Bacterial Contamination of the Surgical Site at the Time of Elective Caesarean Section in Belgian Blue Cows—Part 2: Identified by 16Sr DNA Amplicon Sequencing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Caesarean Section Realisation
2.3. Sample Collection
2.4. Bacterial Culture
2.4.1. Samples Randomly Selected for 16S Amplicon Sequencing
2.4.2. Extraction of Bacterial DNA
2.4.3. PCR Amplification and Product Quantification
2.5. Bioinformatics Analyses
2.6. Data Analysis
3. Results
3.1. Culture Results of the Selected Samples for Microbiota Sequencing
3.2. Description of the Surgical Site Microbiota during the Elective CS Realisation
3.3. Evaluation of the Microbiota Differences between the Samples Positive and Negative to the Bacteriology
3.4. Comparison of the Results of Culture and Amplicon Sequencing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coopman, F.; De Smet, S.; Gengler, N.; Haegeman, A.; Jacobs, K.; Van Poucke, M.; Laevens, H. Estimating internal pelvic sizes using external body measurements in the double-muscled Belgian Blue beef breed. Anim. Sci. 2003, 76, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Herd Book Blanc Bleu Belge (HBBB). Caractéristiques. 2022. Available online: https://www.hbbbb.be/fr/pages/caracteristique (accessed on 15 April 2022).
- Mijten, P.; van den Bogaard, A.E.J.M.; Hazen, M.J.; de Kruif, A. Bacterial contamination of fetal fluids at the time of caesarean section in the cow. Theriogenology 1996, 97, 513–521. [Google Scholar] [CrossRef]
- Antimicrobial Consumption and Resistance in Animals (AMCRA). Traitement Antibactérien Péri-Opératoire. 2022. Available online: https://formularium.amcra.be/i/79 (accessed on 5 April 2022).
- Dumas, S.E.; French, H.M.; Lavergne, S.N.; Ramirez, C.R.; Brown, L.J.; Bromfield, C.R.; Garrett, E.F.; French, D.D.; Aldridge, B.M. Judicious use of prophylactic antimicrobials to reduce abdominal surgical site infections in periparturient cows: Part 1—A risk factor review. Vet. Rec. 2016, 178, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Credille, B.; Woolums, A.; Giguère, S.; Robertson, T.; Overton, M.; Hurley, D. Prevalence of Bacteremia in Dairy Cattle with Acute Puerperal Metritis. J. Vet. Intern. Med. 2014, 28, 1606–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djebala, S.; Evrard, J.; Gregoire, F.; Thiry, D.; Bayrou, C.; Moula, N.; Sartelet, A.; Bossaert, P. Infectious Agents Identified by Real-Time PCR, Serology and Bacteriology in Blood and Peritoneal Exudate Samples of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Vet. Sci. 2020, 7, 134. [Google Scholar] [CrossRef]
- Djebala, S.; Moula, N.; Bayrou, C.; Sartelet, A.; Bossaert, P. Prophylactic antibiotic usage by Belgian veterinarians during elective caesarean section in Belgian Blue cattle. Prev. Vet. Med. 2019, 172, 104785. [Google Scholar] [CrossRef]
- De Coensel, E.; Sarrazin, S.; Opsomer, G.; Dewulf, J. Antimicrobial use in the uncomplicated cesarean section in cattle in Flanders. Vlaams Diergeneeskd. Tijdschrift. 2020, 89, 41–51. [Google Scholar] [CrossRef]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Callens, B.; Cargnel, M.; Sarrazin, S.; Dewulf, J.; Hoet, B.; Vermeersch, K.; Wattiau, P.; Welby, S. Associations between a decreased veterinary antimicrobial use and resistance in commensal Escherichia coli from Belgian livestock species (2011–2015). Prev. Vet. Med. 2018, 157, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Koskinen, M.T.; Wellenberg, G.J.; Sampimon, O.C.; Holopainen, J.; Rothkamp, A.; Salmikivi, L.; Van Haeringen, W.A.; Lam, T.J.; Mand, G.; Pyörälä, S. Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. J. Dairy Sci. 2010, 93, 5707–5715. [Google Scholar] [CrossRef]
- Mori, K.; Kamagata, Y. The Challenges of Studying the Anaerobic Microbial World. Microbes Environ. 2014, 29, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Ferrer, M.; Martínez-Abarca, F.; Golyshin, P.N. Mining genomes and ‘metagenomes’ for novel catalysts. Curr. Opin. Biotechnol. 2005, 16, 588–593. [Google Scholar] [CrossRef]
- Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685. [Google Scholar] [CrossRef] [Green Version]
- Cowan, D.; Meyer, Q.; Stafford, W.; Muyanga, S.; Cameron, R.; Wittwer, P. Metagenomic gene discovery: Past, present and future. Trends Biotechnol. 2005, 23, 321–332. [Google Scholar] [CrossRef]
- Minot, S.; Sinha, R.; Chen, J.; Li, H.; Keilbaugh, S.A.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res. 2011, 21, 1616–1625. [Google Scholar] [CrossRef] [Green Version]
- Di Giulio, D.B.; Callahan, B.J.; McMurdie, P.J.; Costello, E.K.; Lyell, D.J.; Robaczewska, A.; Sun, C.L.; Goltsman, D.S.A.; Wong, R.J.; Shaw, G.; et al. Temporal and spatial variation of the human microbiota during pregnancy. Microbiology 2015, 112, 11060–11065. [Google Scholar] [CrossRef] [Green Version]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Firek, B.; Baker, R.; Burstein, D.; Soenjoyo, K.; Thomas, B.C.; Morowitz, M.; Banfield, J.F. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017, 27, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Zheng, Z.; Shao, T.; Liu, L.; Xie1, Z.; Le Chatelier, E.; He, Z.; Zhong, W.; Fan, Y.; Zhang, L.; et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 2017, 18, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Hummel, G.L.; Austin, K.; Cunningham-Hollinger, H.C. Comparing the maternal-fetal microbiome of humans and cattle: A translational assessment of the reproductive, placental, and fetal gut microbiomes. Biol. Reprod. 2022, 107, 371–381. [Google Scholar] [CrossRef]
- Moore, S.G.; Ericsson, A.C.; Poock, S.E.; Melendez, P.; Lucy, M.C. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. J. Dairy Sci. 2017, 100, 4953–4960. [Google Scholar] [CrossRef]
- Husso, A.; Lietaer, L.; Pessa-Morikawa1, T.; Grönthal, T.; Govaere, J.; Van Soom, A.; Iivanainen, A.; Opsomer, G.; Niku, M. The Composition of the Microbiota in the Full-Term Fetal Gut and Amniotic Fluid: A Bovine Cesarean Section Study. Front. Microbiol. 2021, 12, 626421. [Google Scholar] [CrossRef] [PubMed]
- Guzman, C.E.; Jennifer, L.; Wood, J.L.; Egidi, E.; White-Monsant, A.C.; Semenec, L.; Grommen, S.V.H.; Hill-Yardin, E.L.; De Groef1, B.; Franks, A.E. A pioneer calf foetus microbiome. Sci. Rep. 2020, 10, 17712. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, M.; Loor, J.J.; Elolimy, A.; Li, L.; Xu, C.; Wang, W.; Yin, S.; Qu, Y. Analysis of Cow-Calf Microbiome Transfer Routes and Microbiome Diversity in the Newborn Holstein Dairy Calf Hindgut. Front. Nutr. 2021, 25, 736270. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.F.; Bicalho, M.L.S.; Bicalho, R.C. The Bos taurus maternal microbiome: Role in determining the progeny early-life upper respiratory tract microbiome and health. PLoS ONE 2019, 14, e0208014. [Google Scholar] [CrossRef] [Green Version]
- Uystepruyst, C.; Coghe, J.; Dorts, T.; Harmegnies, N.; Delsemme, M.H.; Art, T.; Lekeux, P. Optimal timing of elective caesarean section in Belgian White and Blue Breed of cattle: The calf’s point of view. Vet. J. 2002, 163, 267–282. [Google Scholar] [CrossRef]
- Kolkman, I.; De Vliegher, S.; Hoflack, G.; Van Aert, M.; Laureyns, J.; Lips, D.; De Kruif, A.; Opsomer, G. Protocol of the caesarean section as performed in daily bovine practice in Belgium. Reprod. Domest. Anim. 2007, 42, 583–589. [Google Scholar] [CrossRef]
- Kolkman, I.; Opsomer, G.; Lips, D.; Lindenbergh, B.; De Kruif, A.; De Vliegher, S. Preoperative and operative difficulties during bovine caesarean section in Belgium and associated risk factors. Reprod. Domest. Anim. 2010, 45, 1020–1027. [Google Scholar] [CrossRef]
- Martinez, E.; Rodriguez, C.; Crèvecoeur, S.; Lebrun, S.; Delcenserie, V.; Taminiau, B.; Daube, G. Impact of environmental conditions and gut microbiota on the in vitro germination and growth of Clostridioides difficile. FEMS Microbiol. Lett. 2022, 369, fnac087. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Korsak, N.; Avesani, V.; Van Broeck, J.; Brach, P.; Delmée, M.; Daube, G. Longitudinal survey of Clostridium difficile presence and gut microbiota composition in a Belgian nursing home. BMC Microbiol. 2016, 16, 229. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef]
- Stewart, C.N.; Excoffier, L. Assessing population genetic structure and variability with RAPD data: Application to Vaccinium macrocarpon (American Cranberry). J. Evol. Biol. 1996, 9, 153–171. [Google Scholar] [CrossRef]
- Bauer, A.S.; Arndt, T.P.; Leslie, E.K.; Pearl, D.L.; Turner, P.V. Obesity in rhesus and cynomolgus macaques: A comparative review of the condition and its implications for research. Comp. Med. 2011, 61, 514–526. [Google Scholar]
- Gower, J.C. Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis. Biometrika 1966, 53, 325. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Hummel, G.L.; Woodruff, K.L.; Austin, K.J.; Knuth, R.M.; Williams, J.D.; Cunningham-Hollinger, H.C. The materno-placental microbiome of gravid beef cows under moderate feed intake restriction. Transl. Anim. Sci. 2021, 5, 159–163. [Google Scholar] [CrossRef]
- Amat, S.; Dahlen, C.R.; Swanson, K.C.; Ward, A.K.; Reynolds, L.P.; Caton, J.S. Bovine Animal Model for Studying the Maternal Microbiome, in utero Microbial Colonization and Their Role in Offspring Development and Fetal Programming. Front. Microbiol. 2022, 23, 854453. [Google Scholar] [CrossRef]
- Hanzen, C.; Théron, L.; Detilleux, J. Modalités de réalisation de la césarienne dans l’espèce bovine en Europe. Bull. GTV 2011, 59, 15–26. [Google Scholar]
- Fecteau, G. Management of peritonitis in cattle. Vet. Clin. N. Am. Food Anim. Pract. 2005, 21, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Bourel, C.; Buczinski, S.; Desrochers, A.; Harvey, D. Comparison of two surgical site protocols for cattle in a field setting. Vet. Surg. 2013, 42, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Waites, K.B.; Katz, B.; Schelonka, R.L. Mycoplasmas and ureaplasmas as neonatal pathogens. Clin. Microbiol. Rev. 2005, 18, 757–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maunsell, F.P.; Woolums, A.; Francoz, D.; Rosenbusch, R.; Step, D.; Wilson, D.; Janzen, E. Mycoplasma bovis Infections in Cattle. J. Vet. Intern. Med. 2011, 25, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Pardon, B.; de Bleecker, K.; Dewulf, J.; Callens, J.; Boyen, F.; Catry, B.; Deprez, P. Prevalence of respiratory pathogens in diseased, non-vaccinated, routinely medicated veal calves. Vet. Rec. 2011, 169, 278. [Google Scholar] [CrossRef]
- Zhang, R.; Han, X.; Chen, Y.; Mustafa, R.; Qi, J.; Chen, X.; Hu, C.; Chen, H.; Guo, A. Attenuated Mycoplasma bovis strains provide protection against virulent infection in calves. Vaccine 2014, 32, 3107–3114. [Google Scholar] [CrossRef]
- Gille, L.; Pilo, P.; Valgaeren, B.R.; van Driessche, L.; van Loo, H.; Bodmer, M.; Burki, S.; Boyen, F.; Haesebrouck, F.; Deprez, P.; et al. A new predilection site of Mycoplasma bovis: Postsurgical seromas in beef cattle. Vet. Microbiol. 2016, 186, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Association Régionale de Santé et d’Identification Animales (Annual Report). 2017. Available online: https://www.arsia.be/wp-content/uploads/documents-telechargeables/RA-2017-light-Quality.pdf (accessed on 30 May 2022).
- Gille, L.; Callen, J.; Supré, K.; Boyen, F.; Haesebrouck, F.; Van Driessche, L.; van Leenen, K.; Deprez, P.; Pardon, B. Use of a breeding bull and absence of a calving pen as risk factors for the presence of Mycoplasma bovis in dairy herds. J. Dairy Sci. 2018, 101, 8284–8290. [Google Scholar] [CrossRef]
- Gille, L.; Evrard, J.; Callens, J.; Supré, K.; Grégoire, F.; Boyen, F.; Haesebrouck, F.; Deprez, P.; Pardon, B. The presence of Mycoplasma bovis in colostrum. Vet. Res. 2020, 51, 54–58. [Google Scholar] [CrossRef] [Green Version]
- Association Régionale de Santé et d’Identification Animales (Annual Report). 2018. Available online: https://www.arsia.be/wp-content/uploads/PDF-Arsia-Infos/2018/AI-mai-2018-FR.pdf (accessed on 30 May 2022).
- Laskin, A.I. CRC Handbook of Microbiology: Condensed Edition, 1st ed.; CRC Press: Boca Raton, FL, USA; St. Louis, MI, USA, 1974; p. 940. [Google Scholar] [CrossRef]
- Hahne, J.; Kloster, T.; Rathmann, S.; Weber, M.; Lipski, A. Isolation and characterization of Corynebacterium spp. from bulk tank raw cow’s milk of different dairy farms in Germany. PLoS ONE 2018, 13, e0194365. [Google Scholar] [CrossRef]
- Pirard, B.; Crèvecoeur, S.; Fall, P.A.; Lausberg, P.; Taminiau, B.; Daube, G. Potential resident bacterial microbiota in udder tissues of culled cows sampled in abattoir. Res. Vet. Sci. 2021, 136, 369–372. [Google Scholar] [CrossRef]
- Oliveira, A.; Oliveira, L.C.; Aburjaile, F.; Benevides, L.; Tiwari, S.; Jamal, S.B.; Silva, A.; Figueiredo, H.C.P.; Ghosh, P.; Portela, R.W.; et al. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front. Microbiol. 2017, 12, 1937–1955. [Google Scholar] [CrossRef]
- Vientós-Plotts, A.I.; Ericsson, A.C.; Rindt, H.; Reinero, C.R. Respiratory Dysbiosis in Canine Bacterial Pneumonia: Standard Culture vs. Microbiome Sequencing. Front. Vet. Sci. 2019, 11, 354–364. [Google Scholar] [CrossRef]
- Abayasekara, L.M.; Perera, J.; Chandrasekharan, V.; Gnanam, V.S.; Udunuwara, N.A.; Liyanage, D.S.; Bulathsinhala, N.E.; Adikary, S.; Aluthmuhandiram, J.V.S.; Thanaseelan, C.S.; et al. Detection of bacterial pathogens from clinical specimens using conventional microbial culture and 16S metagenomics: A comparative study. BMC Infect. Dis. 2017, 17, 631–642. [Google Scholar] [CrossRef]
- Bokma, J.; Pardona, B.; Depreza, P.; Haesebrouck, F.; Boyen, F. Non-specific, agar medium-related peaks can result in false positive Mycoplasma alkalescens and Mycoplasma arginini identification by MALDI-TOF MS. Res. Vet. Sci. 2020, 130, 139–143. [Google Scholar] [CrossRef]
- Vidal, S.; Kegler, K.; Posthaus, H.; Perreten, V.; Rodreguez-campos, S. Amplicon sequencing of bacterial microbiota in abortion material from cattle. Vet. Res. 2017, 48, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Boumenir, M.; Hornick, J.L.; Taminiau, B.; Daube, G.; Brotcorne, F.; Iguer-Ouada, M.; Moula, N. First Descriptive Analysis of the Faecal Microbiota of Wild and Anthropized Barbary Macaques (Macaca sylvanus) in the Region of Bejaia, Northeast Algeria. Biology 2022, 11, 187. [Google Scholar] [CrossRef]
Genera | Aerococcus | Psychrobacter | Acinetobacter | Pantoea | Staphylococcus | Clostridium | Pseudomonas | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method of identification | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq |
Samples with culture (+) | ||||||||||||||
A3 | + | - | - | + | - | + | - | - | - | + | - | + | - | + |
A4 | + | - | + | - | - | + | - | - | - | - | - | - | - | + |
E24 | - | + | - | + | + | + | - | - | - | + | - | + | - | + |
H37 | + | + | - | + | - | + | + | - | + | + | - | - | - | + |
M56 | - | + | - | - | - | + | - | - | - | + | + | + | - | + |
S70 | - | + | - | - | - | + | - | - | - | + | - | + | + | + |
Samples with culture (−) | ||||||||||||||
C17 | - | + | - | + | - | + | - | + | - | + | - | + | - | + |
D21 | - | + | - | + | - | + | - | - | - | + | - | + | - | + |
E26 | - | + | - | + | - | + | - | + | - | + | - | - | - | + |
H39 | - | + | - | + | - | + | - | - | - | + | - | + | - | + |
L53 | - | + | - | - | - | + | - | + | - | + | - | + | - | + |
N60 | - | + | - | + | - | + | - | + | - | + | - | + | - | + |
T71 | - | + | - | + | - | + | - | - | - | + | - | + | - | + |
Total of positive samples | 3/13 | 11/13 | 1/13 | 9/13 | 1/13 | 13/13 | 1/13 | 4/13 | 1/13 | 12/13 | 1/13 | 10/13 | 1/13 | 13/13 |
Species | Aerococcus viridans | Psychrobacter sp. | Acinetobacter sp. | Pantoea agglomerans | Staphylococcus lentus | Clostridium perfringens | Pseudomonas sp. | |||||||
Method of identification | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq | Culture | Amp seq |
Samples with culture (+) | ||||||||||||||
A3 | + | - | - | + | - | + | - | - | - | - | - | - | - | + |
A4 | + | - | + | - | - | + | - | - | - | - | - | - | - | + |
E24 | - | - | - | + | + | + | - | - | - | - | - | - | - | + |
H37 | + | - | - | + | - | + | + | - | + | - | - | - | - | + |
M56 | - | - | - | - | - | + | - | - | - | - | + | - | - | + |
S70 | - | - | - | - | - | + | - | - | - | - | - | - | + | + |
Samples with culture (−) | ||||||||||||||
C17 | - | - | - | + | - | + | - | + | - | - | - | - | - | + |
D21 | - | - | - | + | - | + | - | - | - | - | - | - | - | + |
E26 | - | - | - | + | - | + | - | + | - | - | - | - | - | + |
H39 | - | - | - | + | - | + | - | - | - | - | - | - | - | + |
L53 | - | - | - | - | - | + | - | + | - | - | - | - | - | + |
N60 | - | - | - | + | - | + | - | + | - | - | - | - | - | + |
T71 | - | - | - | + | - | + | - | - | - | - | - | - | - | + |
Total of positive samples | 3/13 | 0/13 | 1/13 | 9/13 | 1/13 | 13/13 | 1/13 | 4/13 | 1/13 | 0/13 | 1/13 | 0/13 | 1/13 | 13/13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djebala, S.; Coria, E.; Munaut, F.; Gille, L.; Eppe, J.; Moula, N.; Taminiau, B.; Daube, G.; Bossaert, P. Bacterial Contamination of the Surgical Site at the Time of Elective Caesarean Section in Belgian Blue Cows—Part 2: Identified by 16Sr DNA Amplicon Sequencing. Vet. Sci. 2023, 10, 94. https://doi.org/10.3390/vetsci10020094
Djebala S, Coria E, Munaut F, Gille L, Eppe J, Moula N, Taminiau B, Daube G, Bossaert P. Bacterial Contamination of the Surgical Site at the Time of Elective Caesarean Section in Belgian Blue Cows—Part 2: Identified by 16Sr DNA Amplicon Sequencing. Veterinary Sciences. 2023; 10(2):94. https://doi.org/10.3390/vetsci10020094
Chicago/Turabian StyleDjebala, Salem, Elise Coria, Florian Munaut, Linde Gille, Justine Eppe, Nassim Moula, Bernard Taminiau, Georges Daube, and Philippe Bossaert. 2023. "Bacterial Contamination of the Surgical Site at the Time of Elective Caesarean Section in Belgian Blue Cows—Part 2: Identified by 16Sr DNA Amplicon Sequencing" Veterinary Sciences 10, no. 2: 94. https://doi.org/10.3390/vetsci10020094
APA StyleDjebala, S., Coria, E., Munaut, F., Gille, L., Eppe, J., Moula, N., Taminiau, B., Daube, G., & Bossaert, P. (2023). Bacterial Contamination of the Surgical Site at the Time of Elective Caesarean Section in Belgian Blue Cows—Part 2: Identified by 16Sr DNA Amplicon Sequencing. Veterinary Sciences, 10(2), 94. https://doi.org/10.3390/vetsci10020094