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Simple Summary: Surgical techniques in aquaculture are gaining attention. This study investigated
the effects of high temperature on wound healing, hematopoietic recovery, and histological changes
in sturgeon undergoing surgical procedures. The liver condition was found to play a pivotal role in
the analysis. High temperature facilitated wound healing, but excessive induction of physiological
activity caused damage. Further research is needed to promote animal welfare in fishery products.

Abstract: Surgical techniques are gaining attention for treating physical diseases in aquaculture
and aquarium fish. Sturgeon is a suitable species for surgical experiments due to its industrial
significance. Maintaining homeostasis is crucial during surgical procedures, and the liver plays a
major role in immune regulation. High temperature is suggested to improve physiological activity
and wound healing. This study investigated differences in hepatectomy sturgeons’ tolerance and
histopathological responses of internal organs. Moreover, this study investigated the effects of high
temperatures on wound healing and hematopoietic recovery in fish undergoing surgical procedures.
The liver condition was found to play a pivotal role in the analysis, and cortisol levels were affected
by anesthesia. The results showed that high temperature facilitated hematopoietic recovery and
wound healing, but excessive induction of physiological activity caused damage. Managing high
temperatures and liver conditions induced a remarkable improvement in wound healing. However,
anesthesia itself can be a significant stressor for fish, and wound healing requires a greater amount of
energy. Further research is needed to understand the stress factors caused by surgical procedures and
anesthesia and to promote animal welfare in fishery products.

Keywords: hepatectomy; laparotomy; sturgeon; fish surgery; sturgeon histology; fish suturing; thermotherapy

1. Introduction

In recent times, the aquaculture industry has been focused on enhancing fish welfare
and promoting the development of the personal aquarium market, while simultaneously
increasing production [1]. During the culturing period of fish, a plethora of diseases
have been observed, which are associated with physical, infectious, and environmental
factors [2,3]. Aquaculturists are advised to prioritize disease control to minimize mortality
in the event of an outbreak, and numerous researchers have endeavored to provide effective
treatment methods [4]. However, unlike infectious and environmental problems, which
can be resolved through chemotherapy and environmental improvement, respectively,
physical injuries are difficult to cure due to the osmotic challenges that arise from aquatic
living conditions [5]. As a result, the importance of new surgical techniques for the
aggressive treatment of physical diseases in both aquaculture and aquarium fish is gaining
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attention among researchers [6]. Some researchers have suggested the availability of
surgical techniques as an important aspect of treatment [7,8].

Surgery is a useful tool in the treatment of various diseases that require surgical
intervention in fish [9]. For instance, basic surgery can effectively treat physical conditions
such as intussusception, ulcers, and tumors [10–12]. Although laparotomy is a fundamental
technique used in many surgical procedures for both humans and vertebrates, the study of
fish surgery remains relatively scarce compared to that of humans and other vertebrates [7].
Nevertheless, recent studies on the surgical operation of fish have been increasing [13].
Furthermore, many researchers emphasize the necessity of histopathological analysis to
investigate the relationship between wound healing and the microscopic structures of
organs [14].

In this context, sturgeon is a suitable fish species for conducting surgical experiments
due to its characteristics of harvest and industrial significance [15]. Sturgeons have been
subjected to abdominal laparoscopic surgery for sex identification, as they have a long
reproductive cycle and low spawning rates, making it difficult to distinguish between
males and females [16]. Sturgeon, one of the most widely cultivated freshwater fish, is often
slaughtered for its fine food ingredients such as caviar and/or its meat [17]. As the sturgeon
takes a long time to reach maturity and has a low spawning rate, the roe is extracted from
mature fish through a caesarian section, and then it is stitched back together to enable
further spawning [18]. Additionally, rearing sturgeon until they reach marketable size in a
short period is challenging, and satisfying the demand for sturgeon food ingredients within
a short period is difficult [19]. In laparotomy and laparoscopic operations, many sturgeons
have died due to infectious diseases, shock, unstable homeostasis, or accidents [19]. There-
fore, it is crucial to maintain the physiological activity of the fish before performing any
surgical procedures [7].

Maintaining homeostasis is crucial during surgical procedures [7]. The liver is a major
organ responsible for homeostasis and immune regulation [20]. Many researchers suggest
that maintaining healthy immunity and optimal physiological activity can aid in disease
prevention [5]. Physiological activity is regulated by temperature, and high temperature
has been used in human medicine to improve physiological activity and treat certain
injuries [21]. Improving physiological activity can lead to more rapid wound healing
compared to a depressed state [19]. Therefore, this study focuses on the differences in
hepatectomy patients’ tolerance and the histopathological responses of internal organs,
as well as investigating whether high temperatures can provide advantages in wound
healing. Furthermore, the present study observed histological changes in the liver during
the recovery period following the application of surgical procedures, considering the crucial
role the liver plays in maintaining homeostasis.

2. Materials and Methods
2.1. Fish

A total of forty-eight individuals of the sterlet sturgeon species (Acipenser ruthenus)
were obtained from a farm situated in Incheon, Republic of Korea. Before being allocated
to individual experimental aquariums, the specimens were housed in a domestication tank
for a period of four weeks, during which they were fed commercial diets (Propond Sterlet,
JBL GmbH & Co. KG, Neuhofen, Germany). Further elaboration of the experimental
parameters can be found in Table 1. The experiment was conducted in a 200 L glass tank
equipped with a recirculating filtration system capable of filtering 15 L per hour. The water
temperature was maintained at 18 ◦C until the induction of the initial anesthesia.
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Table 1. Samples and experimental conditions used in this study.

Conditions Status 1
Negative
Control I
(18 ◦C)

Negative
Control II

(28 ◦C)

Control I
(18 ◦C)

Control II
(28 ◦C)

Hepatectomy I
(18 ◦C)

Hepatectomy II
(28 ◦C)

Laparotomy I
(18 ◦C)

Laparotomy II
(28 ◦C)

Mass (g) Pre 154.2 ± 34.7 156.6 ± 39.3 151.3 ± 28.0 160.4 ± 33.7 145.0 ± 41.6 153.7 ± 31.6 152.6 ± 37.5 145.1 ± 49.3
End 151.4 ± 33.7 153.9 ± 38.1 146.8 ± 25.6 156.9 ± 32.8 136.0 ± 43.8 137.7 ± 28.4 146.3 ± 38.6 131.3 ± 44.5

Length (cm) Pre 27.7 ± 2.7 27.4 ± 3.3 28.6 ± 2.8 27.9 ± 2.6 27.9 ± 2.4 28.7 ± 1.9 28.7 ± 2.2 27.6 ± 3.3
End 27.6 ± 2.7 27.3 ± 3.3 28.6 ± 2.8 27.9 ± 2.6 28.4 ± 2.3 28.7 ± 1.9 28.9 ± 2.4 27.8 ± 3.5

Condition
Factor

Pre 0.72 ± 0.05 0.76 ± 0.11 0.64 ± 0.05 0.73 ± 0.06 0.65 ± 0.04 0.64 ± 0.01 0.63 ± 0.04 0.67 ± 0.04
End 0.72 ± 0.06 0.76 ± 0.11 0.59 ± 0.04 0.72 ± 0.06 0.58 ± 0.05 0.58 ± 0.03 0.59 ± 0.05 0.59 ± 0.05

Hepatosomatic index (%) End 1.03 ± 0.08 0.86 ± 0.21 1.11 ± 0.20 0.97 ± 0.15 0.97 ± 0.20 0.70 ± 0.15 0.97 ± 020 0.70 ± 0.11

Temperature (◦C) - 18 ± 0.5 28 ± 0.7 18 ± 0.5 28 ± 0.7 18 ± 0.5 28 ± 0.7 18 ± 0.5 28 ± 0.7

DO * (mg/L) - 9 ± 0.1 7.6 ± 0.1 9 ± 0.1 7.6 ± 0.1 9 ± 0.1 7.6 ± 0.1 9 ± 0.1 7.6 ± 0.1

pH - 6.5 ± 0.1 6.5 ± 0.1 6.5 ± 0.1 6.5 ± 0.1 6.5 ± 0.1 6.5 ± 0.1 6.5 ± 0.1 6.5 ± 0.1

Time (seconds)

Anesthesia
Pre - - 785.2 ± 113.8 808.5 ± 62.1 731.5 ± 204.1 777.3 ± 217.7 941.2 ± 264.8 690.0 ± 153.7
End - - 436.0 ± 41.2 445.3 ± 36.0 481.7 ± 121.4 749.7 ± 323.5 560.0 ± 138.3 795.8 ± 277.4

Handling Pre 306.7 ± 26.4 297.8 ± 26.9 305.5 ± 39.6 300.3 ± 14.6 621.5 ± 51.5 543.5 ± 17.6 492.5 ± 20.5 479.5 ± 23.8

Recovery Pre - - 1034.2 ± 295.3 828.3 ± 139.6 762.0 ± 335.6 229.5 ± 58.0 449.5 ± 182.7 263.3 ± 126.1
1 The start of experiment = Pre; the end of experiment = End; * DO = dissolved oxygen.
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To assess the health status of the experimental fish, the condition factors (CF) were
calculated using the following formula [22,23]:

Condition factor (CF) = Body mass (g)/{Total body length (cm)}3 × 100

The commencement of the experiment was defined as the moment following the
first anesthesia, during which blood sampling, hepatectomy, and laparotomy procedures
were performed. At the initiation of the first anesthesia, blood sampling was conducted
simultaneously across all groups, followed by laparotomy and hepatectomy (with excised
liver samples also utilized for analysis). Final sampling took place four weeks after the
experiment’s commencement, involving six sturgeons sampled from each group. All
samples were labeled with identifiable tags on their fins, enabling the observation of
hematological and histological changes specific to each individual.

At the initiation stage of the experiment, blood sampling and surgical procedures were
conducted at the initial rearing temperature of 18 ◦C. During the final stage of the experi-
ment, manipulations were performed according to segment-specific water temperatures
(18 ◦C and 28 ◦C). The 28 ◦C group gradually increased the water temperature at a rate of
1 ◦C per hour over a period of 10 h, starting immediately after the initial manipulation.

2.2. Anesthesia and Euthanasia

Except for the negative control group, all experimental groups were anesthetized
with a concentration of 200 ppm MS-222 (Sigma-Aldrich, St. Louis, MO, USA) [2,6], and
oxygen was supplied at 30 s intervals through a 3 mL syringe during the surgical procedure.
The oxygen supply was administered by the assistant in a controlled manner, utilizing a
syringe to inject water directly into the gills, following a predetermined schedule during
the experiment.

The duration of anesthesia, handling time, and recovery time were measured for
each individual, with anesthesia being based on the cessation of operculum movement
and recovery being based on the point at which normal swimming behavior resumed in
the tank.

Euthanasia was administered at the same concentration, and sampling was carried
out after complete anesthesia was achieved.

2.3. Hepatectomy

The hepatectomy procedure was executed by employing a simple continuous suture
technique (utilizing Blue nylon, 1 metric, Ailee, Republic of Korea), which involved excising
roughly 0.1–0.3 g (approximately 10–15% of the total liver mass) of liver tissue per sample
(Figure 1). The surgery was performed simultaneously with the initiation of the experiment,
and following suturing, the incision site was treated with iodine, fusidate sodium, and
Vaseline (Vaseline®, Unilever, London, UK) to prevent infection. The incision site size for
hepatectomy and laparotomy was uniformly maintained at approximately 3 cm to ensure
consistency. Minimal blood loss due to separate hemostasis and surgical procedures was
observed, and no additional measurements were conducted.

The mass of excised liver samples, approximately 0.1–0.3 g, was excluded from the
hepatosomatic index (HSI) measurements. The hepatosomatic index (HSI) is an indicator
used to assess the liver’s relative mass in fish and is calculated as the ratio of liver mass to
body mass and is expressed as a percentage [24]:

Hepatosomatic index (HSI) (%) = {Liver mass (g)/Body mass (g)} × 100

2.4. Hematological Analysis

Blood collection was performed at a volume of 1 mL for all samples and groups, both
at the first anesthesia conducted during hepatectomy and laparotomy and at the sampling
point four weeks after the start of the experiment. Blood samples were collected via the
caudal vein using vacutainer tubes such as the SST (serum separation tube) and EDTA
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(ethylene diamine tetra-acetic acid) tube and subsequently centrifuged at 1300 g for a
duration of 10 min. The following nine parameters were analyzed: alkaline phosphatase
(ALP), complement activity, cortisol, glutamic oxaloacetic transaminase (GOT), glutamic
pyruvic transaminase (GPT), hematocrit (Ht), hemoglobin (Hb), lysozyme activity, and
total protein (TP).
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Figure 1. An image of the abdomen of a sturgeon with the liver excised and sutured is presented:
(a) shows the appearance of the excised liver and (b) depicts a simple running suture.

The ALP (AM1055), GOT (AM103-K), GPT (AM-102), Hb (AM503), and TP (AM54-1011)
measurements were performed using products from Asan Pharm, Republic of Korea, in
accordance with the manufacturer’s protocol. Complement activity was determined using
100% sheep red blood cells (Innovate Research, India) and following general methods [25].
Cortisol was measured using the Cortisol ELISA kit (Enzo Life Sciences, Inc., Oyster Bay,
NY, USA) according to the manufacturer’s instructions. Hematocrits were determined
by transferring blood collected in EDTA tubes to heparin-treated capillary tubes (Sigma-
Aldrich, St. Louis, MO, USA), which were then centrifuged at 13,000 rpm for 15 min
before measurement. Lysozyme activity was measured using Micrococcus lysodeikticus
(Sigma-Aldrich, St. Louis, MO, USA) and following general methods [26,27].

To observe hematological changes during the experimental period, blood collection
was performed at the beginning of the experiment (the moment following the first anesthe-
sia, during which hepatectomy and laparotomy were performed), and 4 weeks after the
start of the experiment (the end of the experiment), six sturgeons were sampled from each
group to observe the changes.

2.5. Histological Analysis

For histological analysis, a total of 18 organs (a total of 48 sturgeons were utilized,
which were distributed into 8 groups with 6 individuals per group) were examined in
this study, including the anus (hindgut), body kidney, brain, eye, gall bladder, gill, gonad,
head kidney, heart, intestine, liver, muscle, pancreas, pyloric caeca, skin, spleen, stomach,
and swim bladder. The groups where hepatectomy was performed were stabilized, and
the excised livers were preserved, allowing for a comparative analysis of hepatic tissue
conditions before and after the experiment.
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Each sample was fixed in 10% neutral-buffered formalin for a duration of 24 h. Subse-
quently, all samples were collected and refixed in the same solution (10% neutral-buffered
formalin) for an additional 24 h prior to being gradually dehydrated through the use of
an ethanol series (70–100%). The samples were then cleared with xylene, embedded in
paraffin, and sectioned into slices with a thickness of 4 µm. Finally, the sections were
stained with hematoxylin-eosin (H&E) following standard protocols and examined under
an optical microscope (Leica DM2500, Wetzlar, Germany).

2.6. Image and Statistics Analysis

Image analysis for the histological data was conducted using ImageJ (National Insti-
tutes of Health, Bethesda, Maryland, USA). To present histopathological data, which could
potentially be subjective, as objectively as possible, image analysis was conducted using
the following methods.

To quantitatively distinguish the hepatic tissue’s condition, the ratio of nucleus to
cell size was calculated. Ten random hepatocytes were selected from each sample, and
their average ratio was used for the analysis. In the case of liver tissues, as determined
by a fish pathologist, a ratio where the nucleus occupies 30–45% was defined as normal,
exceeding 45% as fatty change, and below 30% as atrophy (refer to Figure 2). Additionally,
the length of renal tubule epithelial cells was measured similarly. Ten random epithelial
cells from proximal renal tubules were selected, and their length was measured from the
basement membrane to the brush border. The average value was calculated and utilized
for analysis. The hyperplasia of macrophage-like cells in the kidneys was measured by
utilizing histograms to determine the proportion of activated lesions within a single image
compared to the total tissue area. Randomly captured images (five in total) were used to
calculate the average data for analysis. Similarly, the lymphocyte infiltration level was
calculated using histograms to measure the proportion of areas occupied by lymphocytes
within a single image. The entire wound area was evenly captured, and the data from each
image were averaged for analysis.
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Figure 2. The criteria for categorizing the state of the liver tissue are as follows: (a) normal condition
(30–45%), (b) fatty change (>45%), and (c) atrophy (<30%) (Scale bar = 50 µm).

The statistical analysis was performed using the SPSS 23 program (IBM, Armonk, NY,
USA). Furthermore, following hepatic resection, no significant differences were observed,
and the treatment groups were regrouped into the 18 ◦C and 28 ◦C groups. Prior to
grouping, every individual datum was checked for statistical insignificance under the
same temperature conditions. Statistical significance was assessed using one-way analysis
of variance (ANOVA) and Duncan’s multiple range test, with a significance level set at
(p < 0.05).
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Due to the uneven distribution of liver tissue conditions among the groups, statistical
analysis of liver status was performed using the Kruskal–Wallis H test and Scheffe post-
hoc analysis. The aforementioned analysis was conducted using R (version: 4.3.0) for
statistical computing.

2.7. Data Curation with Liver Condition

Data curation was performed on a per-group basis using image analysis, catego-
rized according to the three conditions of hepatocytes: normal, fatty change, and atrophy
(Figure 2). Furthermore, statistical analyses were conducted separately for each liver condi-
tion, even within the same low (or high) temperature group.

3. Results
3.1. Condition Factors and Hepatosomatic Index
3.1.1. Condition Factor (CF)

No mortalities occurred during the experimental period, and as the experiment pro-
gressed into its fourth week, a decrease in CF values was observed throughout the entire
group, including the control group (Table 1).

3.1.2. Hepatosomatic Index (HSI)

Differences in HSI values were observed among the groups, with a significant decrease
observed in the fourth week, particularly in the 18 ◦C group (including the low-temperature
control) (Table 1).

3.2. Anesthesia and Recovery Time

The duration of anesthesia and recovery showed significant individual variation, with
no significant differences observed among groups. The handling time was found to be longer
in the hepatectomy group compared to the laparotomy group (naturally, the time taken for
liver resection was added accordingly), and no significant difference was observed in the time
required for anesthesia or recovery based on the condition of the liver tissue (Table 1).

3.3. Hematological Analysis

The results indicate that there were no statistically significant differences observed in
variables other than hematocrit, hemoglobin, and cortisol between the groups. Among the
individuals sampled for four consecutive weeks, the high-temperature group (including
the control group) exhibited significantly higher levels of hematocrit and hemoglobin,
while the low-temperature group (including the control group) displayed a significant
elevation in cortisol levels (Table 2). At the termination of the experiment, specifically at
the 4th week, higher levels of lysozyme activity were observed in the low-temperature
hepatectomy and laparotomy groups in comparison to the other groups (Table 2). In
particular, cortisol levels were found to be significantly higher in all groups that underwent
anesthesia (control, hepatectomy, and laparotomy) compared to the negative control group
that did not receive anesthesia. Furthermore, regardless of the presence of hepatic resection
or water temperature, a significant negative correlation was observed between cortisol
levels and the quality of liver tissue, indicating that cortisol levels decrease as liver tissue
quality improves (Figure 3).
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Table 2. Results of hematological analysis.

Parameters Status 1
Negative
Control I
(18 ◦C)

Negative
Control II

(28 ◦C)

Control I
(18 ◦C)

Control II
(28 ◦C)

Hepatectomy I
(18 ◦C)

Hepatectomy II
(28 ◦C)

Laparotomy I
(18 ◦C)

Laparotomy II
(28 ◦C)

Hematocrits
(%)

Pre 28.8 ± 3.0 30.0 ± 1.5 28.5 ± 4.4 28.2 ± 1.3 26.7 ± 2.8 29.8 ± 1.2 29.7 ± 5.8 27.2 ±3.9
End 12.0 ± 1.4 19.0 ± 2.5 12.5 ± 1.6 19.2 ± 2.3 9.2 ± 4.2 18.2 ± 1.6 15.2 ± 2.8 19.2 ± 3.2

Hemoglobin
(g/dL)

Pre 8.53 ± 1.28 8.43 ± 0.37 6.86 ± 0.45 8.39 ± 0.71 6.49 ± 0.81 8.44 ± 0.88 7.59 ± 0.69 8.04 ± 0.93
End 4.07 ± 0.39 5.88 ± 0.73 4.07 ± 0.44 5.89 ± 1.14 3.84 ± 0.86 5.33 ± 0.58 4.91 ± 0.99 5.62 ± 0.67

Cortisol
(ng/mL)

Pre 5.82 ± 1.42 5.52 ± 1.85 14.51 ± 3.29 15.78 ± 5.75 13.06 ± 5.93 15.36 ± 4.97 18.82 ± 9.50 14.41 ± 5.12
End 6.06 ± 1.60 5.28 ± 1.64 18.54 ± 4.11 18.24 ± 5.13 13.67 ± 4.71 18.06 ± 6.76 14.53 ± 3.89 16.31 ± 6.32

ALP
(U/L)

Pre 17.89 ± 1.81 18.05 ± 2.04 18.10 ± 1.75 18.21 ± 2.15 13.42 ± 2.42 13.95 ± 3.84 12.96 ± 0.98 15.24 ± 5.56
End 10.53 ± 2.41 10.44 ± 2.06 10.67 ± 2.25 10.42 ± 2.15 9.49 ± 1.55 9.45 ± 1.36 8.36 ± 1.56 10.51 ± 2.28

Complement
activity (%)

Pre 3.59 ± 1.05 3.74 ± 0.72 3.67 ± 1.07 3.58 ± 1.27 2.98 ± 0.47 3.00 ± 1.01 2.89 ± 1.00 5.08 ± 2.96
End 5.57 ± 1.68 5.61 ± 1.58 5.75 ± 1.46 4.74 ± 0.74 4.83 ± 1.61 5.06 ± 2.06 5.02 ± 2.13 5.69 ± 2.51

GOT
(U/L)

Pre 224.77 ± 18.50 224.74 ± 18.06 224.92 ± 18.20 224.75 ± 18.06 224.83 ± 39.73 217.36 ± 18.82 219.79 ± 34.45 206.51 ± 11.33
End 191.42 ± 29.13 191.40 ± 28.86 191.24 ± 29.05 191.33 ± 28.95 182.40 ± 35.91 165.10 ± 20.05 171.91 ± 40.29 185.17 ± 37.58

GPT
(U/L)

Pre 51.37 ± 14.71 51.20 ± 14.45 51.41 ± 14.59 51.12 ± 14.61 42.43 ± 14.11 31.05 ± 7.70 47.62 ± 26.18 36.21 ± 10.07
End 20.42 ± 8.22 20.36 ± 8.18 20.46 ± 7.99 20.15 ± 8.27 21.85 ± 9.22 20.18 ± 4.50 22.16 ± 14.63 21.07 ± 5.20

Lysozyme
Activity

(units/mL)

Pre 2.19 ± 1.04 5.78 ± 3.12 3.64 ± 2.97 5.09 ± 3.42 3.29 ± 1.57 3.75 ± 1.84 2.87 ± 1.21 4.44 ± 1.58

End 3.71 ± 1.09 3.73 ± 2.53 4.54 ± 2.24 3.88 ± 1.46 6.33 ± 5.09 3.54 ± 2.70 5.78 ± 3.68 2.94 ± 1.60

TP
(g/dL)

Pre 0.80 ± 0.20 0.80 ± 0.19 0.79 ± 0.21 0.78 ± 0.20 0.84 ± 0.29 1.09 ± 0.23 0.93 ± 0.28 1.13 ± 0.45
End 0.51 ± 0.09 0.52 ± 0.09 0.52 ± 0.09 0.52 ± 0.09 0.61 ± 0.25 0.47 ± 0.17 0.54 ± 0.31 0.36 ± 0.12

1 The start of the experiment = Pre; the end of the experiment = End.
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experiment; (b) cortisol levels at the end of the experiment; NC = negative control, C = control,
HE = hepatectomy, LA = laparotomy, N = normal, FC = fatty change, AT = atrophy. Each box
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depicted in each graph signify inter-group statistical significance.

3.4. Histological Analysis

Among the 18 organs analyzed, excluding the body kidney, head kidney, liver, muscle,
and spleen, no significant changes were observed (Figure S1).

No significant differences were observed between the hepatic tissues at the initiation
stage of the experiment in the groups where hepatectomy was performed and the hepatic
tissues at the completion stage of the experiment.

Notably, in the head kidney, the hyperplasia of the reticuloendothelial system (RES)
was observed in individuals subjected to hepatectomy and laparotomy, and this was more
pronounced in the high-temperature group (Figure 4a). Moreover, an increased prevalence
of actively dividing hematopoietic cells was observed in the high-temperature groups
relative to the 18 ◦C groups (Figure 4b). In addition, immature erythrocytes (reticulocytes;
irregular and eosinophilic cytoplasm was observed, differing from normal erythrocytes)
were observed in the spleen of the high-temperature group, including the high-temperature
control (Figure 4c). In the body kidney of the high-temperature group, including the
high-temperature control, significant expansion (edema lesions) of the proximal tubule was
observed (Figure 4d). In the control group, the liver displayed normal conditions, whereas
the low and high-temperature groups exhibited fatty change and atrophy (Figure 4e). Fur-
thermore, the groups that underwent surgical procedures demonstrated the infiltration
of inflammatory cells (including eosinophilic granuloma cells, EGC) and an increase in
melanomacrophage centers (MMCs) (Figure 4f). Obviously, leukocyte infiltration at the su-
ture site was observed in groups that underwent hepatectomy or laparotomy (Figure 4g,h);
however, in the high-temperature group, the occurrence of collagen bundles was also
observed (Figure 4h). Additionally, it was noteworthy that, within the group subjected to
surgical procedures, the group at 28 ◦C, characterized by elevated temperature, exhibited a
distinctive pattern. In contrast to the 18 ◦C groups, where predominantly inflammatory
cell infiltration in the lobular architecture of adipose tissue under the wounded area was
noted (Figure 4g), the 28 ◦C groups displayed the presence of collagen bundles within the
lobules of the subcutaneous layer of adipose tissue (Figure 4h).
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lobule under wounded area; red circles = the hyperplasia of reticuloendothelial system (RES), red
arrows = dividing hematopoietic cells, black circles = reticulocytes, black arrows = edema lesions,
a white circle = the infiltration of inflammatory cells, white arrows = melanomacrophage centers
(MMCs), blue circles = the infiltration of lymphocytes, blue arrows = the occurrence of collagen
bundles (Scale bar = 50 µm).

3.5. Image Analysis

The histological analysis of the kidneys and muscles was verified using an image
analysis program (ImageJ) to ensure objectivity. The mean height of proximal tubule cells in
the body kidney was significantly higher in the high-temperature group (with hepatectomy
and laparotomy) (Figure 5a). The hyperplasia of the RES in the head kidney was signif-
icantly higher in the high-temperature group (with hepatectomy and laparotomy), and
the low-temperature group (with hepatectomy and laparotomy) also showed a relatively
higher level compared to the control group (Figure 5b). Additionally, the level of leukocyte
infiltration in the wounded area was also significantly higher in the low-temperature group
(with hepatectomy and laparotomy) (Figure 5c). It has been found that the differences
observed in the changes occurring in the kidney and wounded area depend more on water
temperature than the condition of the liver tissue (Figure 5).
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4. Discussion

It is postulated that the reason for the decline in CF and HSI as the experiment
progresses is to facilitate recovery from the damage caused by blood sampling and incision,
as evidenced by the relatively lesser decrease in control compared to the hepatectomy and
laparotomy groups. Furthermore, it was observed that hematocrit and hemoglobin levels
did not fully recover until the 4th week in the experimental group, including the control
group sampled early on. This suggests that recovery from the damage caused by blood
sampling (the volume of 1 mL collected during the first anesthesia) requires more than
four weeks, which warrants further investigation. However, this study has found that
high temperatures can facilitate hematopoietic recovery, as demonstrated by the emergence
of reticulocytes in the spleen, as well as increased levels of hematocrit and hemoglobin.
This trend was observed not only in the groups where hepatectomy and laparotomy were
performed but also in the high-temperature control group. As this study did not account
for bleeding due to surgical procedures, further investigation is necessary to examine the
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changes in reticulocytes due to potential blood loss in subsequent research. Furthermore,
there was an observed increase in the hematopoietic function of the head kidney [28].

In this study, high temperature yielded significant results, particularly in the context
of wound healing. Specifically, a significant degree of recovery was observed in the
sutured areas following hepatectomy or laparotomy compared to the low-temperature
group. However, it was also noted that excessive induction of physiological activity caused
damage (edema lesions) to the proximal tubules of the body’s kidney. High temperature is
a type of thermotherapy used in humans and is known to induce metabolic activity [29,30].

Moreover, this study demonstrated the pivotal role of liver condition in the statistical
analysis, as evidenced by variations in response observed within each group based on
liver condition. No significant changes were observed in the liver tissue due to hepatec-
tomy. Remarkably, effective management of high temperatures and liver conditions led
to a significant improvement in wound healing in the fish. This can be explained by a
higher degree of muscle regeneration and a lower lymphocyte infiltration index. While
no significant differences in anesthesia and recovery times were observed based on liver
condition, reorganizing the hematological and histological results according to liver condi-
tion revealed more notable differences, both visually and non-visually. Specifically, this
study found a substantial variation in cortisol levels based on liver condition (depicted in
Figure 3). Differences in cortisol levels were observed in the groups where hepatectomy
and laparotomy were performed, whereas no significant differences were found in the
control group. In contrast, lymphocyte infiltration in the wound site and edema lesions in
the renal tubule, as well as RES activity in the head kidney, were found to be more strongly
correlated with water temperature (illustrated in Figure 5).

No significant differences in both hematological and histological analyses were ob-
served between the low- and high-temperature control groups. While this study had
limitations in not accounting for variables due to differences in dissolved oxygen (DO), no
statistically significant differences were observed within the control groups. This suggests
that hematological and histological changes between the groups were attributed to surgical
procedures rather than temperature variations. In the hematological analysis of this study,
no significant changes were observed in parameters other than hematocrit, hemoglobin,
and cortisol. However, one parameter that requires special attention is cortisol. In this
study, a negative control without anesthesia and a control group with anesthesia were
compared, and a significant difference in cortisol levels was found between the two groups.
In fact, cortisol levels did not show a significant difference between the control group
with anesthesia and the group subjected to surgical procedures (Table 2). This suggests
that administering anesthesia itself can be a significant stressor for fish [31]. Despite the
daily administration of commercial diets throughout the experimental period, a significant
reduction in mass (with a confirmed decrease in CF) was observed in the group where
the incision was made (Table 1), suggesting the need for a greater amount of energy for
wound healing.

Overall, based on this study, it has been confirmed that surgical procedures such as
hepatectomy and/or laparotomy are not harmful to the sturgeon (Acipenser ruthenus was
used in this study) and are applicable techniques. Of particular note is the discrepancy
observed in the results between Tables 1 and 2, where differences were not apparent. This
variation was dependent on the liver condition. However, further research is needed
to clearly understand the stress factor increase caused by anesthesia, blood loss due to
venipuncture and surgical procedures, and the time required for complete recovery of
the sutured area. Additionally, to promote animal welfare and produce eco-friendly and
sustainable fisheries products [1,32,33], subsequent studies must be conducted to apply
surgical procedures from the perspective of animal welfare enhancement.
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5. Conclusions

The importance of disease control to minimize mortality in fish is emphasized, and
surgical techniques are discussed as an important aspect of treatment for physical injuries.
Sturgeon is a suitable fish species for conducting surgical experiments due to its industrial
significance and long reproductive cycle. This study focuses on investigating whether
high temperatures can provide advantages in wound healing and improving physiological
activity to aid in disease prevention. The use of high temperatures has yielded significant
results in facilitating hematopoietic recovery and wound healing, although excessive
induction of physiological activity can also cause damage. Additionally, hepatectomy
and laparotomy have been confirmed as feasible surgical procedures in fish. This study
revealed that anesthesia acts as a significant stressor in fish and that there are significant
differences in stress response depending on the hepatic tissue status. Thus, the development
of anesthesia and analgesics for improving fish welfare is necessary in the future.
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