Risperidone Administration Attenuates Renal Ischemia and Reperfusion Injury following Cardiac Arrest by Antiinflammatory Effects in Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Animals
2.2. Operation of CA/ROSC and Risp Administration
2.3. Biochemical Analysis of Serum
2.4. Hematoxylin and Eosin (HE) Staining
2.5. Immunohistochemistry
2.6. Data and Statistical Analyses
3. Results
3.1. Body Temperature and Survival Rate
3.2. Levels of BUN, Creatinine and LDH
3.3. Histopathology by HE Staining
3.4. Pro-Inflammatory Cytokine Immunoreactivity
3.4.1. IL6 Immunoreactivity
3.4.2. TNFα Immunoreactivity
3.5. Anti-Inflammatory Cytokine Immunoreactivity
3.5.1. IL4 Immunoreactivity
3.5.2. IL13 Immunoreactivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girotra:, S.; Chan, P.S.; Bradley, S.M. Post-resuscitation care following out-of-hospital and in-hospital cardiac arrest. Heart 2015, 101, 1943–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, I.; Monchi, M.; Chiche, J.D.; Joly, L.M.; Spaulding, C.; Bourgeois, B.; Cariou, A.; Rozenberg, A.; Carli, P.; Weber, S.; et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J. Am. Coll. Cardiol. 2002, 40, 2110–2116. [Google Scholar] [CrossRef] [Green Version]
- Madl, C.; Holzer, M. Brain function after resuscitation from cardiac arrest. Curr. Opin. Crit. Care 2004, 10, 213–217. [Google Scholar] [CrossRef]
- Zhong, S.; Guo, H.; Wang, H.; Xing, D.; Lu, T.; Yang, J.; Wang, C. Apelin-13 alleviated cardiac fibrosis via inhibiting the pi3k/akt pathway to attenuate oxidative stress in rats with myocardial infarction-induced heart failure. Biosci. Rep. 2020, 40, BSR20200040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.; Zhu, J.; Wang, D.; Li, H.; He, Y.; Liu, K.; Wang, X.; Peng, Y.; Pan, S.; Huang, K. Nlrp3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J. Neuroinflamm. 2020, 17, 219. [Google Scholar] [CrossRef]
- Roberts, B.W.; Kilgannon, J.H.; Chansky, M.E.; Mittal, N.; Wooden, J.; Parrillo, J.E.; Trzeciak, S. Multiple organ dysfunction after return of spontaneous circulation in postcardiac arrest syndrome. Crit. Care Med. 2013, 41, 1492–1501. [Google Scholar] [CrossRef]
- Tujjar, O.; Mineo, G.; Dell’Anna, A.; Poyatos-Robles, B.; Donadello, K.; Scolletta, S.; Vincent, J.L.; Taccone, F.S. Acute kidney injury after cardiac arrest. Crit. Care 2015, 19, 169. [Google Scholar] [CrossRef] [Green Version]
- Sandroni, C.; Dell’anna, A.M.; Tujjar, O.; Geri, G.; Cariou, A.; Taccone, F.S. Acute kidney injury after cardiac arrest: A systematic review and meta-analysis of clinical studies. Minerva Anestesiol. 2016, 82, 989–999. [Google Scholar]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [Green Version]
- Hasper, D.; von Haehling, S.; Storm, C.; Jorres, A.; Schefold, J.C. Changes in serum creatinine in the first 24 hours after cardiac arrest indicate prognosis: An observational cohort study. Crit. Care 2009, 13, R168. [Google Scholar] [CrossRef] [Green Version]
- Bonventre, J.V.; Zuk, A. Ischemic acute renal failure: An inflammatory disease? Kidney Int. 2004, 66, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Molitoris, B.A.; Sutton, T.A. Endothelial injury and dysfunction: Role in the extension phase of acute renal failure. Kidney Int. 2004, 66, 496–499. [Google Scholar] [CrossRef] [Green Version]
- Ceulemans, A.G.; Zgavc, T.; Kooijman, R.; Hachimi-Idrissi, S.; Sarre, S.; Michotte, Y. The dual role of the neuroinflammatory response after ischemic stroke: Modulatory effects of hypothermia. J. Neuroinflamm. 2010, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhan, S.E.; Kirchgessner, A.; Hofer, M. Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J. Transl. Med. 2009, 7, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, N.; Dai, D. Dexmedetomidine protects against ischemia and reperfusion-induced kidney injury in rats. Mediators Inflamm. 2020, 2020, 2120971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-Moure, B.; Lloris-Carsi, J.M.; Belda-Antoli, M.; Toledo-Pereyra, L.H.; Cejalvo-Lapena, D. Allopurinol protective effect of renal ischemia by downregulating tnf-alpha, il-1beta, and il-6 response. J. Invest. Surg. 2017, 30, 143–151. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Wang, X.; Wang, Y.; Niu, A.; Wang, S.; Zou, C.; Harris, R.C. Il-4/il-13-mediated polarization of renal macrophages/dendritic cells to an m2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 2017, 91, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Moledina, D.G.; Mansour, S.G.; Jia, Y.; Obeid, W.; Thiessen-Philbrook, H.; Koyner, J.L.; McArthur, E.; Garg, A.X.; Wilson, F.P.; Shlipak, M.G.; et al. Association of t cell-derived inflammatory cytokines with acute kidney injury and mortality after cardiac surgery. Kidney Int. Rep. 2019, 4, 1689–1697. [Google Scholar] [CrossRef] [Green Version]
- Schotte, A.; Janssen, P.F.; Gommeren, W.; Luyten, W.H.; Van Gompel, P.; Lesage, A.S.; De Loore, K.; Leysen, J.E. Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 1996, 124, 57–73. [Google Scholar] [CrossRef]
- Corena-McLeod, M. Comparative pharmacology of risperidone and paliperidone. Drugs RD 2015, 15, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Razaq, M.; Samma, M. A case of risperidone-induced hypothermia. Am. J. Ther. 2004, 11, 229–230. [Google Scholar] [CrossRef]
- Brevik, A.; Farver, D. Atypical antipsychotic induced mild hypothermia. South Dak. J. Med. 2003, 56, 67–70. [Google Scholar]
- Yang, G.E.; Tae, H.J.; Lee, T.K.; Park, Y.E.; Cho, J.H.; Kim, D.W.; Park, J.H.; Ahn, J.H.; Ryoo, S.; Kim, Y.M.; et al. Risperidone treatment after transient ischemia induces hypothermia and provides neuroprotection in the gerbil hippocampus by decreasing oxidative stress. Int. J. Mol. Sci. 2019, 20, 4621. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.K.; Lee, J.C.; Tae, H.J.; Kim, H.I.; Shin, M.C.; Ahn, J.H.; Park, J.H.; Kim, D.W.; Hong, S.; Choi, S.Y.; et al. Therapeutic effects of risperidone against spinal cord injury in a rat model of asphyxial cardiac arrest: A focus on body temperature, paraplegia, motor neuron damage, and neuroinflammation. Vet. Sci. 2021, 8, 230. [Google Scholar] [CrossRef]
- Gebhardt, K.; Guyette, F.X.; Doshi, A.A.; Callaway, C.W.; Rittenberger, J.C.; The Post Cardiac Arrest Service. Prevalence and effect of fever on outcome following resuscitation from cardiac arrest. Resuscitation 2013, 84, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Cronberg, T.; Lilja, G.; Horn, J.; Kjaergaard, J.; Wise, M.P.; Pellis, T.; Hovdenes, J.; Gasche, Y.; Aneman, A.; Stammet, P.; et al. Neurologic function and health-related quality of life in patients following targeted temperature management at 33 degrees c vs 36 degrees c after out-of-hospital cardiac arrest: A randomized clinical trial. JAMA Neurol. 2015, 72, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Arrich, J.; Holzer, M.; Havel, C.; Mullner, M.; Herkner, H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst. Rev. 2016, 2, CD004128. [Google Scholar] [CrossRef]
- Kida, K.; Shirozu, K.; Yu, B.; Mandeville, J.B.; Bloch, K.D.; Ichinose, F. Beneficial effects of nitric oxide on outcomes after cardiac arrest and cardiopulmonary resuscitation in hypothermia-treated mice. Anesthesiology 2014, 120, 880–889. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.F.; Wu, H.; Yang, S.F.; Dai, J.; Qiu, Y.M.; Tao, Z.Y.; Zhang, X.H. 5′-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response. Mediators Inflamm. 2015, 2015, 520745. [Google Scholar] [CrossRef] [Green Version]
- Niemann, C.U.; Malinoski, D. Therapeutic hypothermia in deceased organ donors and kidney-graft function. N. Engl. J. Med. 2015, 373, 2687. [Google Scholar] [CrossRef]
- Niemann, C.U.; Xu, F.; Choi, S.; Behrends, M.; Park, Y.; Hirose, R.; Maher, J.J. Short passive cooling protects rats during hepatectomy by inducing heat shock proteins and limiting the induction of pro-inflammatory cytokines. J. Surg. Res. 2010, 158, 43–52. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Guide for the Care and Use of Laboratory Animals; National Research Council: Washington, DC, USA, 2010. [Google Scholar]
- Kim, S.E.; Shin, H.Y.; Lee, E.Y.; Yoo, Y.J.; Kim, R.H.; Cho, J.H.; Lee, T.K.; Ahn, D.; Park, B.Y.; Yoon, J.C.; et al. Effect of therapeutic hypothermia against renal injury in a rat model of asphyxial cardiac arrest: Alpha focus on the survival rate, pathophysiology and antioxidant enzymes. Mol. Med. Rep. 2022, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Ahn, J.H.; Cho, J.H.; Tae, H.J.; Lee, T.K.; Kim, B.; Lee, J.C.; Park, J.H.; Shin, M.C.; Ohk, T.G.; et al. Effects of hypothermia on inflammatory cytokine expression in rat liver following asphyxial cardiac arrest. Exp. Ther. Med. 2021, 21, 626. [Google Scholar] [CrossRef]
- Jackson, T.C.; Dixon, C.E.; Janesko-Feldman, K.; Vagni, V.; Kotermanski, S.E.; Jackson, E.K.; Kochanek, P.M. Acute physiology and neurologic outcomes after brain injury in scop/phlpp1 ko mice. Sci. Rep. 2018, 8, 7158. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*power 3: A flexible statistical power analysis program for the social, behav-ioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Choi, Y.H.; Oh, J.H.; Cho, I.S.; Cha, K.C.; Choi, B.S.; You, J.S. Recovery from acute kidney injury as a potent predictor of survival and good neurological outcome at discharge after out-of-hospital cardiac arrest. Crit. Care 2019, 23, 256. [Google Scholar] [CrossRef] [Green Version]
- Geri, G.; Guillemet, L.; Dumas, F.; Charpentier, J.; Antona, M.; Lemiale, V.; Bougouin, W.; Lamhaut, L.; Mira, J.P.; Vinsonneau, C.; et al. Acute kidney injury after out-of-hospital cardiac arrest: Risk factors and prognosis in a large cohort. Intensive Care Med. 2015, 41, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Valente, M.A.; Voors, A.A.; O’Connor, C.M.; van Veldhuisen, D.J.; Hillege, H.L. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur. Heart. J. 2014, 35, 455–469. [Google Scholar] [CrossRef] [Green Version]
- Greite, R.; Thorenz, A.; Chen, R.; Jang, M.S.; Rong, S.; Brownstein, M.J.; Tewes, S.; Wang, L.; Baniassad, B.; Kirsch, T.; et al. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the cd1 mice which promotes progressive renal fibrosis. Am. J. Physiol. Ren. Physiol. 2018, 314, F881–F892. [Google Scholar] [CrossRef] [Green Version]
- Nguyen Thi, P.A.; Chen, M.H.; Li, N.; Zhuo, X.J.; Xie, L. Pd98059 protects brain against cells death resulting from ros/erk activation in a cardiac arrest rat model. Oxid. Med. Cell Longev. 2016, 2016, 3723762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.L.; Shen, H.; Zhang, W.; Yang, Y. Inhibition of endoplasm reticulum stress by anisodamine protects against myocardial injury after cardiac arrest and resuscitation in rats. Am. J. Chin. Med. 2011, 39, 853–866. [Google Scholar] [CrossRef]
- Lopez-Herce, J.; del Castillo, J.; Matamoros, M.; Canadas, S.; Rodriguez-Calvo, A.; Cecchetti, C.; Rodriguez-Nunez, A.; Carrillo, A.; Iberoamerican Pediatric Cardiac Arrest Study Network RIBEPCI. Post return of spontaneous circulation factors associated with mortality in pediatric in-hospital cardiac arrest: A prospective multicenter multinational observational study. Crit. Care 2014, 18, 607. [Google Scholar] [CrossRef] [Green Version]
- Jawad, A.; Yoo, Y.J.; Yoon, J.C.; Tian, W.; Islam, M.S.; Lee, E.Y.; Shin, H.Y.; Kim, S.E.; Ahn, D.; Park, B.Y.; et al. Changes of renal histopathology and the role of nrf2/ho-1 in asphyxial cardiac arrest model in rats. Acta Cir. Bras. 2021, 36, e360607. [Google Scholar] [CrossRef] [PubMed]
- Kocoglu, H.; Ozturk, H.; Ozturk, H.; Yilmaz, F.; Gulcu, N. Effect of dexmedetomidine on ischemia-reperfusion injury in rat kidney: A histopathologic study. Ren. Fail. 2009, 31, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, W.D.; Atkins, C.M.; Bramlett, H.M. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J. Neurotrauma. 2009, 26, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.H.; Lee, T.K.; Kim, B.; Lee, J.C.; Tae, H.J.; Cho, J.H.; Park, Y.; Shin, M.C.; Ohk, T.G.; Park, C.W.; et al. Therapeutic hypothermia improves hind limb motor outcome and attenuates oxidative stress and neuronal damage in the lumbar spinal cord following cardiac arrest. Antioxidants 2020, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, T.; Kawaguchi, M.; Kurita, N.; Inoue, S.; Nakamura, M.; Konishi, N.; Furuya, H. The long-term effects of mild to moderate hypothermia on gray and white matter injury after spinal cord ischemia in rats. Anesth. Analg. 2009, 109, 559–566. [Google Scholar] [CrossRef]
- Saito, T.; Saito, S.; Yamamoto, H.; Tsuchida, M. Neuroprotection following mild hypothermia after spinal cord ischemia in rats. J. Vasc. Surg. 2013, 57, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.M.; Yan, Y.; Zou, L.J.; Jing, N.H.; Xu, Z.Y. Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits. Cell Res. 2005, 15, 387–393. [Google Scholar] [CrossRef]
- Islam, A.; Kim, S.E.; Yoon, J.C.; Jawad, A.; Tian, W.; Yoo, Y.J.; Kim, I.S.; Ahn, D.; Park, B.Y.; Hwang, Y.; et al. Protective effects of therapeutic hypothermia on renal injury in an asphyxial cardiac arrest rat model. J. Therm. Biol. 2020, 94, 102761. [Google Scholar] [CrossRef]
- van Marum, R.J.; Wegewijs, M.A.; Loonen, A.J.; Beers, E. Hypothermia following antipsychotic drug use. Eur. J. Clin. Pharmacol. 2007, 63, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.M.; Wise, A.F.; Layton, D.S.; Ricardo, S.D. Phenotype and influx kinetics of leukocytes and inflammatory cytokine production in kidney ischemia/reperfusion injury. Nephrology 2018, 23, 75–85. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 2011, 121, 4210–4221. [Google Scholar] [CrossRef]
- Meldrum, K.K.; Meldrum, D.R.; Meng, X.; Ao, L.; Harken, A.H. Tnf-alpha-dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H540–H546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eraslan, E.; Tanyeli, A.; Polat, E.; Yetim, Z. Evodiamine alleviates kidney ischemia reperfusion injury in rats: A biochemical and histopathological study. J. Cell Biochem. 2019, 120, 17159–17166. [Google Scholar] [CrossRef]
- Partrick, D.A.; Moore, F.A.; Moore, E.E.; Barnett, C.C., Jr.; Silliman, C.C. Neutrophil priming and activation in the pathogenesis of postinjury multiple organ failure. New Horiz. 1996, 4, 194–210. [Google Scholar] [PubMed]
- Zhang, Y.; Hu, F.; Wen, J.; Wei, X.; Zeng, Y.; Sun, Y.; Luo, S.; Sun, L. Effects of sevoflurane on nf-small ka, cyrillicb and tnf-alpha expression in renal ischemia-reperfusion diabetic rats. Inflamm. Res. 2017, 66, 901–910. [Google Scholar] [CrossRef]
- Liang, S.; Xu, Z.; Ruan, Y.; Niu, T.; Guo, W.; Jiang, W.; Hou, J. Isoquercitrin attenuates renal ischemia/reperfusion injury through antioxidation, anti-inflammation, and antiapoptosis in mice. Transplant Proc. 2020, 52, 1014–1019. [Google Scholar] [CrossRef]
- Miklos, Z.; Kurthy, M.; Degrell, P.; Ranczinger, E.; Vida, M.; Lantos, J.; Arato, E.; Sinay, L.; Hardi, P.; Balatonyi, B.; et al. Ischaemic postconditioning reduces serum and tubular tnf-alpha expression in ischaemic-reperfused kidney in healthy rats. Clin. Hemorheol. Microcirc. 2012, 50, 167–178. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, B.; Ramesh, G.; Betterly, D.; Tadagavadi, R.K.; Wang, W.; Reeves, W.B. Tnf-alpha mediates increased susceptibility to ischemic aki in diabetes. Am. J. Physiol. Renal Physiol. 2013, 304, F515–F521. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.T.; Yang, C.M. Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm. 2013, 2013, 791231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffari Godarzi, S.; Valizade Gorji, A.; Gholizadeh, B.; Mard, S.A.; Mansouri, E. Antioxidant effect of p-coumaric acid on interleukin 1-beta and tumor necrosis factor-alpha in rats with renal ischemic reperfusion. Nefrologia 2020, 40, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.S.; Chatterjee, P.K.; Di Paola, R.; Mazzon, E.; Britti, D.; De Sarro, A.; Cuzzocrea, S.; Thiemermann, C. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J. Pharmacol. Exp. Ther. 2005, 312, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Thurman, J.M. Triggers of inflammation after renal ischemia/reperfusion. Clin. Immunol. 2007, 123, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nechemia-Arbely, Y.; Barkan, D.; Pizov, G.; Shriki, A.; Rose-John, S.; Galun, E.; Axelrod, J.H. Il-6/il-6r axis plays a critical role in acute kidney injury. J. Am. Soc. Nephrol. 2008, 19, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Kavsak, P.A.; Ko, D.T.; Newman, A.M.; Palomaki, G.E.; Lustig, V.; MacRae, A.R.; Jaffe, A.S. Risk stratification for heart failure and death in an acute coronary syndrome population using inflammatory cytokines and n-terminal pro-brain natriuretic peptide. Clin. Chem. 2007, 53, 2112–2118. [Google Scholar] [CrossRef] [Green Version]
- Afify, M.F.; Mohamed, G.B.; El-Maboud, M.A.; Abdel-Latif, E.A. Serum levels of ghrelin, tumor necrosis factor-alpha and interleukin-6 in infants and children with congenital heart disease. J. Trop. Pediatr. 2009, 55, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Yokota, N.; Burne-Taney, M.; Racusen, L.; Rabb, H. Contrasting roles for stat4 and stat6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am. J. Physiol. Ren. Physiol. 2003, 285, F319–F325. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflamm. 2019, 16, 142. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.T.; Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Li, H.; Park, O.K.; Yan, B.; Hwang, I.K.; Kwon, Y.G.; Kim, Y.M.; et al. Maintenance of anti-inflammatory cytokines and reduction of glial activation in the ischemic hippocampal ca1 region preconditioned with lipopolysaccharide. J. Neurol. Sci. 2010, 296, 69–78. [Google Scholar] [CrossRef]
- Yan, B.C.; Kim, S.K.; Park, J.H.; Ahn, J.H.; Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Lee, D.S.; Kim, M.J.; Kim, Y.M.; et al. Comparison of inflammatory cytokines changes in the hippocampal ca1 region between the young and adult gerbil after transient cerebral ischemia. Brain Res. 2012, 1461, 64–75. [Google Scholar] [CrossRef]
- Wang, P.; Wu, P.; Siegel, M.I.; Egan, R.W.; Billah, M.M. Interleukin (il)-10 inhibits nuclear factor kappa b (nf kappa b) activation in human monocytes. Il-10 and il-4 suppress cytokine synthesis by different mechanisms. J. Biol. Chem. 1995, 270, 9558–9563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- te Velde, A.A.; Huijbens, R.J.; Heije, K.; de Vries, J.E.; Figdor, C.G. Interleukin-4 (il-4) inhibits secretion of il-1 beta, tumor necrosis factor alpha, and il-6 by human monocytes. Blood 1990, 76, 1392–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Waal Malefyt, R.; Figdor, C.G.; Huijbens, R.; Mohan-Peterson, S.; Bennett, B.; Culpepper, J.; Dang, W.; Zurawski, G.; de Vries, J.E. Effects of il-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with il-4 and modulation by ifn-gamma or il-10. J. Immunol. 1993, 151, 6370–6381. [Google Scholar] [CrossRef] [PubMed]
Primary Antibody | Dilution | Function | Supplier |
---|---|---|---|
Rabbit anti-interleukin-2 (IL2) | 1:500 | Proinflammatory cytokine Proinflammatory cytokine | Santa Cruz Biotechnology, Santa Cruz, CA, USA |
Rabbit anti-tumor necrosis factor-α (TNFα) | 1:1000 | Abcam, Cambridge, UK | |
Rabbit anti-interleukin-4 (IL4) | 1:250 | Antiinflammatory cytokine Antiinflammatory cytokine | Santa Cruz Biotechnology, Santa Cruz, CA, USA |
Rabbit anti-interleukin-13 (IL13) | 1:250 | Santa Cruz Biotechnology, Santa Cruz, CA, USA | |
Secondary antibody | Dilution | Supplier | |
Biotinylated goat anti-rabbit IgG | 1:300 | Vector Laboratories Inc., Burlingame, CA, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.H.; Lee, T.-K.; Lee, J.-C.; Kim, D.W.; Tae, H.-J.; Park, J.H.; Ahn, J.H.; Lee, C.-H.; Won, M.-H.; Hong, S. Risperidone Administration Attenuates Renal Ischemia and Reperfusion Injury following Cardiac Arrest by Antiinflammatory Effects in Rats. Vet. Sci. 2023, 10, 184. https://doi.org/10.3390/vetsci10030184
Kim YH, Lee T-K, Lee J-C, Kim DW, Tae H-J, Park JH, Ahn JH, Lee C-H, Won M-H, Hong S. Risperidone Administration Attenuates Renal Ischemia and Reperfusion Injury following Cardiac Arrest by Antiinflammatory Effects in Rats. Veterinary Sciences. 2023; 10(3):184. https://doi.org/10.3390/vetsci10030184
Chicago/Turabian StyleKim, Yang Hee, Tae-Kyeong Lee, Jae-Chul Lee, Dae Won Kim, Hyun-Jin Tae, Joon Ha Park, Ji Hyeon Ahn, Choong-Hyun Lee, Moo-Ho Won, and Seongkweon Hong. 2023. "Risperidone Administration Attenuates Renal Ischemia and Reperfusion Injury following Cardiac Arrest by Antiinflammatory Effects in Rats" Veterinary Sciences 10, no. 3: 184. https://doi.org/10.3390/vetsci10030184
APA StyleKim, Y. H., Lee, T. -K., Lee, J. -C., Kim, D. W., Tae, H. -J., Park, J. H., Ahn, J. H., Lee, C. -H., Won, M. -H., & Hong, S. (2023). Risperidone Administration Attenuates Renal Ischemia and Reperfusion Injury following Cardiac Arrest by Antiinflammatory Effects in Rats. Veterinary Sciences, 10(3), 184. https://doi.org/10.3390/vetsci10030184