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Abstract: Recent cyber security solutions for wireless networks during internet open access have
become critically important for personal data security. The newest WPA3 network security protocol
has been used to maximize this protection; however, attackers can use an Evil Twin attack to replace a
legitimate access point. The article is devoted to solving the problem of intrusion detection at the OSI
model’s physical layers. To solve this, a hardware–software complex has been developed to collect
information about the signal strength from Wi-Fi access points using wireless sensor networks. The
collected data were supplemented with a generative algorithm considering all possible combinations
of signal strength. The k-nearest neighbor model was trained on the obtained data to distinguish the
signal strength of legitimate from illegitimate access points. To verify the authenticity of the data, an
Evil Twin attack was physically simulated, and a machine learning model analyzed the data from
the sensors. As a result, the Evil Twin attack was successfully identified based on the signal strength
in the radio spectrum. The proposed model can be used in open access points as well as in large
corporate and home Wi-Fi networks to detect intrusions aimed at substituting devices in the radio
spectrum where IEEE 802.11 networking equipment operates.

Keywords: data; machine learning model; KNN; generative algorithm; intrusion detection; IEEE
802.11; Evil Twin attack

1. Introduction

Today, the WPA3 security protocol is the most robust in IEEE 802.11 standard networks,
but shortly after its release in 2018, it was found to be vulnerable to a group of attacks [1].
One of these attacks is the downgrade attack to WPA2, which is preceded by an Evil Twin
attack. The Evil Twin attack can be identified using signatures, such as identifying an access
point with an identical SSID but a different MAC address or frequency channel. However,
if the attacker sets the same channel and the same MAC address on the Evil Twin as the
legitimate access point, in other words, completely clones the data of the legitimate access
point for transmitting information over the air, an intrusion detection system that operates
by using signature methods will not be able to detect such an attack.

Fortunately, each wireless electronic device is unique in some way. Even if the devices
were manufactured in the same factory and used the same technological process, there is
no guarantee that they will have identical characteristics. The components that make up
each device can slightly differ, which, in aggregate, can create a unique digital fingerprint
for a specific device [2–7].

When it comes to radio devices, their digital fingerprint, in addition to everything
mentioned above, will depend on the signal strength and the antenna used for transmission.
This can aid in intrusion detection because if the characteristic signal strength variations
in a legitimate access point are known in advance, a sudden significant change in these
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variations will indicate the presence of another—illegitimate—access point, which will be
evidence of an Evil Twin attack.

The propagation of radio waves in the range used by Wi-Fi networks depends on
many physical factors: attenuation, free space path loss, multipath propagation, reflection,
scattering, noise, and others. As had been studied in [8,9], the signal strength can be affected
even by the presence or absence of a person in the room as well as by varying the signal
strength. The authors of [10,11] presented a new approach to two-factor user authentication
(2FA), combining the unique characteristics of the user’s environment and machine learning
(ML) to verify their identity. The authors used Wi-Fi radio wave transmission and ML
algorithms to analyze the characteristics of the Beacon frame and the received signal
strength indicator (RSSI) values from Wi-Fi access points.

A method for identifying MAC address spoofing by examining the signal strength
from a device and using triangulation methods and sensors was investigated in [12].
The conceptual model was described and aimed to monitor the signal strength from the
client devices, but it did not consider the impact of the environment on signal strength.
Additionally, changes in signal strength during long time periods, such as several weeks,
were not considered.

An approach to intrusion detection using the monitoring of network packets based
on the frequency of their appearance through the air was proposed in [13]. The collected
data were used to train a machine learning model. This method allows for detecting
anomalies over the air and identifying a wide range of attacks on IEEE 802.11 networks.
This method is highly likely to detect an Evil Twin attack, but we believe that a limitation
of this approach is that, during physical interaction with the power supply, if the legitimate
device is conditionally disconnected from the network, attackers can replace the legitimate
access point with their own. In such a case, the proposed system will most likely not be
able to distinguish this replacement.

Machine learning techniques have shown significant promise in wireless network
security, particularly for detecting sophisticated attacks like Evil Twin. Sarker [14] com-
prehensively reviewed AI-driven methods across various domains, emphasizing their
potential to enhance security protocols. In Wi-Fi networks, such approaches can effectively
identify anomalies and threats in real time, aligning with the growing need for advanced
security measures in increasingly vulnerable wireless systems.

In line with recent advancements in structural health monitoring, methods utilizing
limited sensors have proven highly effective for damage detection and classification in
complex systems. Sony [15] demonstrated that it is possible to achieve multiclass damage
localization with a reduced sensor network by leveraging novel approaches like multivari-
ate empirical mode decomposition and deep learning techniques. This strategy aligns with
our research goals.

In evaluating machine learning algorithms for classification tasks, recent studies such
as Uddin et al. [16] have demonstrated that various KNN variants can be particularly
effective for predictive analytics. Their comparative analysis showed that optimized
versions of KNN outperform the traditional approach in terms of accuracy and robustness,
particularly in complex scenarios like disease prediction. These insights support the
relevance of KNN in our study of detecting Evil Twin attacks in Wi-Fi networks.

Earlier studies have highlighted the versatility of the nearest neighbor algorithm for a
range of classification tasks. According to Taunk et al. [17], the KNN algorithm, despite
its simplicity, remains a powerful tool for learning and classification problems due to its
non-parametric nature and ease of implementation. This reinforces the choice of KNN for
our study in detecting Evil Twin attacks, where we focus on leveraging its classification
capabilities in a network security context.

Monitoring the signal strength from access points using information from the Beacon
packet over a long period and training a classifier to distinguish a legitimate access point
from an Evil Twin were investigated by the authors of [18]. One of the advantages of
this approach is the original method of data aggregation, on which the machine learning
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model is subsequently trained using the k-nearest neighbor (KNN) algorithm. Additionally,
in [19], the authors used the Random Forest machine learning algorithm to identify MAC
spoofing attacks. Although both of these works showed accuracy rates of 100% and 94.83%,
respectively, the authors noted limitations, such as using data on attack occurrences in areas
where an attacker is likely to be present. Another limitation is the devices used to simulate
the attacker, as the classifiers were trained only on a single physical device simulating an
Evil Twin attack. Despite the high accuracy rates demonstrated in these works, factors such
as using different equipment, more powerful antennas, or situations where the attacker is
moving were not considered. These scenarios are quite difficult to replicate in real life as
far as each case is unique. Therefore, creating a dataset containing all the signal strength
sets differing from the legitimate ones makes sense. This dataset can be generated using
an algorithm that targets the range of all the possible signal strengths available from IEEE
802.11 standard devices in the radio frequency spectrum.

This study took as its basis the approach to building a network infrastructure for
intrusion detection and interaction with the attacker, as described in [20]. In the presented
work for intrusion detection, the authors used independent sensors, operating on single-
board computers that may not interact with each other. This approach allows forthe
creation of an interference-resistant system that can use different communication channels
to transmit the collected data.

The aim of this study is to develop an advanced approach for implementing a detection
system of Evil Twin attacks based on the classification of radiation power datasets using
the KNN method. In this approach, the data acquisition of radiation power is performed
over a long period of time from spatially distributed sensors. Such data characterize the set
of radio signal powers from the investigated legitimate access point and a variable set of
surrounding emitters, present in real life (mobile phones, car radios, etc.). The collected
data are unique for a particular room as well as the daily and weekly fluctuations of the
ranges of their changes.

As a result of the performed research, the following data mining tasks are solved:

- Radiation power parameters are selected. The system of wireless sensors using the
triangulation method for their measurement and data acquisition is experimentally
implemented. Data acquisition is carried out for a sufficiently long time. The collected
data are taken as those characterizing the system normal functioning.

- The collected data are supplemented with all possible values of the range using a
special generation algorithm. The generated data are taken as characterizing the
appearance of an illegitimate access point, that is, the implementation of the Evil
Twin attack.

- Training of the intrusion detection system is carried out on the complete set of data
using the KNN method.

- An experimental simulation of the Evil Twin attack is carried out. The intrusion
detection system recognizes the attack. Intrusion detection quality characteristics
are calculated.

The article is structured as follows: Section 2 meticulously describes the materials and
methods of the study. Section 3 presents the comprehensive and meticulously conducted
experimental results. Section 4 is dedicated to a thorough discussion of the obtained results.
And finally, Section 5 provides well-considered conclusions and promising directions for
future research.

2. Materials and Methods
2.1. Location of the Study

The research was conducted in the educational laboratory of Lviv Polytechnic National
University, adjacent to the server room where the research object, namely the Wi-Fi access
point, is located. The access point provides Internet access to students and staff of the
department and may be a potential target for cybercriminals (Figure 1).
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Figure 1. Room layout and equipment placement.

As shown in Figure 1, the sensors are arranged in a triangular formation, applying the
triangulation method.

2.2. Hardware and Software

Access point UniFi AP-AC-LR was used as an object of research [21]. Raspberry Pi
4 single-board computers were used as energy-efficient and sufficiently powerful sensors
for collecting and processing network packets [22]. The single-board computers were
installed with the basic Linux Raspbian operating system without excess software. For
signal strength monitoring, custom software was developed in Python 3 using the Scapy
library, which allows for collecting and processing network packets [23]. The integrated
Wi-Fi network card on the single-board computer does not support the monitor mode, so
the Alfa AWUS036AXM network card, which uses the MediaTek MT7921AUN chipset,
was chosen for these tasks [24]. The Alfa AWUS036AXM was selected from a list of rec-
ommended devices on the page of the open-source project for Wi-Fi networks penetration
testing called Aircrack-ng as one of the most sensitive devices for working in the radio
spectrum of IEEE 802.11 standard networks [25]. All three sensors had identical hardware
and software configurations.

The time series database InfluxDB was used to record signal strength data, which
allows for recording signal strength information from each sensor with a timestamp corre-
sponding to when the data were received from a specific sensor [26]. To avoid overloading
the service network of the sensors, a data aggregation method was used, which, at a speci-
fied period, selected the max, min, average, mode, and number_of_packets values of the signal
strength from the access point. The mode metric was introduced to obtain a clear picture
when detecting an attack. If an attacker moves, the average metric values during the attack
might coincide with those of the legitimate access point. Introducing another metric that
should account for the average value reduces the likelihood of false negatives. In this
aggregation method, all values except the average are integers, and the average is a float,
representing the arithmetic mean of all values.

As is known, the signal strength from an access point in Wi-Fi networks can range
from −100 dBm to 0 dBm [27]. In natural conditions, these numbers fall within a somewhat
narrower range, usually from −90 dBm to −30 dBm, where at −30 dBm, the signal is
strong. At −90 dBm, any functionality is highly improbable. Nevertheless, this might still
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be sufficient for monitoring the access point, although there will be a few packets due to
the weak signal.

Obviously, the min value is always smaller than the max value, but in our case, for
example, if there is only one packet during the iteration, the min and max will be equal. The
same would happen with multiple packets, but the signal’s stability is solid. Additionally,
mode and average lie within the range between the min and max metrics (1)

min ≤ avg, mode ≤ max. (1)

To generate a dataset that fits the proposed aggregation, an algorithm that fills all
possible value intervals for min, max, and mode with a step of 1 was developed. For avg, a
step within the interval (0; 1], for example, 0.5, can be set, as indicated in Algorithm 1.

Algorithm 1. Generate the array of all possible signal strength ranges.

1: Input: empty array R, step for feature average avgstep
2: for min = −100 to 0 do
3: min = min + 1
4: for max = min to 0 do
5: max = max + 1
6: for mode = min to max do
7: mode = mode + 1
8: for avg = min to max do
9: avg = avg + avgstep
10: * Append {min, max, avg, mode} into list R
11: end for
12: end for
13: end for
14: end for
15: Output: Array with values R

Once a list of all the possible signal strengths is generated, it can be used for each
sensor to adapt the data. From the generated dataset, it is necessary to remove data that
falls within the range of values for the legitimate access point. Specifically, from each
column of the dataset (min, max, average, and mode), the minimum and maximum values
of the metric obtained from the measurements need to be selected, and all entries in the
automatically generated dataset that fall within this range should be deleted (2).

Rillegitim =
(
¬
(
xmin ∈

[
xminmin − b, xminmax + b

]))
∩(¬(xmax ∈ [xmaxmin − b, xmaxmax + b]))
∩
(
¬
(
xavg ∈

[
xavgmin

− b, xavgmax
+ b

]))
∩
(
¬
(
xmode ∈

[
xmodemin

− b, xmodemax + b
]))

,

(2)

where b is a buffer in dBm, defined to separate the legitimate range from the illegitimate
ones. This way, we can obtain ranges with values that are atypical for the legitimate access
point. By combining the data frame of the legitimate access point with the data frame
generated based on data different from the legitimate one for each sensor, we obtain the
data that can be used to train a machine learning model (Figure 2).
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In this study, the K-nearest neighbor (KNN) classifier was chosen as the machine
learning method. KNN is a very simple algorithm to implement, which is based on the
distance between points, chosen by a specified number of nearest neighbors (k), determined
before training begins. KNN does not require the data to follow a specific distribution, as
some other classification methods do, but instead compares the input point with the closest
points in the feature space. KNN classification is based on the nearest neighbors, and if
new data appear, the model can quickly adapt to changes without the need for retraining.
This is quite relevant when working with Wi-Fi networks since the signal strength at the
sensor locations can change with the appearance of obstacles in the room. Another factor
influencing the choice of the KNN algorithm is that the described aggregation method
has only 4 attributes for conducting the training. Otherwise, this algorithm might be
unproductive, as the distance to all other records in the dataset would need to be calculated
for each metric. Although there are many machine learning algorithms, such as logistic
regression, decision trees, or SVMs (support vector machines), KNN proved the most
suitable for several reasons.

KNN does not require explicit training of the model, which allows it to process
new data quickly while maintaining high accuracy on already known samples. It is
essential when working with Wi-Fi signals, as any new element in the room may change its
physical properties.

With a dataset containing only five features, using more complex algorithms such as
SVM was impractical due to their tendency to overtrain small features. SVM also requires
careful selection of kernel parameters, which is computationally intensive and does not
always guarantee improved results for small datasets.

Although easy to interpret, decision trees tended to overtrain even after regulariza-
tion, leading to less robust results. Logistic regression, on the other hand, proved to
be less efficient for tasks with non-linear dependencies between features. At the same
time, KNN demonstrated flexibility in modeling non-linear decision boundaries without
additional optimization. Time series analysis methods were not used in this study, as the
initial approach to data processing focused on classification based on features that did
not consider the time aspect. The dataset we used contains information about specific
characteristics of connections, which is more suitable for classical classification methods
such as KNN. In doing so, each sample in the dataset was treated as independent and not
part of a sequence of events or change over time.

A time series analysis is usually applied to data that show clear temporal dependence
or trends that develop over time. Modern Wi-Fi access points, usually those that work in
mesh mode, are intelligent enough to find the weakest area with their clients that needs
to be covered. This means that signal strength may be reoriented at any moment, and as
shown in the next section, some sensors may obtain a more robust signal or the opposite.
In our case, each sample describes a specific event or state of the system, and there is no
pronounced temporal structure or relationships between events that would justify using
such methods.

We experimented with other methods in the current research, but the KNN results
provided the best balance between accuracy and computational efficiency. Moreover, the
KNN algorithm’s intuitiveness and ease of setup allowed us to focus on analyzing the
results without complex optimization procedures, which is essential in our context.

3. Results
3.1. Data Extraction

Signal strength data were collected from the legitimate access point over two weeks.
Data aggregated by the mean with a 15 min window is visualized in Figures 3–5.

In Figures 3–5, a clear daily cyclic pattern of signal strength changes can be observed.
Regardless of the day of the week, every day around 7 AM, the max metric increases and
the min metric decreases, while the avg and mode metrics remain stable and usually do not
differ much from each other. Closer to 11 PM, the min and max metrics converge again.
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We can also observe significant changes in the signal strength at random time intervals; in
some cases, these changes are mirrored—if the signal strength increases on one sensor, it
decreases on another.
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Network load and interference can explain the main reason for the divergence of the
min and max signal strengths during the day and their convergence at night.

During the day, when more devices are connected to the Wi-Fi network, it experiences
greater loads [28]. This can cause a decrease in the minimum signal strength due to the
increased interference and competition for access to the access point. More devices generate
more radio signals, leading to higher noise levels and reduced signal quality, which is
expected in a university building.
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When activity decreases, the signal becomes more stable at night, and the range
between min and max values narrows. This leads to a more stable signal and less variation
between the minimum and maximum signal strengths. Fewer active devices at night
decrease radio frequency noise, making the signal more stable. Thus, during the day, we
observe a more comprehensive range between the min and max signal strengths due to a
more significant number of active users and increased interference.

The increase in signal strength and noise levels can be explained by the fact that
modern Wi-Fi access points use adaptive mechanisms to maintain connection quality. They
can automatically increase the signal strength to maintain a stable connection when they
detect increased noise levels or decreased connection quality due to interference. Each day,
when more users connect to the network, the access point may increase signal strength to
provide better coverage and service to more devices. This can lead to higher average and
maximum signal strengths. Some devices may use power-saving modes, reducing signal
strength at night when user activity decreases, which can also explain the lower maximum
values at night.

Therefore, the signal level can increase during the day not only due to the increased
noise but also due to the adaptive mechanisms of access points, higher user activity,
and device placement. These factors contribute to higher average and maximum signal
strengths even under increased noise conditions.

Figure 6 shows the frequency distribution of signal strengths from the legitimate access
point for the three sensors that are monitored using four metrics.
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As Figure 6 shows, each sensor has its own unique distribution of values. Some are
highly strong, and some are weak. From the first view, weak values should be removed, for
example, by applying percentile filtering, to avoid false positives in the future and to avoid
the persistent dominance of illegitimate values; it was decided to leave them in place.

3.2. Data Analysis

After two weeks of monitoring the legitimate access point, an Evil Twin attack was
simulated using the utilities airbase-ng and macchanger. These utilities allowed for the
creation of a fake access point with the same attributes (SSID, MAC address, and channel)
as the legitimate one. Over two hours, the device acting as the Evil Twin was moved around
the room near the sensors and the legitimate access point. Figure 7 shows the variation in
signal metrics during the simulated Evil Twin attack, as obtained from InfluxDB.
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Figure 8 provides a detailed depiction of the signal strength variation from one of the
sensors during the simulated Evil Twin attack.
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As shown in Figure 8, the introduction of the mode metric is fully justified. In the
absence of an attack, the avg and mode metrics are closely aligned, but during an attack,
their values diverge. This divergence can significantly enhance the training of the machine
learning model. The data were then exported from the InfluxDB database and imported
into the Jupyter interactive computing platform [29]. After merging the data frame with
legitimate data and the generated illegitimate data, we obtained three separate data frames
for each access point. The data correlation is depicted in Figures 9–11.

Figures 9–11 show plots that illustrate the distribution of each metric individually. The
main diagonal (from left to right) shows the frequency of data appearance (Y-axis) about a
specific signal power in dBm (X-axis). Outside the main diagonal, there are scatter plots,
illustrating the relationship between pairs of metrics.

From these plots, we can see that the values of the metrics (0—data from the illegitimate
access point, 1—data from the legitimate access point) for min and max exhibit a distribution
close to a Poisson distribution, while avg and mode exhibit a distribution close to a normal
distribution. The Poisson distribution can be explained by the fact that minimum values
occur more frequently closer to the lower boundary and cannot exceed the maximum value,
and vice versa. The normal distribution for avg and mode is due to these values falling
between min and max at each point, with a step of at least 1 dBm.

The scatter plots illustrate the relationship between the legitimate values of the target
variable. From these plots, we can observe that the points of the illegitimate signal are
evenly scattered, as predicted by the algorithm. There is no solid linear dependency
between the two variables regarding the relationship between the data from the legitimate
access point and the generated data, which could belong to a device performing an Evil
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Twin attack. Based on the pairplot, we can conclude that the correlation between the two
values of the target variable could be more robust, but this is expected since the points
overlap because some signal strength values from the legitimate and illegitimate access
points can coincide during an attack. For example, such a situation may occur when
the legitimate access point has min = −50 dBm, max = −40 dBm, avg = −45 dBm, and
mode = −44 dBm. If the attacker approaches and moves away from the access point during
the Evil Twin attack, the average metric value will likely be close to that of the legitimate
access point. Therefore, completely removing all values from the data frame that contain
the signal strength of the legitimate access point is impractical.

The corr() function from the Pandas library was used to understand how well the data
correlate with each other [30]. By default, this function computes the Pearson correlation
coefficient to measure the linear correlation between the data frame columns. The Pearson
correlation coefficient measures the linear dependence between two variables. It ranges
from −1 to 1, where 1 indicates a complete positive linear correlation, −1 indicates a
complete negative linear correlation, and 0 indicates no linear correlation.

A correlation heatmap, shown in Figures 12–14, was constructed to evaluate the
metrics’ correlation for each sensor in detail.

The threshold for a “low” correlation can depend on the context and specific appli-
cation. However, generally, a correlation coefficient less than 0.3 or greater than −0.3 is
often considered a low correlation [31]. Although the correlation is not very strong, we can
still talk about a positive correlation since most features do not fall within the range [−0.3,
0.3]. The strength of the correlation varies depending on the pair of features. The strongest
correlation is observed between the features min and avg. Overall, the features min, max,
avg, and mode are closely related to each other, and this level of correlation usually indicates
that they measure phenomena related to each other—in this case, the signal strength is
from the same source.
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The feature that correlates the least with the others is legitimate, indicating the access
point’s legitimacy. This is because some metric values of the legitimate and illegitimate
access points overlap in the same range. Hence, the correlation is weak in the data prepro-
cessing stage. It happens since the generative algorithm creates a large number of records,



Data 2024, 9, 119 13 of 19

and even if all the records that satisfy the conditions of Formula (2) are removed, there still
remain metric values intersecting with the legitimate ones.

3.3. Model Training

The next step was to split the data into training and testing datasets in an 80%
to 20% ratio. Hyperparameter tuning was used to find the best parameters for the
model training. To measure that, two additional classes were used: GridSearchCV from
sklearn.model_selection and accuracy_score from sklearn.metrics [32]. The model was
tested using a combination of three parameters—the number of neighbors (3, 5, 7, 9, and
11), weight (uniform and distance), and the power parameter for the Minkowski metric (1
and 2). With our dataset, the higher the neighbor number, the worse the accuracy score
becomes. The degradation of the accuracy score started from seven neighbors.

Even though several combinations of parameters showed the best accuracy score, the
number of neighbors for comparison was set to 3 to avoid a large number of computa-
tions [33]. The uniform weight was chosen, meaning all points in each neighborhood are
weighted equally. The parameter for the Minkowski metric was assigned to 2, correspond-
ing to Euclidian distance.

The sklearn library and the neighbors’ KNeighborsClassifier class were used to train
the machine learning model [34].

Figure 15 shows the confusion matrix based on the classification report results.
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This means that the model makes no classification errors. Although this scenario is
relatively rare in practice, in this case, the model is quite simple, and sufficient data are
available for training this model in our context. Additionally, the data for legitimate and
illegitimate classes are clearly distinct.

As can be seen from Figure 15, the data on legitimate and illegitimate access points are
not balanced. About 3.4 M illegitimate samples and 4 K legitimate ones got into the test set.
This difference between the values is explained by the fact that the number of samples for
the legitimate access point was collected every minute for two weeks, so the total number
of all records is 20,160. Accordingly, 20% of this number is 4032 records.

The large amount of data about an illegitimate access point is explained by the fact
that the generative algorithm, according to Algorithm 1, creates many records on each
distance between max and min. The function Single(∆) describes the number of mode and
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avg records generated by Algorithm 1 for a given distance between max and min, taking
into account modestep = 1 dBm and avgstep = 0.5 dBm (3)

Single(∆) =
∆

modestep
· ∆
avgstep

=
2

[dBm]2
·∆2, (3)

where ∆ is the distance between min and max metrics.
The function Sum(∆) displays the sum of all records that will be added to the dataset

at segments with a specific distance (4).

Sum(∆) = Single(∆)·
(

100 −
(

∆
dBm

− 1
))

=
2

[dBm]2
·∆2·

(
101 − ∆

dBm

)
. (4)

For example, 200 records will be generated on one of the segments with a difference of
10 dBm and with avgstep = 0.5 dBm. Figure 16 shows the change in the number of records
when the distance between min and max changes. As can be seen from Figure 16, the
function Single changes rapidly. With the distance is between min and max of 100 dBm, the
algorithm will generate 20 K records. However, the 100 dBm distance can exist only in a
single variant—on the interval from −100 dBm to 0 dBm. In contrast, at the 1 dBm distance,
there will be 100 such segments.
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As can be seen from Figure 16, the peak point belongs to the interval with the difference
between min and max of 67 dBm, where the number of records added to the dataset will
be 305,252 records. The total number of records generated by the generative algorithm at
avgstep = 0.5 dBm is determined by expression (5).

100

∑
∆=1

Sum(∆), (5)

where the ∆ step equals 1. Hence, there are more than 17.3 M records; 20% of this value
will be about 3.4 M, corresponding to the value in Figure 15.
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4. Discussion
4.1. Comparison of the Model’s Prediction with the Signature

The feature number_of_packets was used to validate the model on real-world data,
which were not utilized during the model training. An increase in the number of packets
from the access point indicates an Evil Twin attack and is one of the signature methods
used to detect such attacks [35].

The standard number of Beacon packets captured by a single sensor in the absence of
an Evil Twin attack is approximately 590–600 packets per minute. To assess the effectiveness
of the machine learning model, the data during the simulated attack period were analyzed,
and the results were compared with the packet count graph (Figure 17).
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Figure 17 illustrates the relationship between signal power, acting as a signature, and
intrusion detection using the trained machine learning model. Different colors are used
to represent each sensor. As observed during time intervals when the number of packets
increased, the model also reacted, identifying it as an attack. In contrast, the model did not
identify any attacks where the packet count normalized. From Figure 17, monitoring the
number of packets may be sufficient for intrusion detection, but some conditions will be
described in the conclusions of this work.

4.2. Prediction Analysis

It is worth noting that not all sensors identified the attack simultaneously at some inter-
vals. This can be observed in the interval 2–5, where sensor #3 did not identify any attack. In
Figure 6, we can see that for sensor #1, min ∈ [−42, −31], max ∈ [−36, −25], avg ∈ [−36, −31],
and mode ∈ [−36, −30]; for sensor #2, min ∈ [−60, −47], max ∈ [−49, −41], avg ∈ [−50, −47],
and mode ∈ [−50, −47]; and for sensor #3, min ∈ [−56, −46], max ∈ [−50, −41],
avg ∈ [−51, −46], and mode ∈ [−51, −46]. In Table 1, the values of signal power in dBm
intercepted by the sensors during the attack are provided.

The cells in Table 1 highlighted in red are the metric values that fall outside the range
of the legitimate access point, and those in green are the values that fall within the range.

As shown in Figure 17 and Table 1, sensors #1 and #2 identified an attack in the range
of 1–4, as the signal strengths did not fall within the legitimate range.

In the range of 28–29, sensor #2 stopped identifying the attack, although the attack
had been detected earlier. A slightly larger interval, specifically 25–30, was examined to
investigate this issue in more detail. In this interval, the behavior is somewhat unexpected
because, if we look at timestamp 26, all metrics fall within the range of the legitimate access
point. Still, the machine learning model classified these data as illegitimate. At the same
time, the attack was not detected in the range of 28–29, where the avg metric does not fall
within the range of legitimate signal strengths.
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Table 1. Values of signal strength intercepted by sensors during the Evil Twin attack.

Sensor’s id Sensor 1 Sensor 2 Sensor 3
Timestamp min max avg mode min max avg mode min max avg mode

0 −36 −28 −31.1 −31 −49 −45 −47.86 −48 −52 −46 −47.95 −48
1 −64 −28 −33.97 −31 −68 −45 −50.63 −48 −53 −46 −48.53 −48
2 −66 −28 −46.76 −31 −67 −45 −56.51 −48 −54 −46 −49.42 −48
3 −65 −28 −46.44 −31 −69 −45 −56.7 −48 −56 −46 −49.19 −48
4 −65 −28 −46.14 −31 −68 −45 −56.44 −48 −53 −45 −49.4 −48
5 −62 −28 −32 −31 −53 −45 −47.84 −48 −49 −46 −47.97 −48

Skipped
25 −61 −28 −35.17 −31 −70 −42 −50.36 −48 −64 −32 −47.96 −48
26 −54 −28 −36.79 −31 −58 −43 −49.9 −48 −59 −35 −46.02 −48
27 −54 −9 −26.97 −31 −57 −35 −45.96 −47 −55 −27 −43.68 −48
28 −34 −9 −21.59 −12 −47 −41 −45.04 −47 −49 −37 −43.69 −40
29 −33 −9 −21.61 −12 −51 −41 −45.14 −47 −53 −37 −43.73 −40
30 −32 −10 −21.84 −12 −53 −34 −45.17 −47 −51 −28 −43.4 −40

Skipped
59 −35 −29 −31.22 −31 −51 −45 −47.9 −48 −50 −46 −47.9 −48
60 −25 −28 −31.05 −31 −53 −45 −47.92 −48 −52 −46 −47.9 −48
61 −52 −29 −33.34 −31 −66 −45 −50.5 −48 −64 −46 −50.42 −48
62 −39 −28 −33.92 −31 −55 −45 −49.75 −47 −64 −45 −54.25 −61
63 −39 −28 −34 −37 −54 −45 −49.8 −47 −63 −45 −54.53 −61
64 −41 −28 −33.95 −37 −56 −45 −49.78 −47 −63 −45 −54.42 −61
65 −38 −27 −33.9 −37 −55 −45 −49.84 −47 −62 −45 −54.36 −61
66 −40 −28 −33.98 −31 −55 −45 −49.76 −47 −62 −45 −54.34 −61
67 −39 −28 −33.96 −37 −55 −45 −49.76 −47 −62 −45 −54.49 −47
68 −40 −28 −33.98 −37 −56 −46 −49.47 −47 −62 −45 −54.47 −47
69 −40 −28 −33.96 −31 −54 −46 −49.74 −47 −63 −45 −54.44 −47
70 −69 −28 −39.5 −31 −75 −47 −54.4 −48 −70 −45 −54.18 −48
71 −63 −28 −44.75 −31 −71 −46 −57.58 −48 −60 −46 −52.41 −48

Skipped
77 −62 −28 −44.33 −31 −71 −45 −57.38 −48 −69 −46 −55.8 −48
78 −67 −28 −43.71 −31 −74 −45 −55.12 −48 −67 −45 −53.01 −48
79 −55 −28 −35.81 −31 −60 −45 −49.94 −48 −57 −45 −49.3 −48
80 −34 −28 −31.01 −31 −50 −45 −47.87 −48 −53 −45 −47.86 −48
81 −35 −28 −31.16 −31 −52 −45 −47.88 −48 −52 −46 −47.94 −48
82 −35 −28 −31.16 −31 −48 −45 −47.89 −48 −53 −45 −47.91 −48
83 −35 −28 −31.15 −31 −52 −46 −47.89 −48 −53 −45 −47.88 −48
84 −34 −28 −31.19 −31 −52 −45 −47.89 −48 −52 −46 −47.88 −48

Then, in the interval 62–69, sensors #1 and #2 stopped identifying the attack, although
sensor #3 identified the activity as malicious. This can be explained by the fact that almost
all metrics fell within the legitimate range during this interval, except for the mode metric of
sensor #1. The model’s behavior can be attributed to a slight deviation from the legitimate
values, specifically by −1 dBm.

In the interval 77–84 in Table 1, the transition from identifying a state where an
intrusion is detected to a state where no intrusion is recorded is shown. This is corroborated
by the decrease in the number of packets detected and intercepted from the monitored
access point, indicating the disappearance of one of the devices from the air. Importantly,
this prevents us from determining whether the attacker left the monitored area or if the
legitimate device malfunctioned.

The legitimate device’s disappearance from the air is quite likely if the legitimate
access point is using the WPA3 security protocol. This is because one of the steps that
attackers often take during an attack on WPA3 is a DoS attack on the access point, aiming
to disconnect clients and reconnect them to the Evil Twin.

Figure 17 shows that no false positive occurrences were observed, although false
negative cases did occur. However, it is fair to consider that the situation might change in
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other environments with different access points under observation. In our case, as shown
in Figure 17, a single sensor trigger is sufficient. However, if false positive occurrences
arise, a higher trigger threshold could be set, such as requiring two or more sensors to
trigger simultaneously.

Overall, the trained KNN model using a generative approach to create data frames of
illegitimate signal power allows for a fairly clear distinction between Evil Twin attacks.

One of the limitations of this approach is that before starting work, it is necessary to
collect the required amount of data from the legitimate access point. When collecting this
information, ensuring that no illegal actions are taken against the network is essential. It
is also worth noting that the signal power may change when the access point’s channel
changes. Another factor could be various physical factors, such as additional furniture
with metallic hardware in the office. In this case, the physical properties of the premises
will be altered, which may affect the propagation of the signal and, therefore, its power.
However, in this case, the KNN algorithm can quickly adapt to changes, and new data can
be applied almost instantly.

The aim of the detection system described in the paper was to detect all the signal
strength deviations outside of the legitimate power range, as illustrated in Figure 2.

Figure 7 illustrates the variation in signal strength gathered by all sensors during
the Evil Twin attack, while Figure 8 illustrates that for sensor #1, and here, we can easily
detect the presence of an Evil Twin due to a sharp signal and significant changes. Both
Figures 7 and 8 demonstrate maximal values for the max, avg, and mode metrics when the
Evil Twin’s localization is closer than that of all three sensors to the legitimate access point.

In all other cases when the Evil Twin device is far from the access point, we observe
a sharp decrease in the signal strength as well as the min, avg, and mode metrics. The
authors are going to continue their earlier investigations [12] determining Evil Twin’s
device localization using more sensors, perhaps up to 7.

5. Conclusions

The Evil Twin attack has become more widespread in Wi-Fi networks since vulnerabil-
ities in the WPA3 security protocol were discovered, as an attacker’s success now depends
on this attack when attacking a network using this protocol. However, this study did not
conduct a full-fledged attack on WPA3 because it was necessary to gather information
about the number of Beacon packets from the access point at the time of the attack to
demonstrate the effectiveness of the machine learning model.

One of the steps an attacker takes during a WPA3 attack is Denial-of-Service, in which
they initiate many authentication attempts. Due to the heavy encryption algorithms, the
access point may struggle to handle the load and temporarily stop functioning. If the
access point ceases operation, Beacon packets will also not be transmitted, rendering the
intrusion detection method based on packet count ineffective. However, the intrusion
detection method based on signal strength and artificial intelligence can effectively handle
this scenario.

This work proposed a generative algorithm for automatically creating segments of
illegitimate signal power. This algorithm covered all possible segment values when ag-
gregating the minimum, maximum, average, and most frequently occurring signal power
values, ensuring the identification of Evil Twin attacks regardless of the attacker’s device
configuration and the location of the attack.

As presented above, the system identified the Evil Twin attack in 100% of cases. In the
configuration using three sensors during the attack, at least one sensor identified the attack
at its occurrence. As demonstrated, this method may fail to recognize an attack if only one
sensor is used. Therefore, it is logical to argue that coverage by at least three sensors is
needed to monitor a single access point. However, if those three sensors receive packets
from other access points with a power of more than −80 dBm and hence receive a sufficient
number of packets, then they may cover more access points than one.
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This approach can be applied independently and in conjunction with existing in-
trusion detection methods and tools to enhance the security of IEEE 802.11 networks
against intrusions.

The interesting effect observed within this study was the variation in signal power
throughout the day. During the day, the minimum and maximum values diverged, while at
night, they converged. This effect could be utilized in training the model, not only based on
the metrics of min, max, avg, and mode but also based on the distance between their power
levels at specific times of the day.

Another limitation of this study is that monitoring the power from the legitimate
access point occurred only on one of the fourteen channels available in the IEEE 802.11bg
standard. Further development in this field could involve measuring power on the other
channels and introducing another metric to represent the monitored channel number. This
is important because signal power levels can differ when the access point changes its
working channel. Therefore, when the channel changes, it is plausible that the intrusion
detection system presented in this study could identify intrusions even in the case of
their absence.
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