habersaat, S.; Urben, S. Anger Dysregulation in Adolescents with Persisting Offending Behaviors. In Anger and Anxiety: Predictors, Coping Strategies, and Health Effects; Psychology of Emotions, Motivations and Actions; Nova Science Publishers: Hauppauge, NY, USA, 2017; pp. 107–133. ISBN 978-1-5361-2931-1. [Google Scholar]
- Yousaf, T.; Dervenoulas, G.; Politis, M. Advances in MRI Methodology. Int. Rev. Neurobiol. 2018, 141, 31–76. [Google Scholar] [CrossRef] [PubMed]
- Oostermeijer, S.; Whittle, S.; Suo, C.; Allen, N.B.; Simmons, J.G.; Vijayakumar, N.; van de Ven, P.M.; Jansen, L.M.C.; Yücel, M.; Popma, A. Trajectories of Adolescent Conduct Problems in Relation to Cortical Thickness Development: A Longitudinal MRI Study. Transl. Psychiatry 2016, 6, e841. [Google Scholar] [CrossRef] [PubMed]
- Miskovich, T.A.; Anderson, N.E.; Harenski, C.L.; Harenski, K.A.; Baskin-Sommers, A.R.; Larson, C.L.; Newman, J.P.; Hanson, J.L.; Stout, D.M.; Koenigs, M.; et al. Abnormal Cortical Gyrification in Criminal Psychopathy. NeuroImage Clin. 2018, 19, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Besteher, B.; Squarcina, L.; Spalthoff, R.; Bellani, M.; Gaser, C.; Brambilla, P.; Nenadić, I. Brain Structural Correlates of Irritability: Findings in a Large Healthy Cohort. Hum. Brain Mapp. 2017, 38, 6230–6238. [Google Scholar] [CrossRef]
- Yang, Y.; Raine, A. Prefrontal Structural and Functional Brain Imaging Findings in Antisocial, Violent, and Psychopathic Individuals: A Meta-Analysis. Psychiatry Res. 2009, 174, 81–88. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J. Recursive Elimination–Election Algorithms for Wrapper Feature Selection. Appl. Soft Comput. 2021, 113, 107956. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Belaroussi, B.; Milles, J.; Carme, S.; Zhu, Y.M.; Benoit-Cattin, H. Intensity Non-Uniformity Correction in MRI: Existing Methods and Their Validation. Med. Image Anal. 2006, 10, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Vovk, U.; Pernus, F.; Likar, B. A Review of Methods for Correction of Intensity Inhomogeneity in MRI. IEEE Trans. Med. Imaging 2007, 26, 405–421. [Google Scholar] [CrossRef]
- Nowinski, W.L.; Qian, G.; Bhanu Prakash, K.N.; Hu, Q.; Aziz, A. Fast Talairach Transformation for Magnetic Resonance Neuroimages. J. Comput. Assist. Tomogr. 2006, 30, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Arce-Santana, E.; Campos-Delgado, D.U.; Reducindo, I.; Mejía-Rodríguez, A.R.; Rizzo, G. Rigid Multimodal/Multispectral Image Registration Based on the Expectation-Maximization Algorithm. In Advances in Visual Computing: 10th International Symposium, ISVC 2014, Las Vegas, NV, USA, 8–10 December 2014; Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., El Choubassi, M., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 11–20. [Google Scholar]
- Gavazzi, G.; Giovannelli, F.; Noferini, C.; Cincotta, M.; Cavaliere, C.; Salvatore, M.; Mascalchi, M.; Viggiano, M.P. Subregional Prefrontal Cortex Recruitment as a Function of Inhibitory Demand: An fMRI Metanalysis. Neurosci. Biobehav. Rev. 2023, 152, 105285. [Google Scholar] [CrossRef] [PubMed]
- Pirau, L.; Lui, F. Frontal Lobe Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zhang, X.; Gao, W.; Cao, W.; Kuang, L.; Niu, J.; Guo, Y.; Cui, D.; Jiao, Q.; Qiu, J.; Su, L.; et al. Pallidal Volume Reduction and Prefrontal-Striatal-Thalamic Functional Connectivity Disruption in Pediatric Bipolar Disorders. J. Affect. Disord. 2022, 301, 281–288. [Google Scholar] [CrossRef]
- Qi, W.; Wen, Z.; Chen, J.; Capichioni, G.; Ando, F.; Chen, Z.S.; Wang, J.; Yoncheva, Y.; Castellanos, F.X.; Milad, M.; et al. Aberrant Resting-State Functional Connectivity of the Globus Pallidus Interna in First-Episode Schizophrenia. Schizophr. Res. 2023, 261, 100–106. [Google Scholar] [CrossRef]
- Baumann, O.; Mattingley, J.B. Cerebellum and Emotion Processing. Adv. Exp. Med. Biol. 2022, 1378, 25–39. [Google Scholar] [CrossRef]
- Catani, M. The Anatomy of the Human Frontal Lobe. Handb. Clin. Neurol. 2019, 163, 95–122. [Google Scholar] [CrossRef]
- Valdés, G.J.L.; Torrealba, L.F. La Corteza Prefrontal Medial Controla El Alerta Conductual y Vegetativo: Implicancias En Desórdenes de La Conducta. Rev. Chil. Neuro-Psiquiatr. 2006, 44, 195–204. [Google Scholar] [CrossRef]
- Gilbert, S.J.; Williamson, I.D.M.; Dumontheil, I.; Simons, J.S.; Frith, C.D.; Burgess, P.W. Distinct Regions of Medial Rostral Prefrontal Cortex Supporting Social and Nonsocial Functions. Soc. Cogn. Affect. Neurosci. 2007, 2, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Dumontheil, I.; Burgess, P.W.; Blakemore, S.-J. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders. Dev. Med. Child Neurol. 2008, 50, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Javed, N.; Cascella, M. Neuroanatomy, Globus Pallidus. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gu, B.-M.; Schmidt, R.; Berke, J.D. Globus Pallidus Dynamics Reveal Covert Strategies for Behavioral Inhibition. eLife 2020, 9, e57215. [Google Scholar] [CrossRef] [PubMed]
- Lingnau, A.; Downing, P.E. The Lateral Occipitotemporal Cortex in Action. Trends Cogn. Sci. 2015, 19, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Hannagan, T.; Amedi, A.; Cohen, L.; Dehaene-Lambertz, G.; Dehaene, S. Origins of the Specialization for Letters and Numbers in Ventral Occipitotemporal Cortex. Trends Cogn. Sci. 2015, 19, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, S.; Weng, X. Localization and Functional Characterization of an Occipital Visual Word Form Sensitive Area. Sci. Rep. 2018, 8, 6723. [Google Scholar] [CrossRef] [PubMed]
- Palejwala, A.H.; Dadario, N.B.; Young, I.M.; O’Connor, K.; Briggs, R.G.; Conner, A.K.; O’Donoghue, D.L.; Sughrue, M.E. Anatomy and White Matter Connections of the Lingual Gyrus and Cuneus. World Neurosurg. 2021, 151, e426–e437. [Google Scholar] [CrossRef]
- Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; et al. Consensus Paper: Cerebellum and Emotion. Cerebellum Lond. Engl. 2017, 16, 552–576. [Google Scholar] [CrossRef]
- Pierce, J.E.; Péron, J. The Basal Ganglia and the Cerebellum in Human Emotion. Soc. Cogn. Affect. Neurosci. 2020, 15, 599–613. [Google Scholar] [CrossRef]
- Boes, A.D.; Tranel, D.; Anderson, S.W.; Nopoulos, P. Right Anterior Cingulate: A Neuroanatomical Correlate of Aggression and Defiance in Boys. Behav. Neurosci. 2008, 122, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Taubner, S.; Hauschild, S.; Wisniewski, D.; Wolter, S.; Roth, G.; Fehr, T. Neural Response to Aggressive and Positive Interactions in Violent Offenders and Nonviolent Individuals. Brain Behav. 2021, 11, e32400. [Google Scholar] [CrossRef] [PubMed]
Group | Count | Mean | Std | Min | 25% | 50% | 75% | Max |
---|---|---|---|---|---|---|---|---|
NOs | 66.0 | 16.36 | 1.10 | 14.0 | 16.0 | 16.0 | 17.0 | 18.0 |
AOs | 65.0 | 16.90 | .98 | 15.0 | 16.0 | 17.0 | 18.0 | 18.0 |
NOs | AOs | Statistic | p-Value | |
---|---|---|---|---|
Age | 16.36 ± 1.10 | 16.91 ± 0.98 | −2.9837 | 0.0034 |
TIV | 1,591,143.17 ± 110,783.68 | 1,558,612.94 ± 135,506.47 | 1.5030 | 0.1354 |
Left cerebral white matter | 246,781.85 ± 23,013.65 | 240,720.29 ± 27,066.44 | 1.3799 | 0.1701 |
Right cerebral white matter | 248,298.74 ± 22,578.71 | 241,914.17 ± 26,878.06 | 1.4710 | 0.1438 |
Left cerebellum white matter | 13,933.47 ± 1448.50 | 13,137.88 ± 1279.78 | 3.3327 | 0.0011 |
Right cerebellum white matter | 13,244.94 ± 1467.88 | 12,573.94 ± 1348.77 | 2.7250 | 0.0073 |
Brain Structure | U-Statistic | p-Value | Cohen’s d | Brain Structure | U-Statistic | p-Value | Cohen’s d |
---|---|---|---|---|---|---|---|
Left cerebellum white matter | 2685.0 | 0.0130 | 0.423 | Ctx-lh-parstriangularis | 2886.0 | 0.0006 | 0.540 |
Left thalamus | 2650.0 | 0.0202 | 0.452 | Ctx-lh-posteriorcingulate | 2643.0 | 0.0220 | 0.468 |
Left pallidum | 2791.0 | 0.0029 | 0.525 | Ctx-lh-precuneus | 2658.0 | 0.0183 | 0.449 |
Brain stem | 2816.0 | 0.0020 | 0.512 | Ctx-lh-rostralmiddlefrontal | 3075.0 | 0.0000 | 0.851 |
Left accumbens area | 2682.0 | 0.0135 | 0.460 | Ctx-lh-transversetemporal | 2610.0 | 0.0324 | 0.396 |
Left ventral DC | 2666.0 | 0.0165 | 0.427 | Ctx-lh-insula | 2637.0 | 0.0236 | 0.369 |
Right lateral ventricle | 1640.0 | 0.0202 | −0.364 | Ctx-rh-caudalmiddlefrontal | 2704.0 | 0.0101 | 0.481 |
Right cerebellum white matter | 2618.0 | 0.0296 | 0.321 | Ctx-rh-entorhinal | 2852.0 | 0.0011 | 0.469 |
Right thalamus | 2706.0 | 0.0098 | 0.457 | Ctx-rh-fusiform | 2741.0 | 0.0061 | 0.478 |
Right putamen | 2621.0 | 0.0286 | 0.356 | Ctx-rh-inferiortemporal | 2724.0 | 0.0077 | 0.484 |
Right pallidum | 2802.0 | 0.0025 | 0.552 | Ctx-rh-isthmuscingulate | 2624.0 | 0.0276 | 0.374 |
Right hippocampus | 2673.0 | 0.0151 | 0.481 | Ctx-rh-lateralorbitofrontal | 2806.0 | 0.0023 | 0.559 |
Right accumbens area | 2814.0 | 0.0020 | 0.399 | Ctx-rh-lingual | 2628.0 | 0.0263 | 0.422 |
Right choroid plexus | 1718.0 | 0.0496 | −0.353 | Ctx-rh-medialorbitofrontal | 2636.0 | 0.0239 | 0.430 |
Ctx-lh-caudalanteriorcingulate | 2849.0 | 0.0012 | 0.577 | Ctx-rh-parahippocampal | 2805.0 | 0.0023 | 0.557 |
Ctx-lh-fusiform | 2640.0 | 0.0228 | 0.341 | Ctx-rh-parsorbitalis | 2895.0 | 0.0005 | 0.618 |
Ctx-lh-isthmuscingulate | 2586.0 | 0.0425 | 0.412 | Ctx-rh-precuneus | 2809.0 | 0.0022 | 0.529 |
ctx-lh-lateralorbitofrontal | 2772.0 | 0.0039 | 0.527 | Ctx-rh-rostralmiddlefrontal | 2641.0 | 0.0225 | 0.511 |
Ctx-lh-lingual | 2590.0 | 0.0407 | 0.321 | Ctx-rh-superiorfrontal | 2820.0 | 0.0019 | 0.586 |
Ctx-lh-parahippocampal | 2778.0 | 0.0035 | 0.536 | Ctx-rh-superiorparietal | 2616.0 | 0.0303 | 0.378 |
Ctx-lh-parsorbitalis | 2914.0 | 0.0004 | 0.554 | Ctx-rh-transversetemporal | 2646.0 | 0.0212 | 0.418 |
Classifier | Average Accuracy | Max Accuracy | Min Accuracy |
---|---|---|---|
DecisionTreeClassifier | 0.664 | 0.800 | 0.571 |
RandomForestClassifier | 0.664 | 0.705 | 0.619 |
SVC | 0.521 | 0.700 | 0.479 |
GaussianNB | 0.663 | 0.809 | 0.571 |
LogisticRegression | 0.578 | 0.714 | 0.380 |
Structure | Description | Location |
---|---|---|
Ctx-lh-rostralmiddlefrontal | A portion of the left frontal cortex in the brain’s left hemisphere. | Frontal lobe, left hemisphere. |
Left pallidum | The subcortical component of the basal ganglia. | Base of the brain, left hemisphere. |
Ctx-lh-lingual | A brain gyrus found between the calcarine sulcus and the collateral sulcus. | Occipital lobe, left hemisphere. |
Right cerebellum white matter Left cerebellum white matter | The portion of the cerebellum’s white matter containing nerve fibers that connect the cerebellum to other brain regions and the spinal cord. | Cerebellum, right and left hemisphere. |
ctx-lh-caudalanteriorcingulate | Frontal and apical portion of the cingulate cortex, located in the corpus callosum. | Frontal lobe, near the corpus callosum, left hemisphere. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Torres, G.; Leal, N.; Pino, M. Data-Driven Analysis of MRI Scans: Exploring Brain Structure Variations in Colombian Adolescent Offenders. Data 2024, 9, 7. https://doi.org/10.3390/data9010007
Sánchez-Torres G, Leal N, Pino M. Data-Driven Analysis of MRI Scans: Exploring Brain Structure Variations in Colombian Adolescent Offenders. Data. 2024; 9(1):7. https://doi.org/10.3390/data9010007
Chicago/Turabian StyleSánchez-Torres, Germán, Nallig Leal, and Mariana Pino. 2024. "Data-Driven Analysis of MRI Scans: Exploring Brain Structure Variations in Colombian Adolescent Offenders" Data 9, no. 1: 7. https://doi.org/10.3390/data9010007
APA StyleSánchez-Torres, G., Leal, N., & Pino, M. (2024). Data-Driven Analysis of MRI Scans: Exploring Brain Structure Variations in Colombian Adolescent Offenders. Data, 9(1), 7. https://doi.org/10.3390/data9010007