Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Colostrum
2.1. Characteristics and Composition
2.2. Colostrum Quality
2.3. Colostrum Analysis
3. Passive Immunity Transfer (PIT)
4. Colostrum Management and the Impact on Calves
4.1. Colostrum Storage
4.2. Benefits of Colostrum: Infection Prevention
4.3. The Effects of Vaccination on Colostrum Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Ahuja, S.P.; Singh, B. Individual Variation in the Composition of Colostrum and Absorption of Colostral Antibodies by the Precolostral Buffalo Calf. J. Dairy Sci. 1993, 76, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Cutrignelli, M.I.; Piccolo, G.; D’urso, S.; Calabro, S.; Bovera, F.; Tudisco, R.; Infascelli, F. Urinary excretion of purine derivatives in dry buffalo and Fresian cows. Ital. J. Anim. Sci. 2007, 6, 563–566. [Google Scholar] [CrossRef]
- Calabrò, S.; Infascelli, F.; Tudisco, R.; Musco, N.; Grossi, M.; Monastra, G.; Cutrignelli, M.I. Estimation of in vitro methane production in buffalo and cow. Buffalo Bull. 2013, 32, 924–927. [Google Scholar]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.H.; Kelly, A.L. Composition and properties of bovine colostrum: A review. Dairy Sci. Technol. 2015, 96, 133–158. [Google Scholar] [CrossRef]
- Agenbag, B.; Swinbourne, A.M.; Petrovski, K.; van Wettere, W.H. Lambs need colostrum: A review. Livest. Sci. 2021, 251, 104624. [Google Scholar] [CrossRef]
- Mehra, R.; Sangwan, K.; Garhwal, R. Composition and Therapeutic Applications of Goat Milk and Colostrum. J. Dairy Sci. Tech. 2021, 10, 1–7. [Google Scholar]
- Zarrilli, A.; Micera, E.; Lacarpia, N.; Lombardi, P.; Pero, M.; Pelagalli, A.; D’angelo, D.; Mattia, M.; Avallone, L. Evaluation of goat colostrum quality by determining enzyme activity levels. Livest. Prod. Sci. 2003, 83, 317–320. [Google Scholar] [CrossRef]
- Statistics BDN. Available online: https://www.vetinfo.it/j6_statistiche/#/report-pbi/12 (accessed on 30 January 2023).
- Statistics BDN. Available online: https://www.vetinfo.it/j6_statistiche/#/report-pbi/1 (accessed on 30 January 2023).
- Commission Regulation (EC) No 1107/96 of 12 June 1996 on the registration of geographical indications and designations of origin under the procedure laid down in Article 17 of Council Regulation (EEC) No 2081/92. Off. J. L 1996, 148, 0001–0010.
- Processing Nomisma on MDB Campania 2022 Producers Survey in Collaboration with the Consortium of Protection; Pro-visional Figure Calculated on 80% of the Certified Volumes. Available online: https://www.nomisma.it/mozzarella-di-bufala-campana-dop-trend-di-mercato/ (accessed on 30 January 2023).
- Infascelli, F.; Gigli, S.; Campanile, G. Buffalo meat production: Performance infra vitam and quality of meat. Vet.-Res. Commun. 2004, 28, 143–148. [Google Scholar] [CrossRef]
- Calabrò, S.; Cutrignelli, M.; Gonzalez, O.; Chiofalo, B.; Grossi, M.; Tudisco, R.; Panetta, C.; Infascelli, F. Meat quality of buffalo young bulls fed faba bean as protein source. Meat Sci. 2014, 96, 591–596. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Calabrò, S.; Tudısco, R.; Chiofalo, B.; Musco, N.; Gonzalez, O.J.; Grossi, M.; Monastra, G.; Infascelli, F. Conjugated linoleic acid and fatty acids profile in buffalo meat. Buffalo Bull. 2013, 32, 1270–1273. [Google Scholar]
- de Souza, D.C.; Silva, D.; Rocha, T.; Monteiro, B.; Pereira, G.; Fiori, L.; Viana, R.; Fagliari, J. Serum biochemical profile of neonatal buffalo calves. Arq. Bras. De Med. Veterinária E Zootec. 2019, 71, 187–196. [Google Scholar] [CrossRef]
- Wooding FB, P.; Morgan, G.; Adam, C.L. Structure and function in the ruminant synepitheliochorial placenta: Central role of the trophoblast binucleate cell in deer. Microsc. Res. Tech. 1997, 38, 88–99. [Google Scholar] [CrossRef]
- Wooding, F. The synepitheliochorial placenta of ruminants: Binucleate cell fusions and hormone production. Placenta 1992, 13, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Barrington, G.; McFadden, T.; Huyler, M.; Besser, T. Regulation of colostrogenesis in cattle. Livest. Prod. Sci. 2001, 70, 95–104. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Currie, A.J.; Ren, S.; Bering, S.B.; Sangild, P.T. Heat treatment and irradiation reduce anti-bacterial and immune-modulatory properties of bovine colostrum. J. Funct. Foods 2019, 57, 182–189. [Google Scholar] [CrossRef]
- Baumrucker, C.R.; Dechow, C.D.; Macrina, A.L.; Gross, J.J.; Bruckmaier, R.M. Mammary immunoglobulin trans-ferrates following prepartum milking. J. Dairy Sci. 2016, 99, 9254–9262. [Google Scholar] [CrossRef]
- Hassiotou, F.; Geddes, D.T. Immune Cell–Mediated Protection of the Mammary Gland and the Infant during Breast-feeding. Adv. Nutr. 2015, 6, 267–275. [Google Scholar] [CrossRef]
- Langer, P. Differences in the Composition of Colostrum and Milk in Eutherians Reflect Differences in Immunoglobulin Transfer. J. Mammal. 2009, 90, 332–339. [Google Scholar] [CrossRef]
- Reber, A.; Lockwood, A.; Hippen, A.; Hurley, D. Colostrum induced phenotypic and trafficking changes in maternal mononuclear cells in a peripheral blood leukocyte model for study of leukocyte transfer to the neonatal calf. Vet.-Immunol. Immunopathol. 2006, 109, 139–150. [Google Scholar] [CrossRef]
- Gonzalez, D.D.; Santos, M.J.D. Bovine colostral cells—The often forgotten component of colostrum. J. Am. Vet.-Med. Assoc. 2017, 250, 998–1005. [Google Scholar] [CrossRef]
- Coroian, A.; Erler, S.; Matea, C.T.; Mireșan, V.; Răducu, C.; Bele, C.; Coroian, C.O. Seasonal changes of buffalo colostrum: Physico-chemical parameters, fatty acids and cholesterol variation. Chem. Cent. J. 2013, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Sats, A.; Yurchenko, S.; Kaart, T.; Tatar, V.; Lutter, L.; Jõudu, I. Bovine colostrum: Postpartum changes in fat globule size distribution and fatty acid profile. J. Dairy Sci. 2022, 105, 3846–3860. [Google Scholar] [CrossRef]
- Stelwagen, K.; Carpenter, E.; Haigh, B.; Hodgkinson, A.; Wheeler, T.T. Immune components of bovine colostrum and milk. J. Anim. Sci. 2009, 87, 3–9. [Google Scholar] [CrossRef]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive Transfer of Colostral Immunoglobulins in Calves. J. Vet.-Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Squillacioti, C.; De Luca, A.; Pero, M.; Vassalotti, G.; Lombardi, P.; Avallone, L.; Mirabella, N.; Pelagalli, A. Effect of colostrum and milk on small intestine expression of AQP4 and AQP5 in newborn buffalo calves. Res. Vet.-Sci. 2015, 103, 149–155. [Google Scholar] [CrossRef]
- Pelagalli, A.; Squillacioti, C.; De Luca, A.; Pero, M.; Vassalotti, G.; Lombardi, P.; Avallone, L.; Mirabella, N. Expression and Localization of Aquaporin 4 and Aquaporin 5 along the Large Intestine of Colostrum-Suckling Buffalo Calves. Anat. Histol. Embryol. 2015, 45, 418–427. [Google Scholar] [CrossRef]
- Zarcula, S.; Cernescu, H.; Mircu, C.; Tulcan, C.; Morvay, A.; Baul, S.; Popovici, D. Influence of Breed, Parity and Food Intake on Chemical Composition of First Colostrum in Cow. Anim. Sci. Biotech. 2010, 11, 0–60. [Google Scholar]
- Roy, J.H.B. Effect of Season of the Year and Phase of the Moon on Puberty and on the Occurrence of Oestrus and Conception in Dairy Heifers Reared on High Planes of Nutrition, 4th ed.; The calf. Feeding and Metabolism Dep., The National Institute for Research in Dairying: Reading, UK, 1980; p. 442. [Google Scholar]
- Werner, A. Experimentelle Untersuchungen zur Eignung der[gamma]-Glutamyltransferase-Aktivität im Blut von Kälbern zur Überprüfung der Diss; Tierärztl. Hochsch: Hannover, Germany, 2003. [Google Scholar]
- Kehoe, S.; Jayarao, B.; Heinrichs, A. A Survey of Bovine Colostrum Composition and Colostrum Management Practices on Pennsylvania Dairy Farms. J. Dairy Sci. 2007, 90, 4108–4116. [Google Scholar] [CrossRef]
- Mehra, R.; Kumar, S.; Verma, N.; Kumar, N.; Singh, R.; Bhardwaj, A.; Nayan, V.; Kumar, H. Chemometric approaches to analyze the colostrum physicochemical and immunological (IgG) properties in the recently registered Himachali Pahari cow breed in India. LWT 2021, 145, 111256. [Google Scholar] [CrossRef]
- El-Fattah, A.; Alaa, M.; Abd Rabo, F.H.; EL-Dieb, S.M.; El-Kashef, H.A. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet. -Res. 2012, 8, 19. [Google Scholar] [CrossRef]
- Yonis, A.A.M.; Mohamed, L.A.; El-zalat, S.E. Comparative Study on Some Chemical—Physical Indicators in Colostrum of Egyptian Buffaloes’ and Cows’. J. Food Diary Sci. 2014, 5, 169–178. [Google Scholar] [CrossRef]
- Salar, S.; Jafarian, S.; Mortazavi, A.; Nasiraie, L.R. Effect of hurdle technology of gentle pasteurisation and drying process on bioactive proteins, antioxidant activity and microbial quality of cow and buffalo colostrum. Int. Dairy J. 2021, 121, 105138. [Google Scholar] [CrossRef]
- Bernabucci, U.; Basiricò, L.; Morera, P. Impact of hot environment on colostrum and milk composition. Cell. Mol. Biol. 2013, 58, 9–25. [Google Scholar]
- Dunn, A.; Ashfield, A.; Earley, B.; Welsh, M.; Gordon, A.; Morrison, S. Evaluation of factors associated with immunoglobulin G, fat, protein, and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J. Dairy Sci. 2017, 100, 2068–2079. [Google Scholar] [CrossRef]
- Godden, S. Colostrum management for dairy calves. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 19–39. [Google Scholar] [CrossRef]
- Elfstrand, L.; Lindmark-Månsson, H.; Paulsson, M.; Nyberg, L.; Åkesson, B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine colostrum and its potential for human health and Nutrition. Front. Nutr. 2021, 8, 651721. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr. Pharm. Des. 2007, 13, 829–843. [Google Scholar] [CrossRef]
- Ashok, N.; Aparna, H. Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition. Food Chem. 2017, 228, 582–594. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Parrish, D.; Wise, G.; Hughes, J.; Atkeson, F. Properties of the Colostrum of the Dairy Cow. V. Yield, Specific Gravity and Concentrations of Total Solids and its Various Components of Colostrum and Early Milk. J. Dairy Sci. 1950, 33, 457–465. [Google Scholar] [CrossRef]
- Kilara, A.; Vaghela, M.N. Whey proteins. Prot. Food Proc. 2004, 4, 72–99. [Google Scholar]
- Barile, V.L. Improving reproductive efficiency in female buffaloes. Livest. Prod. Sci. 2005, 92, 183–194. [Google Scholar] [CrossRef]
- Ozrenk, E.; Inc, S.S. The Effect of Seasonal Variation on the Composition of Cow Milk in Van Province. Pak. J. Nutr. 2007, 7, 161–164. [Google Scholar] [CrossRef]
- Wang, J.; He, Y.; Pang, K.; Zeng, Q.; Zhang, X.; Ren, F.; Guo, H. Changes in milk yield and composition of colostrum and regular milk from four buffalo breeds in China during lactation. J. Sci. Food Agric. 2019, 99, 5799–5807. [Google Scholar] [CrossRef]
- Barrington, G.M.; Parish, S.M. Bovine Neonatal Immunology. Vet.-Clin. N. Am. Food Anim. Pract. 2001, 17, 463–476. [Google Scholar] [CrossRef]
- Blum, J.W.; Blum, J.W. Nutritional physiology of neonatal calves. J. Anim. Physiol. Anim. Nutr. 2006, 90, 1–11. [Google Scholar] [CrossRef]
- Penchev, G.I. Differences in chemical composition between cow colostrum and milk. Bulg. J. Vet. Med. 2008, 1, 3–12. [Google Scholar]
- Blum, J.; Hammon, H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Scammell, A.W. Production and uses of colostrum. Aust. J. Dairy Technol. 2001, 56, 74. [Google Scholar]
- Aparna, H.S.; Veeresh, S. Purification of an Antigenic Glycopeptide from buffalo colostrum February. J. Food Sci. Technol. 2001, 38, 450–452. [Google Scholar]
- Robinson, R.C.; Shah, I.M.; Barile, D.; Mills, D.A. Milk Glycans and Their Interaction with the Infant-Gut Microbiota. Annu. Rev. Food Sci. Technol. 2018, 9, 429–450. [Google Scholar] [CrossRef]
- Chougule, R.A.; Aparna, H.S. Characterization of β-lactoglobulin from Buffalo (bubalus bubalis) colostrum and its possible interaction with erythrocyte lipocalin-interacting membrane receptor. J. Biochem. 2011, 150, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Ashok, N.R.; Vivek, K.H.; Aparna, H.S. Antioxidative Role of Buffalo (Bubalus bubalis) Colostrum Whey Derived Peptides During Oxidative Damage. Int. J. Pept. Res. Ther. 2018, 25, 1501–1508. [Google Scholar] [CrossRef]
- Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Changes in Physical Properties of Bovine Milk from the Colostrum Period to Early Lactation. J. Dairy Sci. 2007, 90, 5012–5017. [Google Scholar] [CrossRef]
- Qureshi, T.M.; Yaseen, M.; Nadeem, M.; Murtaza, M.A.; Munir, M. Physico–chemical composition and antioxidant potential of Buffalo Colostrum, transition milk, and mature milk. J. Food Proc. Pres. 2020, 44, e14763. [Google Scholar] [CrossRef]
- Laburn, H.; Faurie, A.; Mitchell, D. The thermal physiology of the ruminant fetus. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction; Cronjé, P.B., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 295–310. [Google Scholar]
- Quigley, J.D.; Drewry, J.J. Nutrient and immunity transfer from cow to calf pre- and post-calving. J. Dairy Sci. 1998, 81, 2779–2790. [Google Scholar] [CrossRef]
- Silva, F.L.M.; Miqueo, E.; da Silva, M.D.; Torrezan, T.M.; Rocha, N.B.; Salles, M.S.V.; Bittar, C.M.M. Thermoregulatory Responses and Performance of Dairy Calves Fed Different Amounts of Colostrum. Animals 2021, 11, 703. [Google Scholar] [CrossRef]
- Das, L.K.; Behera, S. Colostrum: A wonder nutrition for newborn calves of cattle and buffaloes. Indian Farmer 2015, 2, 165–170. [Google Scholar]
- Gay, C.C. The Role of Colostrum in Managing Calf Health. Diary Split. Sess. I 1983. [Google Scholar] [CrossRef]
- Owen, W.; Griffith, R.J.; Meister, A. Transport of gamma-glutamyl amino acids: Role of glutathione and gamma-glutamyl transpeptidase. Proc. Natl. Acad. Sci. USA 1979, 76, 6319–6322. [Google Scholar]
- Godden, S.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef] [PubMed]
- Pempek, J.; Holder, E.; Proudfoot, K.; Masterson, M.; Habing, G. Short communication: Investigation of antibiotic alternatives to improve health and growth of veal calves. J. Dairy Sci. 2018, 101, 4473–4478. [Google Scholar] [CrossRef] [PubMed]
- Toro-Mujica, P.; Gebauer, R.; Tajonar, K.; Keim, J.P.; Vargas-Bello-Pérez, E. Characterisation of dairy female calf management practices in southern Chile. Austral J. Vet.-Sci. 2022, 54, 103–114. [Google Scholar] [CrossRef]
- Aydogdu, U.; Guzelbektes, H. Effect of colostrum composition on passive calf immunity in primiparous and multiparous dairy cows. Vet. Med. 2018, 63, 1–11. [Google Scholar] [CrossRef]
- Lombardi, P.; Avallone, L.; Pagnini, U.; D’Angelo, D.; Bogin, E. Evaluation of Buffalo Colostrum Quality by Estimation of Enzyme Activity Levels. J. Food Prot. 2001, 64, 1265–1267. [Google Scholar] [CrossRef]
- Pero, M.E.; Pelagalli, A.; Lombardi, P.; Avallone, L. SHORT COMMUNICATION: Glutathione concentration and gamma-glutamyltransferase activity in water buffalo colostrum. J. Anim. Physiol. Anim. Nutr. 2010, 94, 549–551. [Google Scholar] [CrossRef]
- Morrill, K.; Conrad, E.; Lago, A.; Campbell, J.; Quigley, J.; Tyler, H. Nationwide evaluation of quality and composition of colostrum on dairy farms in the United States. J. Dairy Sci. 2012, 95, 3997–4005. [Google Scholar] [CrossRef]
- Pritchett, L.C.; Gay, C.C.; Besser, T.E.; Hancock, D.D. Management and Production Factors Influencing Immunoglobulin G1 Concentration in Colostrum from Holstein Cows. J. Dairy Sci. 1991, 74, 2336–2341. [Google Scholar] [CrossRef]
- Støy, A.C.F.; Heegaard, P.M.; Thymann, T.; Bjerre, M.; Skovgaard, K.; Boye, M.; Stoll, B.; Schmidt, M.; Jensen, B.B.; Sangild, P.T. Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs. Clin. Nutr. 2013, 33, 322–329. [Google Scholar] [CrossRef]
- Agarwal, P.; Gupta, R.A. Review on anticancer property of colostrum. Res. Rev.-J. Med. Health Sci 2016, 5, 1–9. [Google Scholar]
- Ayar, A.; Sıçramaz, H.; Çetin, İ. The Effect of Bovine Colostrum on the Lactic Flora of Yogurt and Kefir. JSM Biotechnol. Bioeng. 2016, 3, 1063. [Google Scholar]
- Ahmadi, M. Benefits of Bovine Colostrum in Nutraceutical Products. J. Agroaliment. Process. Technol. 2011, 17, 42–45. [Google Scholar]
- Borad, S.G.; Singh, A.K. Colostrum immunoglobulins: Processing, preservation and application aspects. Int. Dairy J. 2018, 85, 201–210. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Han, B.; Zhang, L.; Zhou, P. Changes in bioactive milk serum proteins during milk powder processing. Food Chem. 2020, 314, 126177. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, L.; Hettinga, K.; Zhou, P. Characterizing the changes of bovine milk serum proteins after simulated industrial processing. LWT 2020, 133, 110101. [Google Scholar] [CrossRef]
- Gelsinger, S.; Jones, C.; Heinrichs, A. Effect of colostrum heat treatment and bacterial population on immunoglobulin G absorption and health of neonatal calves. J. Dairy Sci. 2015, 98, 4640–4645. [Google Scholar] [CrossRef]
- Xiong, L.; Li, C.; Boeren, S.; Vervoort, J.; Hettinga, K. Effect of heat treatment on bacteriostatic activity and protein profile of bovine whey proteins. Food Res. Int. 2020, 127, 108688. [Google Scholar] [CrossRef]
- Chatterton, D.E.W.; Aagaard, S.; Hansen, T.H.; Nguyen, D.N.; De Gobba, C.; Lametsch, R.; Sangild, P.T. Bioactive proteins in bovine colostrum and effects of heating, drying and irradiation. Food Funct. 2020, 11, 2309–2327. [Google Scholar] [CrossRef]
- Donahue, M.; Godden, S.; Bey, R.; Wells, S.; Oakes, J.; Sreevatsan, S.; Stabel, J.; Fetrow, J. Heat treatment of colostrum on commercial dairy farms decreases colostrum microbial counts while maintaining colostrum immunoglobulin G concentrations. J. Dairy Sci. 2012, 95, 2697–2702. [Google Scholar] [CrossRef]
- McMartin, S.; Godden, S.; Metzger, L.; Feirtag, J.; Bey, R.; Stabel, J.; Goyal, S.; Fetrow, J.; Wells, S.; Chester-Jones, H. Heat Treatment of Bovine Colostrum. I: Effects of Temperature on Viscosity and Immunoglobulin G Level. J. Dairy Sci. 2006, 89, 2110–2118. [Google Scholar] [CrossRef]
- Heinrichs, J.; Jones, C. Colostrum management tools: Hydrometers and refractometers. Penn State Ext. Available online: https://extension.psu.edu/colostrum-management-tools-hydrometers-and-refractometers (accessed on 13 January 2023).
- Thornhill, J.; Krebs, G.; Petzel, C. Evaluation of the Brix refractometer as an on-farm tool for the detection of passive transfer of immunity in dairy calves. Aust. Vet.-J. 2015, 93, 26–30. [Google Scholar] [CrossRef]
- Giammarco, M.; Chincarini, M.; Fusaro, I.; Manetta, A.C.; Contri, A.; Gloria, A.; Lanzoni, L.; Mammi, L.M.E.; Ferri, N.; Vignola, G. Evaluation of Brix Refractometry to Estimate Immunoglobulin G Content in Buffalo Colostrum and Neonatal Calf Serum. Animals 2021, 11, 2616. [Google Scholar] [CrossRef]
- El-Loly, M.; Mansour, A. Relationship Between the Values of Density and Immunoglobulin Concentrations of Buffalo’s Colostrum and their Thermal Stability. J. Med. Sci. 2013, 13, 723–729. [Google Scholar] [CrossRef]
- McGuirk, S.M.; Collins, M. Managing the production, storage, and delivery of colostrum. Vet.-Clin. N. Am. Food Anim. Pract. 2004, 20, 593–603. [Google Scholar] [CrossRef]
- Radostits, O.M.; Blood, D.C.; Gay, C.C. Veterinary medicine: A textbook of the diseases of cattle, sheep, pigs, goats and horses. J. Eq. Vet. Sci. 2000, 20, 625. [Google Scholar]
- McGuire, T.C.; Pfeiffer, N.E.; Weikel, J.M.; Bartsch, R.C. Failure of colostral immunoglobulin transfer in calves dying from infectious disease. J. Am. Vet.-Med Assoc. 1976, 169, 713–718. [Google Scholar]
- Chase, C.C.; Hurley, D.J.; Reber, A.J. Neonatal Immune Development in the Calf and Its Impact on Vaccine Response. Vet.-Clin. N. Am. Food Anim. Pract. 2008, 24, 87–104. [Google Scholar] [CrossRef]
- Wittum, T.E.; Perino, L.J. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am. J. Vet. Res. J. 1995, 56, 1149–1154. [Google Scholar]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef]
- Stelwagen, K.; Singh, K. The Role of Tight Junctions in Mammary Gland Function. J. Mammary Gland. Biol. Neoplasia 2013, 19, 131–138. [Google Scholar] [CrossRef]
- Deutsch, H.F.; Smith, V.R. Intestinal permeability to proteins in herbivores. Am. J. Physiol. 1957, 191, 271. [Google Scholar] [CrossRef] [PubMed]
- Barmaiya, S.; Aditi Dixit Mishra, A.; Jain, A.K.; Gupta, A.; Paul, A.; Quadri, A.M.; Madan, A.M.; Sharma, I.J. Quantitation of serum immunoglobulins of neonatal buffalo calves and cow calves through elisa and page: Status of immune-competence. Buffalo Bull. 2009, 28, 85–94. [Google Scholar]
- Larson, B.; Heary, H.; Devery, J. Immunoglobulin Production and Transport by the Mammary Gland. J. Dairy Sci. 1980, 63, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Newby, T.; Stokes, C.; Bourne, F. Immunological activities of milk. Vet.-Immunol. Immunopathol. 1982, 3, 67–94. [Google Scholar] [CrossRef]
- Dang, A.K.; Kapila, S.; Purohit, M.; Singh, C. Changes in colostrum of Murrah buffaloes after calving. Trop. Anim. Health Prod. 2008, 41, 1213–1217. [Google Scholar] [CrossRef]
- El-Loly, M.M.; Hassan, L.K.; Farahat, E.S.A. Impact of heat treatments and some technological processing on immunoglobulins of Egyptian buffalo’s milk. Int. J. Biol. Macromol. 2019, 123, 939–944. [Google Scholar] [CrossRef]
- Goel, M.C.; Kakker, N.K. Quantitation of immunoglobulins (IgG, IgM and IgA) in serum and lacteal secretion of buffaloes (Bubalus bubalis). Indian J. Anim. Sci. 1997, 67, 559–562. [Google Scholar]
- Costa, A.; Franzoi, M.; Visentin, G.; Goi, A.; De Marchi, M.; Penasa, M. The concentrations of immunoglobulins in bovine colostrum determined by the gold standard method are genetically correlated with their near-infrared prediction. Genet. Sel. Evol. 2021, 53, 87. [Google Scholar] [CrossRef] [PubMed]
- Tong, F.; Wang, T.; Gao, N.L.; Liu, Z.; Cui, K.; Duan, Y.; Wu, S.; Luo, Y.; Li, Z.; Yang, C.; et al. The microbiome of the buffalo digestive tract. Nat. Commun. 2022, 13, 823. [Google Scholar] [CrossRef] [PubMed]
- Matte, J.; Girard, C.; Seoane, J.; Brisson, G. Absorption of Colostral Immunoglobulin G in the Newborn Dairy Calf. J. Dairy Sci. 1982, 65, 1765–1770. [Google Scholar] [CrossRef]
- Burton, J.L.; Kennedy, B.; Burnside, E.; Wilkie, B. Variation in Serum Concentrations of Immunoglobulins G, A, and M in Canadian Holstein-Friesian Calves. J. Dairy Sci. 1989, 72, 135–149. [Google Scholar] [CrossRef]
- Besser, T.; Garmedia, A.; McGuire, T.; Gay, C. Effect of Colostral Immunoglobulin G1 and Immunoglobulin M Concentrations on Immunoglobulin Absorption in Calves. J. Dairy Sci. 1985, 68, 2033–2037. [Google Scholar] [CrossRef]
- Dang, A.; Kapila, S.; Tomar, P.; Singh, C. Immunity of the Buffalo Mammary Gland during Different Physiological Stages. Asian Australas. J. Anim. Sci. 2007, 20, 1174–1181. [Google Scholar] [CrossRef]
- Foley, J.; Otterby, D. Availability, Storage, Treatment, Composition, and Feeding Value of Surplus Colostrum: A Review. J. Dairy Sci. 1978, 61, 1033–1060. [Google Scholar] [CrossRef]
- Moeini, M.M.; Kiani, A.; Mikaeili, E.; Shabankareh, H.K. Effect of Prepartum Supplementation of Selenium and Vitamin E on Serum Se, IgG Concentrations and Colostrum of Heifers and on Hematology, Passive Immunity and Se Status of Their Offspring. Biol. Trace Element Res. 2011, 144, 529–537. [Google Scholar] [CrossRef]
- Pero, M.E.; Luca, A.; Mastellone, V.; Mirabella, N.; Lombardi, P.; Tudisco, R.; Infascelli, F.; Avallone, L.; Romero, F. Distribution of Ca2+-sensing receptor (CaSR) and Na-K-ATPase in the gastrointestinal tracts of neonatal calves after colostrum ingestion. Rev. Vet. 2010, 21, 620–622. [Google Scholar]
- Infascelli, F.; Tudisco, R.; Mastellone, V.; Cutrignelli, M.; Lombardi, P.; Calabrò, S.; Gonzalez, O.J.; Pelagalli, A.; Grossi, M.; d’Angelo, D.; et al. Diet Aloe Supplementation in Pregnant Buffalo Cows Improves Colostrum Immunoglobulin Content. Rev. Vet. 2010, 21, 151–153. [Google Scholar]
- Mudgal, V.; Bharadwaj, A.; Verma, A.K. Vitamins Supplementation Affecting Colostrum Composition in Murrah Buffaloes. Indian J. Anim. Res. 2021, 55, 900–904. [Google Scholar] [CrossRef]
- An, Z.; Abdelrahman, M.; Zhou, J.; Riaz, U.; Gao, S.; Gao, S.; Luo, G.; Yang, L. Prepartum maternal supplementation of Capsicum oleoresin improves colostrum quality and buffalo calves’ performance. Front. Vet.-Sci. 2022, 9, 6. [Google Scholar] [CrossRef]
- Godden, S.; Smith, S.; Feirtag, J.; Green, L.; Wells, S.; Fetrow, J. Effect of On-Farm Commercial Batch Pasteurization of Colostrum on Colostrum and Serum Immunoglobulin Concentrations in Dairy Calves. J. Dairy Sci. 2003, 86, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Manohar, A.A.; Williamson, M.; Koppikar, G.V. Effect of storage of colostrum in various containers. Indian Pediatr. 1997, 34, 293–296. [Google Scholar]
- Cummins, C.; Lorenz, I.; Kennedy, E. Short communication: The effect of storage conditions over time on bovine colostral immunoglobulin G concentration, bacteria, and pH. J. Dairy Sci. 2016, 99, 4857–4863. [Google Scholar] [CrossRef]
- El-Fattah, A.; Mohamed, A. Preservation methods of buffalo and bovine colostrum as a source of bioactive components. Intern. Dairy J. 2014, 39, 24–27. [Google Scholar] [CrossRef]
- Khattar, S.; Pandey, R. Cell culture propagation of calf rotavirus and detection of rotavirus specific antibody in colostrum and milk of cows and buffaloes. Rev. Sci. Et Tech. 1990, 9, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, M.; Roch, F.-F.; Conrady, B. Prevalence of Worldwide Neonatal Calf Diarrhoea Caused by Bovine Rotavirus in Combination with Bovine Coronavirus, Escherichia coli K99 and Cryptosporidium spp.: A Meta-Analysis. Animals 2021, 11, 1014. [Google Scholar] [CrossRef]
- Godden, S.M.; Smolenski, D.J.; Donahue, M.; Oakes, J.M.; Bey, R.; Wells, S.; Sreevatsan, S.; Stabel, J.; Fetrow, J. Heat-treated colostrum and reduced morbidity in pre-weaned dairy calves: Results of a randomized trial and examination of mechanisms of effectiveness. J. Dairy Sci. 2012, 95, 4029–4040. [Google Scholar] [CrossRef]
- Meganck, V.; Hoflack, G.; Opsomer, G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: A systematical review with emphasis on colostrum management and fluid therapy. Acta Vet.-Scand. 2014, 56, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Piantedosi, D.; Servida, F.; Cortese, L.; Puricelli, M.; Benedetti, V.; Di Loria, A.; Manzillo, V.F.; Dall’Ara, P.; Ciaramella, P. Colostrum and serum lysozyme levels in Mediterranean buffaloes (Bubalus bubalis) and in their newborn calves. Vet.-Rec. 2010, 166, 83–85. [Google Scholar] [CrossRef]
- Paulík, S.; Slanina, L.; Polácek, M. Lysozyme in the colostrum and blood of calves and dairy cows. Vet. Med. 1985, 30, 21–28. [Google Scholar]
- Foster, D.; Smith, G.W. Pathophysiology of Diarrhea in Calves. Vet.-Clin. N. Am. Food Anim. Pract. 2009, 25, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Geletu, U.S.; Usmael, M.A.; Bari, F.D. Rotavirus in Calves and Its Zoonotic Importance. Vet.-Med. Int. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Rast, L.; Lee, S.; Nampanya, S.; Toribio, J.-A.L.M.L.; Khounsy, S.; Windsor, P.A. Prevalence and clinical impact of Toxocara vitulorum in cattle and buffalo calves in northern Lao PDR. Trop. Anim. Health Prod. 2012, 45, 539–546. [Google Scholar] [CrossRef]
- Rajapakse, R.; Lloyd, S.; Fernando, S. Toxocara vitulorum: Maternal transfer of antibodies from buffalo cows (Bubalis bubalis) to calves and levels of infection with T vitulorum in the calves. Res. Vet.-Sci. 1994, 57, 81–87. [Google Scholar] [CrossRef]
- Qureshi, Z.I.; Lodhi, L.A.; Jamil, H.; Sattar, A. Effect of Maternal Immunomodulation Along with Vaccination on the Production of Colostral Specific Antibodies and Their Transfer to Buffalo Neonates. Paki. J. Bio. Sci. 1999, 2, 1510–1513. [Google Scholar]
- Menichetti, B.; Garcia-Guerra, A.; Lakritz, J.; Weiss, W.; Velez, J.; Bothe, H.; Merchan, D.; Schuenemann, G. Effects of prepartum vaccination timing relative to pen change with an acidogenic diet on serum and colostrum immunoglobulins in Holstein dairy cows. J. Dairy Sci. 2021, 104, 11072–11081. [Google Scholar] [CrossRef]
- Saif, L.J.; Redman, D.R.; Smith, K.L.; Theil, K.W. Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or nonimmunized cows. Infect. Immun. 1983, 41, 1118–1131. [Google Scholar] [CrossRef]
- Ali, M.S.E.-D.; Mikhail, W.Z.A.; Salama, M.A.M.; Hafez, Y.M. Impact of Offspring Sex and Dam’s Pre-partum Vaccination on Colostrum Composition and Blood Hormones in Egyptian Buffaloes. World’s Vet.-J. 2021, 11, 51–59. [Google Scholar] [CrossRef]
- Maunsell, F.; Morin, D.; Constable, P.; Hurley, W.; McCoy, G.; Kakoma, I.; Isaacson, R. Effects of Mastitis on the Volume and Composition of Colostrum Produced by Holstein Cows. J. Dairy Sci. 1998, 81, 1291–1299. [Google Scholar] [CrossRef]
- Jayappa, H.; Davis, R.; Dierks, L.; Sweeney, D.; Wasmoen, T. Demonstration of passive protection in neonatal calves against colibacillosis following immunization of pregnant heifers at 3 months of gestation. Vet.-Ther. Res. Appl. Vet.- Med. 2008, 9, 283–289. [Google Scholar]
- Denholm, K.; Hunnam, J.; Cuttance, E.; McDougall, S. Associations between management practices and colostrum quality on New Zealand dairy farms. N. Z. Vet.-J. 2017, 65, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Denholm, K.S.; McDougall, S.; Chambers, G.; Clough, W. Factors associated with colostrum quality in individual cows from dairy herds in the Waikato region of New Zealand. N. Z. Vet.-J. 2018, 66, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.C.; da Silva, D.G.; Fonseca, L.C.C.; de Castro, L.F.; Monteiro Moura, B.; Bernardes, O.; Viana, R.B.; Fagliari, J.J. Passive Immunity Transfer in Water Buffaloes (Bubalus bubalis). Front. Vet. Sci. 2020, 7, 247. [Google Scholar] [CrossRef] [PubMed]
- Civra, A.; Altomare, A.; Francese, R.; Donalisio, M.; Aldini, G.; Lembo, D. Colostrum from cows immunized with a veterinary vaccine against bovine rotavirus displays enhanced in vitro anti-human rotavirus activity. J. Dairy Sci. 2019, 102, 4857–4869. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.A.; Al-Mutawa, T.; Abbas, S.; Bedair, M. Performance of Pre-Weaned Dairy Calves under Hot Arid Environment: Effects of Immunoglobulins and Age on Diseases and Mortality. Am. J. Appl. Sci. 2009, 6, 1885–1891. [Google Scholar] [CrossRef]
- Singh, K.V.; Osman, O.A.; El Cicy, I.F.; Baz, T.I. Colostral transfer of rinderpest neutralizing antibody to offspring of vaccinated dams. Can. J. Comp. Med. Vet.-Sci. 1967, 31, 295–298. [Google Scholar]
- Hulbert, L.E.; Moisá, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- Svensson, C.; Lundborg, K.; Emanuelson, U.; Olsson, S.-O. Morbidity in Swedish dairy calves from birth to 90 days of age and individual calf-level risk factors for infectious diseases. Prev. Vet.-Med. 2003, 58, 179–197. [Google Scholar] [CrossRef]
Nutrient | |||||
---|---|---|---|---|---|
El -Fattah et al. [36] | Yonis et al. [37] | Coroian et al. [25] | Salar et al. [38] | Bernabucci et al. [39] | |
Fat (%) | 9.59 | 9.70 ± 0.50 | 11.31 ± 0.39 | 10.81 ± 0.50 | 18.75 |
Protein (%) | 13.46 | 11.93 ± 0.55 | 8.73 ± 0.15 | 7.97 ± 0.76 | 5.44 |
Lactose (%) | . | 2.50 ± 0.60 | 3.73 ± 0.02 | 3.78 ± 0.06 | 2.7 |
Total Solids (%) | 26.67 | 25.20 ± 0.60 | 25.31 ± 0.02 | 23.93 ± 1.46 | . |
Ash (%) | . | 1.10 ± 0.05 | 0.94 ± 0.02 | 0.97 ± 0.02 | . |
pH | . | . | 6.01 ± 0.01 | 6.04 ± 0.02 | . |
Nutrient | ||||||
---|---|---|---|---|---|---|
Dunn et al. [40] | Salar et al. [38] | Godden et al. [41] | Kehoe et al. [34] | Elfstrand et al. [42] | Arslan et al. [43] | |
Fat (%) | 6.40 | 6.11 ± 0.78 | 6.70 | 6.70 | 4.60 | 6.40 |
Protein (%) | 14.0 | 12.91 ± 3.75 | 14.0 | 14.92 | 12.4 | 14.0 |
Lactose (%) | 2.70 | 3.21 ± 0.41 | 2.70 | 2.49 | 3.0 | 2.70 |
Total Solids (%) | . | 23.33 ± 4.11 | 23.90 | 27.64 | . | . |
Ash (%) | . | 1.01 ± 0.08 | 1.11 | 0.50 | . | 0.50 |
pH | . | 6.26 ± 0.09 | . | . | . | . |
Colostrum Functions in Newborn Calves |
---|
Passive Immunity Transfer [27,34,41,64] |
Nutritional function in terms of fat, protein, and vitamin [25,31,36,38,42,43] |
Thermoregulation [40,63] |
Development of the gastrointestinal tract [55,56] |
Body growth improvement [55,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotito, D.; Pacifico, E.; Matuozzo, S.; Musco, N.; Iommelli, P.; Zicarelli, F.; Tudisco, R.; Infascelli, F.; Lombardi, P. Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Vet. Sci. 2023, 10, 358. https://doi.org/10.3390/vetsci10050358
Lotito D, Pacifico E, Matuozzo S, Musco N, Iommelli P, Zicarelli F, Tudisco R, Infascelli F, Lombardi P. Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Veterinary Sciences. 2023; 10(5):358. https://doi.org/10.3390/vetsci10050358
Chicago/Turabian StyleLotito, Daria, Eleonora Pacifico, Sara Matuozzo, Nadia Musco, Piera Iommelli, Fabio Zicarelli, Raffaella Tudisco, Federico Infascelli, and Pietro Lombardi. 2023. "Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review" Veterinary Sciences 10, no. 5: 358. https://doi.org/10.3390/vetsci10050358
APA StyleLotito, D., Pacifico, E., Matuozzo, S., Musco, N., Iommelli, P., Zicarelli, F., Tudisco, R., Infascelli, F., & Lombardi, P. (2023). Colostrum Composition, Characteristics and Management for Buffalo Calves: A Review. Veterinary Sciences, 10(5), 358. https://doi.org/10.3390/vetsci10050358